
EXAM COURSE 2-38-2 MPRI 2018

ALGORITHMS AND COMBINATORICS FOR GEOMETRIC GRAPHS

VINCENT PILAUD

The course and your personal notes are authorized. Electronic devices are forbidden.
Prepare two separated sheets for the two halves of the course.
The three problems in this part are independent and can be treated in an arbitrary order.

Clearly indicate the number of the question in front of your answer. You can skip some questions
if you are stuck. However, it is recommended to treat a coherent part of the subject rather than
sporadic questions.

The care in the redaction and presentation of your solution will be considered in the notation.

1. Crossing-free spanning trees of a geometric graph

In this problem, we want to estimate the expectation of the number of crossings in a spanning
tree on a given point set of R2.

1.1. Spanning trees containing a spanning forest. Recall that:

• A spanning forest of a graph (V,E) is a graph (V, F ) with F ⊆ E and no cycle. A spanning
tree is a connected spanning forest, or equivalently a spanning forest with |V | − 1 edges.
• A rooted forest F • is a forest F with one distinguished root vertex per connected component.

We say that a rooted forest F • contains a rooted forest G• if
– all edges of G are edges of F , and
– the root of each connected component T of G• lies on the path between any other vertex

of T and the root of the connected component of F • containing T .

In this problem, we only consider spanning forests and spanning trees of the complete graph Kn

on {1, . . . , n}. We fix a spanning forest F of Kn with k connected components of size n1, . . . , nk.

Q1. In how many ways can we root a tree with n vertices? In how many ways can we root the
forest F?

We now consider a spanning forest F • obtained by rooting the forest F . We denote by T (F •)
the number of rooted spanning trees of Kn containing the rooted spanning forest F •. To com-
pute T (F •), we will make a double counting of the set X(F •) of pairs (T •, π), where T • is a
rooted spanning tree of Kn containing the rooted spanning forest F •, and π is a permutation of
the edges of T • which are not in F •. The first counting is easy:

Q2. Express |X(F •)| in terms of T (F •) and k.

For the second counting, we construct an element of X(F •) using the following algorithm. We
construct a sequence F •0 , . . . , F

•
k−1 of rooted forests such that F •0 = F •, and for each i ∈ [k − 1],

• F •i has k − i connected components, and
• the rooted forest F •i contains the rooted forest F •i−1 (with the definition given above).

By definition, F •k−1 = T • is a spanning tree containing the spanning forest F •. We obtain F •i
from F •i−1 by adding an edge ei connecting two connected components of F •i−1. To choose this
connecting edge ei, we pick any vertex v ∈ [n] and connect it to the root of one of the k − i
connected component of F •i−1 not containing v. Note that this choice is imposed by the fact
that the rooted forest F •i contains the rooted forest F •i−1. Finally, the order in which we have
added e1, . . . , ek−1 is the permutation π of T • r F •.

Q3. Using this algorithm, show that |X(F •)| = nk−1(k − 1)!.
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Q4. Deduce from the last three questions that the number T (F ) of spanning trees of Kn containing
the spanning forest F (nothing is rooted here) is given by

T (F ) = nk−2
∏
i∈[k]

ni.

Q5. Consider a spanning forest Fm with m connected components of size 2 and n− 2m isolated
vertices. What is the number of spanning trees of Kn containing Fm and the number of spanning
trees of Kn not containing Fm?

[Hint: T (F0) gives the total number of spanning trees of Kn.]

1.2. Crossing free spanning trees. We now consider a set P = {p1, . . . , pn} of n points in R2.
We denote by cr(P ) the crossing number of P , i.e. the number of pairs of crossing edges with
endpoints in P . We pick randomly uniformly a spanning tree T on Kn and consider the tree TP
embedded by P (meaning that we consider the geometric graph formed by the segments pipj for
all edges ij in T ).

Q6. Consider for instance the following two configurations of 4 points in R2: the configuration A
where the 4 points are in convex position, and the configuration B where one point lies in the
triangle formed by the other 3 points. Describe all spanning trees of these two configurations, and
deduce the expected number of crossings in a random spanning tree of these configurations.

Q7. Consider a given crossing ξ formed by two edges with endpoints in P . What is the probability
that ξ belongs to the embedded spanning tree TP ?

Q8. Express the expectation of the number of crossings of the embedded spanning tree TP in
terms of cr(P ) and n.

[Hint: No problem of dependencies among random variables when computing expectations.]

2. Almost simplicial polytopes

Recall that a polytope is simplicial when all its facets are simplices. In this problem, we are
interested in polytopes that are not simplicial, but almost. A d-dimensional polytope P is called

• k-simplicial if all its faces of dimension k are simplices,
• s-almost simplicial if all its facets are simplices, except one which has d+ s vertices.

Q9. What is a d-simplicial polytope? Explain the equivalences:
P is simplicial ⇐⇒ P is (d− 1)-simplicial ⇐⇒ P is 0-almost simplicial.

The goal of the problem is to construct k-simplicial and s-almost simplicial polytopes with
many faces, using constructions similar to that of the cyclic polytope seen in the course.

2.1. (d−k)-simplicial polytope. In this section, we construct a (d−k)-simplicial polytope with
many faces (generalizing the cyclic polytope seen in the course).

Let p = (p1, . . . , pk) be a k-tuple of continuous functions pi : R→ R. Define a curve χp : R→ Rd

by χp(t) :=
(
t, t2, t3, . . . , td−k, p1(t), . . . , pk(t)

)
. We fix some numbers t1 < · · · < tn and consider

the polytope Q := conv({χp(t1), . . . , χp(tn)}).

Q10. Show that any d−k+ 1 points on the curve χp are affinely independent, and deduce that Q

is (d− k − 1)-simplicial.

[Hint: compute the rank of the (d+1)×(d−k+1)-matrix

[
1 . . . 1

χp(t1) . . . χp(td−k+1)

]
and conclude.]

Q11. Show that any subset of at most b(d− k)/2c vertices of Q form a face of Q.

[Hint: use a well choosen polynomial to define a supporting hyperplane of this face.]
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2.2. Almost simplicial polytope. In this section, we construct an s-almost simplicial polytope
with many faces, using some results of the previous questions (which can now be admitted if
needed).

We consider the real function p(t) := (n−1)(t−1)(d−1)t(t+1) . . . (t+d+s−1), we define the curve
ξ(t) := (t, t2, ..., td−1, p(t)), and we consider the polytope Q := conv({ξ(t1), . . . , ξ(tn)}), where we
have chosen this time ti := − s− d+ i for all i ∈ [n].

To analyse this polytope, for any d-tuple of indices i = (i1, . . . , id) ∈ [n] and for any d-tuple of
variables z = (z1, . . . , zd), we define the determinant

D(i, z) := det

[
1 1 . . . 1 1

ξ(ti1) ξ(ti2) . . . ξ(tid) z

]
= det



1 1 . . . 1 1
ti1 ti2 . . . tid z1
t2i1 t2i2 . . . t2id z2
...

...
. . .

...
...

td−1i1
td−1i2

. . . td−1id
zd−1

p(ti1) p(ti2) . . . p(tid) zd


.

and the half-space
Hi :=

{
z ∈ Rd

∣∣ D(i, z) ≥ 0
}
.

We denote by V (i) the Vandermonde determinant

V (i) := det


1 1 . . . 1
ti1 ti2 . . . tid
t2i1 t2i2 . . . t2id
...

...
. . .

...

td−1i1
td−1i2

. . . td−1id

 =
∏
k<`

(ti` − tik),

Q12. Observe that p(t1) = p(t2) = · · · = p(td+s) = 0 and p(ti) > 0 for d + s + 1 ≤ i ≤ n.
Deduce that the hyperplane H(1,...,d) defines a facet of the polytope Q containing precisely the
vertices ξ(t1), . . . , ξ(td+s).

Q13. Consider now i1 < i2 < · · · < id < id+1 with id+1 > d+ s. For any j ∈ [d+ 1], we consider
the Vandermonde determinant Wj :=V (i1, . . . , ij−1, ij+1, . . . , id+1). Show that

D(i, ξ(tid+1
)) =

d+1∑
j=1

(−1)d+1−jp(tij )Wj .

To evaluate this sum, we group terms two by two (leaving the first alone when d+ 1 is odd) and
thus consider the term p(tid+1−2k

)Wd+1−2k− p(tid−2k
)Wd−2k for any 0 ≤ k ≤ b(d+ 1)/2c. Observe

that the definition of ti := − s− d+ i implies that 1 ≤ tiq − tip ≤ n− 1 for any 1 ≤ p < q ≤ d+ 1.
Use these inequalities to show that for any 1 < j ≤ d+ 1, we have

• p(tij )/p(tij−1) ≥ (n− 1)d−1 with a strict inequality when j = d+ 1,

• Wj−1/Wj ≤ (n− 1)d−1,

and conclude that D(i, ξ(tid+1
)) > 0 for any choice of i1 < i2 < · · · < id < id+1 with id+1 > d+ s.

Q14. Deduce from Question Q13 that except the facet of Question Q12, all other facets of the
polytope Q are simplices, and conclude that the polytope Q is a s-almost simplicial polytope.

Q15. Using the computation of determinant of Question Q13, show that a subset I := {i1 < · · · < id}
with id > d + s defines a facet of Q if and only if the number of elements of I between any two
elements of [n] r I is even.
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3. Accordion complex

Let n ≥ 3 and consider a 2n-gon with vertices alternatingly colored black and white. Let P•
and P◦ denote the n-gons whose vertices are the black and the white vertices respectively. Fix a
reference dissection D◦ of P◦. A diagonal δ• of P• is a D◦-accordion if the edges of D◦ crossed by δ•
form a connected graph. A D◦-accordion dissection is a set of pairwise non-crossing D◦-accordions.

Reference Not a D◦-accordion A D◦-accordion A D◦-accordion A D◦-accordion
dissection D◦ dissection D• dissection D′•

Figure 1. Examples of D◦-accordions.

Q16. Assume in this question that D◦ is a triangulation of P◦. What are the D◦-accordions, the
D◦-accordion dissections, and the maximal D◦-accordion dissections?

We admit here that

• all inclusion-maximal D◦-accordion dissections contain as many diagonals as D◦,
• there exists a flip operation illustrated in Figure 1 (right): for any internal diagonal δ• in a

maximal D◦-accordion dissection D•, there exists a unique other D◦-accordion δ′• in another
maximal D◦-accordion dissection D′• such that D• r {δ•} = D′• r {δ′•}.

We consider the flip graph F (D◦) on maximal D◦-accordion dissections. We admit that this flip
graph is connected

Q17. Draw the flip graph F (D◦) for the reference dissection of Figure 1 (left). You can use
two colors instead of black and white, but say explicitly which color you use for the reference
dissection D◦ and which color you use for the D◦-accordion dissections.

[Hint: This flip graph has 12 vertices.]

Q18. Assume that D◦ contains a cell C◦ with p edges on the boundary of P◦, and let C1
◦ , . . . , C

p
◦

denote the p (possibly empty) connected components of P◦ r C◦. For i ∈ [p], let Di
◦ denote

the dissection formed by the cell C◦ together with the cells of D◦ contained in Ci
◦. An example

is shown in Figure 2. Prove that the flip graph F (D◦) is isomorphic to the Cartesian product
F (D1

◦)× · · · × F (Dp
◦).

Figure 2. A reference dissection D◦ with a shaded cell C◦ (left) and the corre-
sponding four reference dissections D1

◦, D
2
◦, D

3
◦, D

4
◦ (right).
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