FEUILLE D'EXERCICES, COURS MPRI 2-38-1 À RENDRE LE JEUDI 8 OCTOBRE 2015

1. Distances entre points du plan

Dans cet exercice, on considère un ensemble \mathbf{P} de p points du plan \mathbb{R}^2 et on considère les distances entre les points de \mathbf{P} . On utilisera le lemme des croisements :

Si un graphe simple (pas de boucles ni d'arêtes multiples) a n sommets et $m \ge 4n$ arêtes, alors tout dessin de G a au moins $m^3/64 \, n^2$ croisements.

- 1.1. **Distances unités.** On note $\mathbb{U}(\mathbf{P})$ l'ensemble des paires de points $\mathbf{p}, \mathbf{q} \in \mathbf{P}$ à distance unité, *i.e.* tels que $\|\mathbf{p} \mathbf{q}\| = 1$. On veut évaluer le cardinal de $\mathbb{U}(\mathbf{P})$.
 - (1) Que vaut $|\mathbb{U}(\mathbf{P})|$ lorsque \mathbf{P} est l'ensemble des sommets d'une grille unitaire de taille $a \times b$? Que peut valoir $|\mathbb{U}(\mathbf{P})|$ lorsque \mathbf{P} est l'ensemble des sommets d'un n-gone régulier ?

Pour évaluer $|\mathbb{U}(\mathbf{P})|$, on considère le multigraphe topologique $\mathcal{U}(\mathbf{P})$ dont les sommets sont les points de \mathbf{P} et les arêtes sont les arcs reliant deux points de \mathbf{P} sur les cercles unités centrés en les points de \mathbf{P} . Voir figure 1 (gauche).

- (2) Quel est le nombre de sommets et d'arêtes du multigraphe $\mathcal{U}(\mathbf{P})$?
- (3) Montrer qu'au plus deux arêtes de $\mathcal{U}(\mathbf{P})$ partagent les mêmes extrémités. En déduire que le graphe $\bar{\mathcal{U}}(\mathbf{P})$ obtenu en supprimant les arêtes multiples de $\mathcal{U}(\mathbf{P})$ a au moins $|\mathbb{U}(\mathbf{P})|$ arêtes.
- (4) On suppose d'abord que tout point de \mathbf{P} a au moins deux autres points de \mathbf{P} à distance 1. En déduire que le graphe $\bar{\mathcal{U}}(\mathbf{P})$ n'a pas de boucle. Sous cette hypothèse, appliquer le lemme des croisements à $\bar{\mathcal{U}}(\mathbf{P})$ pour montrer que $|\mathbb{U}(\mathbf{P})| \leq 4 p^{4/3}$.
- (5) Montrer que le résultat reste vrai pour tout ensemble de points P.
- 1.2. Lemme des croisements pour les graphes à multiplicité bornée. Les hypothèses du lemme des croisements imposent que le graphe soit simple, *i.e.* sans boucles ni arêtes multiples. On montre ici comment se passer de ces hypothèses sous certaines conditions. On considère un graph G avec n sommets et m arêtes, et on note $\operatorname{cr}(G)$ le nombre de croisements de G, *i.e.* le plus petit nombre possible de croisements dans un dessin de G dans le plan \mathbb{R}^2 .

Boucles — Ici, le graphe G a éventuellement des boucles, mais pas d'arêtes multiples.

- (1) Montrer que $cr(G) \ge m 4n + 6$.
- (2) En appliquant la méthode probabiliste vue en cours, montrer que $\operatorname{cr}(G) \geq m^3/108\,n^2$ dès que $m \geq 6\,n$.

Arêtes multiples — On suppose que G a des arêtes multiples mais pas de boucles.

(3) Montrer que cr(G) peut être nul, même quand m est grand. Autrement dit, il ne peut pas y avoir de lemme des croisements pour les multigraphes arbitraires.

On suppose à partir de maintenant que la multiplicité des arêtes de G est au plus k. On note H le graphe simple aléatoire dont les sommets sont ceux de G et les arêtes sont obtenues par le processus aléatoire suivant : on garde d'abord indépendamment chaque arête de G avec probabilité 1/k, puis on efface les éventuelles arêtes multiples restantes.

- (4) En observant que la probabilité qu'une arête de G survive dans H est au plus 1/k, montrer que $\mathbb{E}(\operatorname{cr}(H)) \leq \operatorname{cr}(G)/k^2$.
- (5) Montrer que la probabilité qu'une arête e de G survive dans H est au moins $\frac{1}{k} \left(1 \frac{1}{k}\right)^{\mu 1}$, où μ désigne la multiplicité de e, i.e. le nombre d'arêtes de G qui partagent les mêmes extrémités que e.
- (6) En déduire que $\mathbb{E}(m(H)) \ge m(G)/3k$. On montrera d'abord que $\left(1 \frac{1}{k}\right)^{k-1} \ge 1/3$.

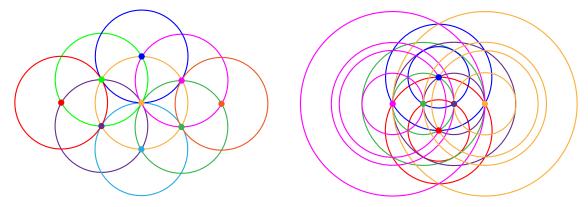


FIGURE 1. Les graphes $\mathcal{U}(\mathbf{P})$ (gauche) et $\mathcal{D}(\mathbf{P})$ (droite) pour des ensembles de points \mathbf{P} du plan.

- (7) En appliquant le lemme des croisements à H, montrer que $\mathbb{E}(\operatorname{cr}(H)) \geq m(G)^3/12^3 \, k^3 \, n^2$ dès que $m(G) \geq 12 \, k \, n$. On utilisera l'inégalité de convexité de Jensen : $\mathbb{E}(f(X)) \geq f(\mathbb{E}(X))$ pour une fonction convexe $f : \mathbb{R} \to \mathbb{R}$ et une variable aléatoire X à valeurs dans \mathbb{R} .
- (8) En déduire que si G est un graphe à n sommets, $m \ge 12 k n$ arêtes dont la multiplicité est au plus k, alors le nombre de croisements de G est au moins $m^3/12^3 k n^2$.
- 1.3. **Distances distinctes.** On considère un ensemble de points \mathbf{P} dans \mathbb{R}^2 et on s'intéresse à l'ensemble $\mathbb{D}(\mathbf{P}) = \{ \|\mathbf{p} \mathbf{q}\| \mid \mathbf{p}, \mathbf{q} \in \mathbf{P} \}$ des distances distinctes entre deux points de \mathbf{P} . On veut évaluer le cardinal de $\mathbb{D}(\mathbf{P})$.
 - (1) Que vaut $|\mathbb{D}(\mathbf{P})|$ lorsque \mathbf{P} est l'ensemble des sommets d'un n-gone régulier ?
 - (2) Montrer que $|\mathbb{D}(\mathbf{P})| \geq {p \choose 2}/\max_{\lambda \in \mathbb{R}_{>0}} |\mathbb{U}(\lambda \mathbf{P})|$ et en déduire que $|\mathbb{D}(\mathbf{P})| \geq p^{2/3}/8$.

Pour donner une meilleure borne sur $|\mathbb{D}(\mathbf{P})|$, on considère le multigraphe topologique $\mathcal{D}(\mathbf{P})$ dont les sommets sont les points de \mathbf{P} et les arêtes sont les arcs reliant deux points de \mathbf{P} sur les cercles centrés en les points de \mathbf{P} et de rayon dans $\mathbb{D}(\mathbf{P})$. Voir figure 1 (droite). On note $\bar{\mathcal{D}}(\mathbf{P})$ le multigraphe obtenu à partir de $\mathcal{D}(\mathbf{P})$ en oubliant les arcs situés sur des cercles contenant au plus 2 points de \mathbf{P} .

- (3) Montrer que le multigraphe $\bar{\mathcal{D}}(\mathbf{P})$ a p sommets, au moins $p(p-1-2|\mathbb{D}(\mathbf{P})|)$ arêtes, au plus $p^2 |\mathbb{D}(\mathbf{P})|^2$ croisements, pas de boucle, et que la multiplicité de ses arêtes est bornée par $2 |\mathbb{D}(\mathbf{P})|$.
- (4) Quel est l'ordre de grandeur de la borne sur $|\mathbb{D}(\mathbf{P})|$ obtenue en appliquant directement le lemme des croisements de la partie 1.2 sur le multigraphe $\mathcal{D}(\mathbf{P})$? Comparer avec la question (3).

Pour améliorer notre borne sur $|\mathbb{D}(\mathbf{P})|$, on va traiter séparément les arêtes de forte multiplicité.

- (5) Montrer que pour tous $\mathbf{p}, \mathbf{q} \in \mathbf{P}$, le nombre de points de \mathbf{P} sur la médiatrice de \mathbf{pq} est au moins la multiplicité de l'arête \mathbf{pq} dans $\bar{\mathcal{D}}(\mathbf{P})$.
- (6) En déduire que si $\bar{\mathcal{D}}(\mathbf{P})$ a t arêtes dont la multiplicité est au moins k, alors il existe au moins $t/|\mathbb{D}(\mathbf{P})|$ droites distinctes contenant chacune au moins k points de \mathbf{P} .
- (7) En utilisant le théorème de Szemerédi-Trotter vu en cours, montrer qu'il existe au plus $O(p^2/k^2 + p)$ droites distinctes contenant chacune au moins k points de \mathbf{P} .
- (8) En déduire que le nombre d'arêtes de $\bar{\mathcal{D}}(\mathbf{P})$ dont la multiplicité est au moins k est un $O(|\mathbb{D}(\mathbf{P})|(p^2/k^2+p))$.
- (9) On fixe $k = \sqrt{|\mathbb{D}(\mathbf{P})|}$. On considère le graphe obtenu à partir de $\bar{\mathcal{D}}(\mathbf{P})$ en supprimant toutes les arêtes de multiplicité supérieures à k. Montrer que ce graphe a p sommets, $O(p^2)$ arêtes de multiplicité au plus k, et au plus $p^2 |\mathbb{D}(\mathbf{P})|^2$ croisements. En lui appliquant le lemme des croisements pour les graphes à multiplicité bornée, montrer que $|\mathbb{D}(\mathbf{P})|$ est au moins de l'ordre de $p^{4/5}$.

2. Plongement de Schnyder des triangulations empilées

On dit qu'une triangulation T est empilée si :

- $\bullet \ T$ est réduite à un triangle, ou
- T s'obtient à partir d'une triangulation empilée T' en raffinant un triangle **pqr** en trois triangles **pqt**, **qrt**, **prt** (on peut imaginer qu'on empile un tétraèdre aplati **pqrt** sur le triangle **pqr**).

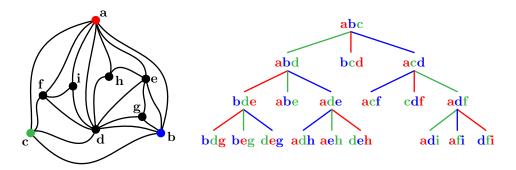


FIGURE 2. Une triangulation empilée (gauche) et son arbre de construction (droite).

On appelle *arbre de construction* de T l'arbre dont les noeuds correspondent aux triangles de T et dont les fils du triangle **pqr** sont les trois triangles **pqt**, **qrt**, **prt** qui le raffinent. Notez le coloriage utilisé pour les arêtes et les trois lettres de chaque sommet dans cet arbre. Voir figure 2.

- (1) Quel est le nombre d'arêtes et de triangles d'une triangulation empilée à n+3 sommets ? Vos résultats correspondent-ils à ce que donne la formule d'Euler ?
- (2) Montrer qu'une triangulation empilée admet une unique forêt de Schnyder. On décrira l'unique étiquetage des angles de Schnyder et l'unique forêt de Schnyder.
- (3) Décrire des coordonnées barycentriques des sommets du plongement de Schnyder d'une triangulation empilée en fonction de son arbre de construction. Illustrer ce plongement sur la triangulation de la figure 2 (gauche).