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Context: bugs are everywhere
Software is omnipresent in highly critical systems:

Bugs in software may have disastrous consequences!

Static analysis of memory manipulations by abstract interpretation — Xavier Allamigeon — 2/57



Introduction Tropical polyhedra Algorithmics of tropical polyhedra Numerical domains Conclusion References

Context: bugs are everywhere
Software is omnipresent in highly critical systems:

Bugs in software may have disastrous consequences!

Static analysis of memory manipulations by abstract interpretation — Xavier Allamigeon — 2/57



Introduction Tropical polyhedra Algorithmics of tropical polyhedra Numerical domains Conclusion References

Context: bugs are everywhere
Software is omnipresent in highly critical systems:

Bugs in software may have disastrous consequences!

Static analysis of memory manipulations by abstract interpretation — Xavier Allamigeon — 2/57



Introduction Tropical polyhedra Algorithmics of tropical polyhedra Numerical domains Conclusion References

Context: bugs are everywhere
Software is omnipresent in highly critical systems:

Bugs in software may have disastrous consequences!

Static analysis of memory manipulations by abstract interpretation — Xavier Allamigeon — 2/57



Introduction Tropical polyhedra Algorithmics of tropical polyhedra Numerical domains Conclusion References

Context: bugs are everywhere
Software is omnipresent in highly critical systems:

Bugs in software may have disastrous consequences!

Static analysis of memory manipulations by abstract interpretation — Xavier Allamigeon — 2/57



Introduction Tropical polyhedra Algorithmics of tropical polyhedra Numerical domains Conclusion References

Context: bugs are everywhere
Software is omnipresent in highly critical systems:

Bugs in software may have disastrous consequences!

Static analysis of memory manipulations by abstract interpretation — Xavier Allamigeon — 2/57



Introduction Tropical polyhedra Algorithmics of tropical polyhedra Numerical domains Conclusion References

Memory manipulations

Refers to the manipulation of complex data structures in memory

• arrays, matrices

• character strings ("Hello World!" )

• lists, trees, etc

=⇒ widely used in modern programming languages: C, C++, Java, etc

Memory manipulations is error-prone and dangerous

, e.g. buffer overflows

Buffer overflows may lead to:

• software crashes (SEGFAULT)

• security holes, execution of arbitrary codes
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What is this thesis about?

Static analysis of memory manipulations by abstract interpretation

= automatically analyzing the memory manipulations performed by a program

Static analysis =

• automatic analysis technique

• the program is not executed (analysis on the source code)

Abstract interpretation = compute properties which hold for all behaviors of
the program

• determines an over-approximation of the set of all behaviors
=⇒ can not miss any bug

• if not precise enough, it is not able to show the absence of bugs
=⇒ false alarm
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What is this thesis about? (2)

Static analysis of memory manipulations by abstract interpretation

Our approach:

Analyzing memory manipulations Determining numerical properties

sz

index i

no buffer overflow iff 0 ≤ i < sz

Automatically determining numerical invariants on:

• the size of memory blocks
• the indexes of memory accesses
• the length of the strings:

index of the first \0 character

E x a m p l e \0 ? ?

length = 7
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Determining numerical invariants by abstract interpretation
Central notion: numerical abstract domain

• determines a class of numerical invariants over variables v1, . . . ,vd . For
instance:

• intervals a ≤ vi ≤ b [Cousot and Cousot, 1977]

• zones vi − vj ≥ a [Miné, 2001]

• convex polyhedra a1v1 + · · ·+ advd ≤ b [Cousot and Halbwachs, 1978]

• provides a set of abstract primitives allowing to automatically compute
sound properties

Different levels of precision:

v1

v2

• intervals

• zones

• convex polyhedra

Remark: most existing numerical abstract domains are convex
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The need of non-convex abstract domains

1 : assume (n ≥ 1);
2 : s := malloc(n);
3 : i := 0;
4 : while i ≤ n− 2 do
5 : s[i] := read();
6 : i := i + 1;
7 : done;
8 : s[i] := \0;
9 : upper := malloc(n);

10 : memcpy(upper, s, n);
11 : i := 0;
12 : while upper[i] 6= \0 do
13 : c := upper[i];
14 : if (c ≥ 97) ∧ (c ≤ 122) then
15 : upper[i] := c− 32;
16 : end;
17 : i := i + 1;
18 : done;

Typical memory manipulating program:

• reads a string s from standard
input

• copies it in upper and capitalizes it

Convex abstract domains: raise a false
alarm

iterates up to the first \0
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The need of non-convex abstract domains (2)

memcpy(dst,src,n) copies the first n characters of src to dst:

1: int i := 0;
2: for i = 0 to n-1 do
3: dst[i] := src[i];
4: done;

• if n > len src,

• if n ≤ len src,
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The need of non-convex abstract domains (3)

Disjunction of two cases:

• if n > len src, len dst = len src

• if n ≤ len src, len dst ≥ n

Not convex at all

Existing disjunctive techniques:

• disjunctive completion [Cousot and
Cousot, 1979, Giacobazzi and Ranzato,
1998, Bagnara et al., 2006]

• trace partitioning [Mauborgne and Rival,
2005, Rival and Mauborgne, 2007]

=⇒ not satisfactory

lensrc

lendst

n
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The need of non-convex abstract domains (3)

Disjunction of two cases:

• if n > len src, len dst = len src

• if n ≤ len src, len dst ≥ n

⇐⇒ min(lensrc, n) = min(lendst, n)

⇐⇒ max(−lensrc,−n) = max(−lendst,−n)

a linear equality . . . in tropical algebra

lensrc

lendst

n
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Tropical algebra

Tropical algebra refers to the set Rmax := R ∪ {−∞} where:

• the addition x ⊕ y is max(x , y)

• the multiplication x ⊗ y is x + y

• 0
def
= −∞ is the zero element

• 1
def
= 0 is the unit element

The addition has no inverse! =⇒ semi-ring

1⊕ 1 =

max(1, 1) = 1

1⊗ 1 =

1 + 1 = 2

3⊕ (−3) =

3

3⊗ (−3) =

0
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Tropical polyhedra

• Tropical affine inequality =

α0 + (α1 × x1) + · · ·+ (αd × xd) ≤ β0 + (β1 × x1) + · · ·+ (βd × xd)

• Tropical polyhedra = system of tropical affine inequalities

max(−lensrc,−n) = max(−lendst,−n)

⇐⇒

(
(−lensrc)⊕ (−n) ≤ (−lendst)⊕ (−n)

(−lendst)⊕ (−n) ≤ (−lensrc)⊕ (−n)

Idea: build a numerical domain based on tropical polyhedra
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Tropical polyhedra (2)
Very studied in the litterature:

• Zimmermann [Zimmermann, 1977]
• Cuninghame-Green [Cuninghame-Green, 1979]
• Cohen, Gaubert, and Quadrat [Cohen et al., 2001, 2004]
• Nitica and Singer [Nitica and Singer, 2007]
• Briec, Horvath, and Rubinov [Briec and Horvath, 2004, Briec et al., 2005]
• Develin and Sturmfels [Develin and Sturmfels, 2004], Joswig [Joswig,

2005], Yu [Develin and Yu, 2007]
• Gaubert and Katz [Gaubert and Katz, 2006, 2007, 2009]

Algorithmics of tropical polyhedra: little studied

by inequalities by vertices/rays

• central operation for computing with tropical polyhedra

• tropical analogue of vertex/facet enumeration problem
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Contents: algorithmics of tropical polyhedra, and application to abstract
interpretation

Goal of this thesis:

• build a new numerical abstract domain based on tropical polyhedra

• study the algorithmics of tropical polyhedra

1 A better insight into tropical polyhedra

2 Algorithmics of tropical polyhedra

3 Tropical polyhedra based numerical domains

4 Conclusion
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Contents
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Representation by inequalities
Representation by generating set
Tropical Minkowski-Weyl theorem

2 Algorithmics of tropical polyhedra

3 Tropical polyhedra based numerical domains

4 Conclusion
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Tropical polyhedra as system of inequalities

Tropical polyhedra are the analogues of

convex polyhedra in tropical algebra

Two possible representations:
• as the solutions of a system of tropical affine inequalities,
• or as the convex hull of a finitely many points and rays.

Definition (Inequality form)

A tropical polyhedron of Rd
max is the

set of the solutions x ∈ Rd
max of

Ax⊕ c ≤ Bx⊕ d

x

y

two-sided inequalities
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Tropical halfspaces
Tropical halfspace = set of the solutions x ∈ Rd

max of an affine inequality

ax⊕ c ≤ bx⊕ d

x

y

x

y

x

y

x

y

x

y

x

y
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Contents

1 A better insight into tropical polyhedra
Representation by inequalities
Representation by generating set
Tropical Minkowski-Weyl theorem

2 Algorithmics of tropical polyhedra

3 Tropical polyhedra based numerical domains

4 Conclusion
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Tropical polyhedra = convex hull of generators

Definition (Generating
representation)

A tropical polyhedron is formed by
the combinations of finitely many:

• points pi ∈ P,

• and of rays rj ∈ R,

of the form:

pM
i=1

λipi ⊕
qM

j=1

µjrj

where
Lp

i=1 λi = 1.

The couple (P,R) is a generating
representation.

x

y

p1

p2

p3

r0
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the combinations of finitely many:

• points pi ∈ P,

• and of rays rj ∈ R,

of the form:

pM
i=1

λipi ⊕
qM

j=1

µjrj

where
Lp
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no positivity constraints on the λi and µj :

∀x ∈ Rmax. x ≥ 0 (= −∞)
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Tropical Minkowski-Weyl theorem

Theorem ([Gaubert and Katz, 2006])

The two definitions of tropical polyhedra:

• as the solution of a system of tropical affine inequalities

• as the convex hull of points and rays

are equivalent.

Underlying algorithmic problems:

description by inequalities

Ax⊕ c ≤ Bx⊕ d

generators

(P,R)
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Tropical double description method

= incremental method computing generators from inequalities

x ≤ y ⊕ 1

1 ≤ 2x

x ≤ 2

H :

1 ≤ x ⊕ (−1)y

Q :

Generators of Q: r0,p1,p2,p3

Intersection of Q and H
generated by:

• generators of Q in H

• combinations of green and
red generators of Q lying

on the boundary of H

x

y

P

Q

by induction

p1 p3

p2

r0

p3

p2

r0

p1
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Tropical double description method (2)

Theorem (Elementary step of the DDM, Allamigeon et al. (STACS’10))

Consider:
• a tropical polyhedron Q of generating represention ({pi}, {rj})
• a tropical halfspace H defined by ax⊕ c ≤ bx⊕ d

Then Q∩H is generated by (Q, S) where

Q =


p

i | api ⊕ c ≤ bpi ⊕ d

ff

∪

8<: λpi ⊕ µpj

˛̨̨̨
api ⊕ c ≤ bpi ⊕ d and apj ⊕ c > bpj ⊕ d

λ = κ
−1(ap

j ⊕ c), µ = κ
−1(bp

i ⊕ d), κ = ap
j ⊕ c ⊕ bp

i ⊕ d

9=;
∪


pi ⊕ αrj | api ⊕ c ≤ bpi ⊕ d and arj > brj , α = (ar
j )−1(bp

i ⊕ d)

ff
∪

βri ⊕ pj | ari < bri and apj ⊕ c > bpj ⊕ d , β = (br

i )−1(ap
j ⊕ c)

ff

R =


r

i | ari ≤ bri

ff
∪


(arj )ri ⊕ (bri )rj | ari ≤ bri and arj > brj

ff
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Tropical double description method (2): homogenized version

Theorem (Elementary step of the DDM, Allamigeon et al. (STACS’10))

Consider:
• a tropical cone C of generating represention G = (gi )i

• a tropical linear halfspace H defined by ax ≤ bx

Then C ∩ H is generated by:n
gi | agi ≤ bgi

o
∪
n

(agj)gi ⊕ (bgi )gj | agi ≤ bgi and agj > bgj
o
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Introduction Tropical polyhedra Algorithmics of tropical polyhedra Numerical domains Conclusion References

Tropical double description method (3)

This method may yield non-extreme generators:

x

y

p3

p2

r0

Definition

extreme = not a combination
of the other generators

Non-extreme generators

• redundant and useless

• may considerably degrade
the performance of the
DDM
double exponential
complexity

Non-extreme generators
must be eliminated at

each step of the induction
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Combinatorial characterization of extreme points

Extremality in a tropical poly-
hedron Ax ⊕ c ≤ Bx ⊕ d

Reachability problem is
a directed hypergraph

Directed hypergraphs = generalization of directed graphs:

u

v

w

x

y

t

e1

e2

e3

e4

e5

{ v ,w } −→ { x , y }
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Combinatorial characterization of extreme points (2)

Let P given by

8<: A1x⊕ c1 ≤ B1x⊕ d1
...

Apx⊕ cp ≤ Bpx⊕ dp

Is p ∈ P extreme?

Definition

The tangent directed hypergraph H(p) at the point p is formed by the
hyperedges

j1

j2

j3

i1

i2

arg max(Bkp⊕ dk)
arg max(Akp⊕ ck)

for each k such that
Akp⊕ ck = Bkp⊕ dk

ek

Theorem (Allamigeon et al. (STACS’10))

p ∈ P is extreme ⇐⇒ H(p) admits a sink

reachable from all nodes

Stronger property than
in the classical case:

• saturated
inequalities

• “maximality”
criterion

Static analysis of memory manipulations by abstract interpretation — Xavier Allamigeon — 28/57
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Combinatorial characterization of extreme points (let’s practice!)

x

y

p = (−2, 1)

− 2 =

x ≤ max(y , 0)

= 1

0 ≤ x + 2

= 0

− 2 =

x ≤ 2

0 ≤ max(x , y − 1)

= 0

x y z

e2

e4

H(p) has a sink: z
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Efficient evaluation of the extremality criterion

H admits a sink ⇐⇒ H has a greatest Scc

(order induced by the reachability relation: C1 ≺ C2 iff C1 reaches C2)

directed graphs decidable in linear time (variation of Tarjan)

directed hypergraphs

Theorem (Allamigeon et al. (STACS’10))

The maximal Sccs can be determined in almost linear time.

Sequence of operations of two kinds:

• merging some nodes in the
directed hypergraph

• discovering the maximal Sccs in
the underlying directed graph
(Tarjan)

Result of independent interest

• no previous work on Sccs in directed hypergraph
• only existing method suboptimal, based on Gallo et al. [1993]
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Efficient evaluation of the extremality criterion (2)

1: function HMaxSccCount(H = (N, E))
2: n := 0, nb := 0, S := [ ], Finished := ∅
3: for all e ∈ E do re := undef , ce := 0
4: for all u ∈ N do
5: index[u] := undef , low [u] := undef
6: Fu := [ ], Makeset(u)
7: done
8: for all u ∈ N do
9: if index[u] = undef then HVisit(u)

10: done
11: return nb
12: end

13: function HVisit(u)
14: local U := Find(u), local F := [ ]
15: index[U] := n, low [U] := n, n := n + 1
16: ismax[U] := true, push U on the stack S
17: for all e ∈ Eu do
18: if |T (e)| = 1 then push e on F
19: else
20: if re = undef then re := u
21: local Re := Find(re )
22: if Re appears in S then
23: ce := ce + 1
24: if ce = |T (e)| then
25: push e on the stack FRe
26: end
27: end
28: end
29: done

30: while F is not empty do
31: pop e from F
32: for all w ∈ H(e) do
33: local W := Find(w)
34: if index[W ] = undef then HVisit(w)
35: if W ∈ Finished then
36: ismax[U] := false
37: else
38: low [U] := min(low [U], low [W ])
39: ismax[U] := ismax[U] && ismax[W ]
40: end
41: done
42: done
43: if low [U] = index[U] then
44: if ismax[U] = true then
45: local i := index[U]
46: pop each e from FU and push it on F
47: pop V from S
48: while index[V ] > i do
49: pop each e from FV and push it on F
50: U := Merge(U, V )
51: pop V from S
52: done
53: index[U] := i , push U on S
54: if F is not empty then go to Line 30
55: nb := nb + 1
56: end
57: repeat
58: pop V from S , add V to Finished
59: until index[V ] = index[U]
60: end
61: end
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From inequalities to generators

IneqToGen = combination of

• tropical double description method

• elimination of non-extreme elements by hypergraph-based characterization

Proposition

The time complexity of IneqToGen is

O(p2 d G 2
max)

where:

• d = dimension

• p = nb of constraints in Ax⊕ c ≤ Bx⊕ d

• Gmax = maximal number of extreme generators in the intermediate
polyhedra

leading term, exponential in d
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Comparison to existing works
Time complexity of IneqToGen = O(p2 d G 2

max)

Tropical world:
• seminal algorithm due to Butkovič and Hegedüs [1984]: double exponential

• implementation in the Max-plus toolbox of Scilab and ScicosLab, later

refined in Allamigeon et al. (SAS’08)

O(p d G 4
max)

Elimination of non-extreme elements by residuation [see Vorobyev, 1967,
Cuninghame-Green, 1976]

Classical world: Motzkin et al. [1953], Fukuda and Prodon [1996]

O(p2 G 3
max)

Notations
• d = dimension

• p = nb of constraints in Ax⊕ c ≤ Bx⊕ d

• Gmax = maximal number of extreme generators in the intermediate
polyhedra leading term, exponential in d
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IneqToGen: benchmarks

Implementation in OCaml, experimentations on a 3 GHz Intel Xeon with 3 Gb
RAM

d p # final # inter. T (s) T ′ (s)
rnd100 12 15 32 59 0.24 6.72
rnd100 15 10 555 292 2.87 321.78
rnd100 15 18 152 211 6.26 899.21
rnd30 17 10 1484 627 15.2 4667.9
rnd10 20 8 5153 1273 49.8 50941.9
rnd10 25 5 3999 808 9.9 12177.0
rnd10 25 10 32699 6670 3015.7 —
cyclic 10 20 3296 887 25.8 4957.1
cyclic 15 7 2640 740 8.1 1672.2
cyclic 17 8 4895 1589 44.8 25861.1
cyclic 20 8 28028 5101 690 ∼ 45 days
cyclic 25 5 25025 1983 62.6 ∼ 8 days
cyclic 30 5 61880 3804 261 —
cyclic 35 5 155040 7695 1232.6 —

• T : IneqToGen

• T ′: previous algorithm of Scilab and Allamigeon et al. (SAS’08)
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From generators to inequalities

GenToIneq =

• dual version of the double description method

• elimination of “non-extreme inequalities” at each step of the induction

Characterizing extreme inequalities is easier:
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Maximal number of extreme elements in tropical polyhedron

Theorem (McMullen-type bound, Allamigeon et al. (submitted to
JCTA))

The number of extreme elements of a tropical polyhedron in Rd
max defined by

p inequalities is bounded by

U(p + d + 1, d) = O
“

(p + d + 1)bd/2c
”

Candidates to be maximizing instances: signed cyclic polyhedral cones

Theorem (Allamigeon et al.
(submitted to JCTA)

• the bound U(p + d + 1, d) is
tight when d → +∞ and p fixed

• when p ≥ 2d, lower bound in

O((p − 2d)2d−2)
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Upper bound on the complexity of our algorithms

• from inequalities to generators:(
O(p2d(p + d + 1)d−1) if d is odd

O(p2d(p + d + 1)d) if d is even

• from generators to inequalities:(
O(pd2(p + d)d−1) if d is even

O(pd2(p + d)d) if d is odd
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Principle of the abstract domain MaxPoly
Over-approximates subsets of Rd by means of tropical polyhedra:

v1

v2

Double representation:

• by inequalities Ax⊕ c ≤ Bd⊕ d

• by generators (P,R)

Expressivity: conjunction of max-invariants over variables v1, . . . ,vd

max(α0, α1 + v1, . . . , αd + vd) ≤ max(β0, β1 + v1, . . . , βd + vd)

=⇒ connected disjunctions of zone invariants vi − vj ≥ κ:_
1≤i≤d
βi 6=−∞

"“ ^
1≤j≤d

αj − βi ≤ vi − vj

”
∧ (α0 − βi ≤ vi )

#
∨

" ^
1≤i≤d
αi 6=−∞

vi ≤ β0 − αi

#
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Some abstract primitives
Abstract primitives generally use one of the representations:
=⇒ IneqToGen and GenToIneq are critical

• Abstract union: given two polyhedra P and Q, and (P,R) and (Q,S)
their generating representations,

P tQ def
= polyhedron generated by (P ∪ Q,R ∪ S)

x

y

• sound: P ∪Q ⊂ P tQ
• as precise as possible: for all
P,Q ⊂ R,

P tQ ⊂ R

Non-extreme generators can be eliminated in polynomial time
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Some abstract primitives (2)

• abstract intersection, assignments, . . . all sound and exact

• widening operators to enforce convergence:

• ∇cons : eliminate non-stable inequalities

• ∇gen: extrapolation of generators (using projection)

Static analysis of memory manipulations by abstract interpretation — Xavier Allamigeon — 43/57



Introduction Tropical polyhedra Algorithmics of tropical polyhedra Numerical domains Conclusion References

Some abstract primitives (2)

• abstract intersection, assignments, . . . all sound and exact

• widening operators to enforce convergence:
if P0 ⊂ · · · ⊂ Pn ⊂ · · · , the sequence defined by8<: Q0

def
= P0

Qn+1
def
= Qn∇Pn+1

eventually stabilizes.

• ∇cons : eliminate non-stable inequalities

• ∇gen: extrapolation of generators (using projection)
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v1

v2

∇cons

v1

v2

=

v1

v2
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Comparison with the abstract domain of zones

• zones are tropical polyhedra with at most (d + 1) generators

• MaxPoly is strictly more precise that the domain of zones

toZone(P) = extract the smallest zone abstract element containing P

v1

v2
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Other tropical polyhedra based abstract domains

• MinPoly: infer min-invariants

min(α0, α1 + v1, . . . , αd + vd) ≤ min(β0, β1 + v1, . . . , βd + vd)

using MaxPoly on special variables wi = “− vi ”.

• MinMaxPoly: infer a superclass of min- and max-invariants

max(α0, α1 + v1, . . . , αd + vd , αd+1 − v1, . . . , α2d − vd)

≤ max(β0, β1 + v1, . . . , βd + vd , βd+1 − v1, . . . , β2d − vd)

using MaxPoly on the vi and wi = “− vi ”.
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Memory manipulating programs

• widespread library functions
• memcpy(dst, src, n)

1 : i := 0;
2 : while i ≤ n − 1 do
3 : dst[i ] := src[i ];
4 : i := i + 1;
5 : done;

• strncpy(dst, src, n)

The strncpy function copies not more than n characters
(characters that follow a null character are not copied) from the
array src to the array dst.

. . .
If the array src stores a string that is shorter than n

characters, null characters are appended to the copy in the array
dst, until n characters in all are written.

min(lendst , n) = min(lensrc , n)
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Memory manipulating programs (2)
• programs embedding memory manipulation primitives

1 : assume (n ≥ 1);
2 : s := malloc(n);
3 : i := 0;
4 : while i ≤ n− 2 do
5 : s[i] := read();
6 : i := i + 1;
7 : done;
8 : s[i] := \0;
9 : upper := malloc(n);

10 : memcpy(upper, s, n);
11 : i := 0;
12 : while upper[i] 6= \0 do
13 : c := upper[i];
14 : if (c ≥ 97) ∧ (c ≤ 122) then
15 : upper[i] := c− 32;
16 : end;
17 : i := i + 1;
18 : done;

• convex polyhedra: raise a false
alarm

lenupper ≤ szupper

• MinPoly: no buffer overflow

lenupper < szupper

iterates up to the first \0
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Disjunctive invariants

• class of programs derived from predicate abstraction

1 : i := p1;
2 : while i ≤ p2 − 1 do
3 : i := i + 1;
4 : done;
5 : while i ≤ p3 − 1 do
6 : i := i + 1;

7 : done;
.
.
.

3n − 1 : while i ≤ pn − 1 do
3n − 2 : i := i + 1;
3n − 3 : done;

i = max(p1, . . . , pn)

tropical polyhedra:

• linear growth of the
representation

• scales up to large
values of n (n = 60
→ 19 s)

classical disjunctive techniques:

• exponential growth of the representation

or

or or

p1 ≥ p2,

p1 ≥ p3,

i = p1

p1 ≥ p2,

p1 ≤ p3 − 1,

i = p3

p1 ≥ p2,

p1 ≤ p3 − 1,

i = p2

p1 ≤ p2 − 1,

p1 ≤ p3 − 1,

i = p3

• not practical for large values of n (n = 60 →
105 terabytes)
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Disjunctive invariants (2)

Analysis of sort algorithms:

leftmost elt = min of the initial elements

rightmost elt = max of the initial elements

Analysis for 10 elements:

• 1979.7 s with tropical polyhedra

• not practical with existing
disjunctive techniques (245

disjunction)
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Benchmarks

Experimentations on a 3 GHz Intel Xeon with 3 Gb RAM

Program # line # var. time (s) (new algo) time (s) [Allamigeon et al., 2008]
memcpy 16 8 0.024 2.87
strncpy 20 8 0.024 2.82

incrementing-10 34 12 0.064 27.3
incrementing-11 37 13 0.088 49.64
incrementing-12 40 14 0.108 77.12
incrementing-13 43 15 0.136 130.65
incrementing-14 46 16 0.158 158.28
incrementing-15 49 17 0.210 245.32
incrementing-20 64 22 0.5 1289.29
incrementing-25 79 27 1.0 5258.55
incrementing-30 94 32 1.7 15692.9
incrementing-40 124 42 4.7 1 day
incrementing-45 139 47 7.0 > 2 days
incrementing-60 184 62 19.0 —

oddeven-4 39 9 0.012 + 0.016 0.028 + 79.51
oddeven-5 70 11 0.10 + 0.064 0.47 + —
oddeven-6 86 13 0.52 + 0.57 3.08 + —
oddeven-7 102 15 4.05 + 4.48 59.55 + —
oddeven-8 118 17 21.90 + 31.6 437.17 + —
oddeven-9 214 19 202.2 + 254.38 8240.65 + —

oddeven-10 240 19 1979.7 + 2591.0 81050.27 + —
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Contributions of this thesis

Advances in combinatorics and algorithmics of tropical polyhedra in Allamigeon
et al. (STACS’10), and Allamigeon et al. (submitted to JCTA)

• two conversion algorithms inequalities ←→ generators which improve the
state of the art by several orders of magnitude

• new combinatorial characterization of extreme elements from inequalities

• almost linear time algorithm to determine the maximal Sccs in directed
hypergraphs

• new results on the maximal number of extreme elements in tropical
polyhedra

Tropical polyhedra based abstract domains in Allamigeon et al. (SAS’08)

• infer min- and/or max-invariants

• successfully show the correctness of memory manipulating programs

• scale up to highly disjunctive invariants
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Perspectives

Algorthmics of tropical polyhedra

• output-sensitive algorithm for inequalities ←→ generators

• tropical linear programming, [see Cuninghame-Green and Butkovic, 2003]
• how to find a point in a tropical polyhedron in polynomial time?

NP ∩ coNP [see Bezem et al., 2008, Akian et al., 2009]

• faces of tropical polyhedra [see Joswig, 2005, Develin and Yu, 2007]

• tropical upper bound on the nb of extreme elements

Abstract interpretation

• improving precision: mixing tropical and classical linear invariants

max(α0, α1 + f1, . . . , αp + fp) ≤ max(β0, β1 + f ′1 , . . . , βp + f ′q )

with fi , f ′j classical linear forms over v1, . . . ,vd

• improving scalability: towards subpolyhedral domains

• application to further static analyses
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