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TRIANGULATIONS & SUBDIVISIONS



SUBDIVISIONS

DEF. P = point set in Rd.

polyhedral subdivision of P = collection S of subsets of P st:

• closure property: if conv(X) is a face of conv(Y ) and Y ∈ S, then X ∈ S,

• union property: conv(P ) =
⋃

X∈S conv(X),

• intersection property: conv(X) and conv(Y ) have disjoint relative interiors and

intersect along a face of both, for any X,Y ∈ S.
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S = {01348, 0356, 3589, 569} + all faces...



TRIANGULATIONS

DEF. triangulation = subdivision T where all subsets are affinely independent.

(in particular, conv(X) is a simplex for all X ∈ T ).

full triangulation = each point belongs to at least one simplex.
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QU. Show that any full triangulation of a planar point set with i interior and b boundary

points has i + b vertices, 3i + 2b− 3 edges, and 2i + b− 2 triangles.



TRIANGULATIONS IN 3 DIMENSION

QU. What is the minimum / maximum number of simplices that triangulate the 3-cube?



TRIANGULATIONS IN 3 DIMENSION

QU. What is the minimum / maximum number of simplices that triangulate the 3-cube?

minimum = 5 maximum = 6

In dimension d, minimum is very difficult, maximum is d!



FREUDENTHAL TRIANGULATION

DEF. Freudenthal triangulation of the d-cube �d = triangulation with a simplex

4σ =
{∑

i≤j

eσ(i)
∣∣ 0 ≤ j ≤ d

}
=
{
x ∈ �d

∣∣ xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(d)
}

for each permutation σ ∈ Sd.
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NUMBER OF TRIANGULATIONS



CONVEX POSITION & CATALAN NUMBERS

PROP. number triangulations convex n-gon = Catalan number Cn−2 =
1

n− 1

(
2n− 4

n− 2

)
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cn 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440
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CONVEX POSITION & CATALAN NUMBERS

PROP. number triangulations convex n-gon = Catalan number Cn−2 =
1

n− 1

(
2n− 4

n− 2

)
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cn 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440

proof A: in the triangulations of the (n− 1)-gon:

• number of edges = 2n− 5

• average degree of a vertex = 2(2n− 5)/(n− 1)

Thus, contracting the triangle containing 1 and n,

we get the induction formula

Tn =
2(2n− 5)

n− 1
Tn−1 thus Tn =

2n−3(2n− 5)(2n− 7) . . . 3

(n− 1)(n− 2) . . . 2
T3 =

1

n− 1

(
2n− 4

n− 2

)
.



CONVEX POSITION & CATALAN NUMBERS

PROP. number triangulations convex n-gon = Catalan number Cn−2 =
1

n− 1

(
2n− 4

n− 2

)
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cn 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440

proof B: decomposing the triangulation by the triangle contain-

ing 1 and n, we have the summation formula

Tn =
∑

2≤j≤n−1

Tj · Tn−j+1

For the generating function T (x) =
∑

j≥2 Tjx
j−2, this gives

T (x) = 1 + x · T (x)2 thus T (x) =
1 +
√

1− 4x

2x
.

We then get Tj developing the series.



CATALAND

QU. Show that the following are Catalan families (ie. counted by Catalan numbers):

(i) triangulations of a convex n-gon,

(ii) binary trees with n− 2 internal nodes,

(iii) rooted plane trees with n− 1 nodes,

(iv) Dyck paths of length 2n−4 (ie. paths with up steps↗ and down steps↘ starting

at (0, 0) finishing at (2n− 4, 0) and which never go below the horizontal axis),

(v) valid bracketings of a non-associative product on n− 1 elements.



CATALAND

PRO. The following are Catalan families (ie. counted by Catalan numbers):

(i) triangulations of a convex n-gon,

(ii) binary trees with n− 2 internal nodes,

(iii) rooted plane trees with n− 1 nodes,

(iv) Dyck paths of length 2n−4 (ie. paths with up steps↗ and down steps↘ starting

at (0, 0) finishing at (2n− 4, 0) and which never go below the horizontal axis),

(v) valid bracketings of a non-associative product on n− 1 elements.



DOUBLE CHAIN AND DOUBLE CIRCLE

double chain double circle

QU. Compute the numbers of full triangulations of the double chain and double circle.



DOUBLE CHAIN AND DOUBLE CIRCLE

double chain double circle

PROP. The numbers of full triangulations of the double chain and double circle are

CmCn

(
m + n + 2

m + 1

)
and

∑
i∈[n]

(−1)i
(
n

i

)
Cn+i−2.

proof:

• db chain: all edges of the chains belong to full triangulations...

• db circle: inclusion-exclusion for triangulations of convex polygon with no even ear.

QU. What about all triangulations?



UPPER AND LOWER BOUNDS

THM. Any planar point set in general position with i interior and b boundary points has

at least Cb−22i−b+2 = Ω(2nn−3/2) and at most 59i 7b/
(
i+b+6

6

)
≤ 59n full triangulations.

proof: For the lower bound:

1. if b = 3:

• check it for i ≤ 8. This is a combinatorial problem!

• use stacked triangulations:

each point separates the triangle into three regions

with i = i1 + i2 + i3 + 1, thus defines at least

2i1−1 · 2i2−1 · 2i3−1 = 2i−4 stacked triangulations

thus in total, at least i2i−4 ≥ 2i−1 stacked triangulations.

i1
i3

i2

2. if b ≥ 4, choose a triangulation of the boundary, and stack in all triangles.

For the upper bound: see poly...



FLIPS



FLIPS

DEF. flip = local operation on triangulations of P defined as:

• diagonal flip = if pqr and prs form a convex quadrilateral pqrs, replace the

diagonal pr by the other diagonal qs of pqrs.

p q

r

s

p q

r

s
• insertion/deletion flip = if a point p is contained in the interior of a triangle uvw,

then insert the edges pu, pv, and pw or vice-versa.

p
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r

s
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r

s

DEF. flip graph = graph with vertices = triangulations and edges = flips.



FLIP GRAPH



FLIPS IN HIGHER DIMENSION

THM. For any set X of d+2 points in Rd, there exists a partition X = X+tX−tX◦

such that conv(X+) ∩ conv(X−) 6= ∅.

proof: There is an affine dependence
∑
x∈X

λxx = 0 with
∑
x∈X

λx = 0 (to see it, linearize).

Let X+ = {x ∈X | λx > 0} X− = {x ∈X | λx < 0} X◦ = {x ∈X | λx = 0}.

Then Λ =
∑

x+∈X+

λx+ =
∑

x−∈X−
(−λx−) and

1

Λ

∑
x+∈X+

λx+ x+ =
1

Λ

∑
x−∈X−

(−λx−)x−.
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FLIPS IN HIGHER DIMENSION

THM. For any set X of d+2 points in Rd, there exists a partition X = X+tX−tX◦

such that conv(X+) ∩ conv(X−) 6= ∅.

DEF. X set of d + 2 points in Rd.

X = X+ tX− tX◦ Radon partition of X with (inclusion) maximal X◦.

Bistellar flip =
{

conv(X r {x})
∣∣ x ∈X+

}
←→

{
conv(X r {x})

∣∣ x ∈X+
}



FLIPS IN HIGHER DIMENSION

QU. How many flips to connect these triangulations of the 3-cube?



FLIPS IN HIGHER DIMENSION

QU. How many flips to connect these triangulations of the 3-cube?



DELAUNAY TRIANGULATION (AGAIN)



VORONOI DIAGRAM

DEF. P = set of sites in Rn.

Voronoi region Vor(p,P ) =
{
x ∈ R2

∣∣ ‖x− p‖ ≤ ‖x− q‖ for all q ∈ P
}

.

Voronoi diagram Vor(P ) = partition of Rn formed by Vor(p,P ) for p ∈ P .
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Voronoi region Vor(p,P ) =
{
x ∈ R2
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LIFTING POINTS ON THE PARABOLOID

parabolöıd P with equation xd+1 =
∑

i∈[d] x
2
i .
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parabolöıd P with equation xd+1 =
∑

i∈[d] x
2
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lifting function p ∈ Rd 7−→ p̂ =
(
p, ‖p‖2

)
∈ Rd+1.
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∑

i∈[d] x
2
i .

lifting function p ∈ Rd 7−→ p̂ =
(
p, ‖p‖2

)
∈ Rd+1.

PROP. The Voronoi diagram Vor(P ) is the verti-

cal projection of the upper enveloppe of the planes

tangent to the parabolöıd P at the lifted points p̂

for p ∈ P .
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parabolöıd P with equation xd+1 =
∑

i∈[d] x
2
i .

lifting function p ∈ Rd 7−→ p̂ =
(
p, ‖p‖2

)
∈ Rd+1.

PROP. The Voronoi diagram Vor(P ) is the verti-

cal projection of the upper enveloppe of the planes
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LIFTING POINTS ON THE PARABOLOID

parabolöıd P with equation xd+1 =
∑

i∈[d] x
2
i .

lifting function p ∈ Rd 7−→ p̂ =
(
p, ‖p‖2

)
∈ Rd+1.

PROP. The Voronoi diagram Vor(P ) is the verti-

cal projection of the upper enveloppe of the planes

tangent to the parabolöıd P at the lifted points p̂

for p ∈ P .

proof: H(p) = tangent plane to the parabolöıd P at p̂.

= plane of equation xd+1 = 2 〈 p | x 〉 − ‖p‖2.

Therefore, H(p) above H(q) at point x ⇐⇒ ‖x− p‖ ≤ ‖x− q‖.



DELAUNAY COMPLEX

DEF. P = set of sites in Rn.

Voronoi region Vor(p,P ) =
{
x ∈ R2

∣∣ ‖x− p‖ ≤ ‖x− q‖ for all q ∈ P
}

.

Voronoi diagram Vor(P ) = partition of Rn formed by Vor(p,P ) for p ∈ P .

DEF. Delaunay complex Del(P ) = intersection complex of Vor(P )

Del(P ) =
{

conv(X)
∣∣X ⊆ P and

⋂
p∈X

Vor(p,P ) 6= ∅
}
.



EMPTY CIRCLES

PROP. For any three points p, q, r of P ,

• pq is an edge of Del(P ) ⇐⇒ there is an empty circle passing through p and q,

• pqr is a triangle of Del(P ) ⇐⇒ the circumcircle of p, q, r is empty.

proof idea: consider the circle centered at the intersection of the Voronoi regions and

passing through the Voronoi sites.



EMPTY CIRCLES

PROP. For any three points p, q, r of P ,

• pq is an edge of Del(P ) ⇐⇒ there is an empty circle passing through p and q,

• pqr is a triangle of Del(P ) ⇐⇒ the circumcircle of p, q, r is an empty circle.



LIFTING POINTS ON THE PARABOLOID

parabolöıd P with equation xd+1 =
∑

i∈[d] x
2
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LAWSON FLIPS IN DIMENSION 2

DEF. Lawson flip = flip of an edge pq contained in two triangles pqr and pqs such

that s is inside the circumcircle of pqr and r is inside the circumcircle of pqs.

PROP. Lawson flips are always possible, and lead to the Delaunay triangulation.

CORO. For any 2-dimensional point configuration, the flip graph is connected.

THM. (Santos) In dimension ≥ 5, some point sets have disconnected flip graphs.



REGULAR TRIANGULATIONS & SUBDIVISIONS



LIFTINGS AND REGULAR SUBDIVISIONS

DEF. P = point configuration. h : P → R height function.

S(P , h) = subdivision of P obtained as the projection of the lower convex hull of the

lifted point set {(p, h(p)) | p ∈ P }.

A subdivision S is regular if there is a height function h : P → R st S = S(P , h).

PROP. If g : Rn → R is affine, then S(P , g + h) = S(P , h) for any h : P → R.
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DEF. P = point configuration. h : P → R height function.

S(P , h) = subdivision of P obtained as the projection of the lower convex hull of the

lifted point set {(p, h(p)) | p ∈ P }.
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EXM OF REGULAR SUBDIVISIONS

Point configuration P = {(0, 0), (3, 0), (0, 3), (3, 3), (1, 1)}.
Restrict to height functions h with h((0, 0)) = h((3, 0)) = h((0, 3)) = 0.

Let x = h((3, 3)) and y = h((1, 1)).

0

0 0

x
y

QU. Give conditions on x and y to obtain the following regular subdivisions:
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EXM OF REGULAR SUBDIVISIONS

Point configuration P = {(0, 0), (3, 0), (0, 3), (3, 3), (1, 1)}.
Restrict to height functions h with h((0, 0)) = h((3, 0)) = h((0, 3)) = 0.

Let x = h((3, 3)) and y = h((1, 1)).

0

0 0

x
y

QU. Give conditions on x and y to obtain the following regular subdivisions:

x = 0 x = 0 x > 0 x > 0 x < 0 x < 0 x+3y=0 x+3y>0 x+3y<0

y = 0 y > 0 y = 0 y > 0 x−3y=0 x−3y<0 y < 0 y < 0 x−3y>0



NON REGULAR TRIANGULATIONS

QU. Show that the following two triangulations are not regular:



NON REGULAR TRIANGULATIONS

PROP. The following two triangulations are not regular:

0
0

0

a

bc

proof: assume the left one regular,

and pick a height function.

Up to an affine function, height 3

for the 3 internal vertices.

The heights of the 3 external

vertices satisfy: a < b < c < a.

Contradiction.
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proof: assume the left one regular,

and pick a height function.

Up to an affine function, height 3

for the 3 internal vertices.

The heights of the 3 external

vertices satisfy: a < b < c < a.

Contradiction.



CONVEX POSITION

QU. Show that all subdivisions of a planar point set in convex position are regular.



CONVEX POSITION

PROP. All subdivisions of a planar point set in convex position are regular.

Use h(p) =
∑

δ∈S d(δ,p) where d(δ,p) is the distance of p to the line spanned by δ.



REGULAR SUBDIVISION LATTICE

DEF. S refines S ′ when for any X ∈ S, there is X ′ ∈ S ′ st X ⊆X ′.

regular subdivision lattice = regular subdivisions of P ordered by refinement.



SECONDARY FAN AND POLYTOPE



SECONDARY FAN

DEF. secondary cone of subdivision S of P = ΣC(S) =
{
h ∈ RP

∣∣ S(P ,h) = S
}

.

secondary fan of P = fan formed by the secondary cones of all (regular) subdivisions.

0

0 0

x
y



SECONDARY POLYTOPE

DEF. T triangulation of a point set P ⊆ Rd.

volume vector of T :

Φ(T ) =

( ∑
p∈4∈T

vol(4)

)
p∈P

secondary polytope of P :

ΣP(P ) := conv {Φ(T ) | T triangulation of P } .

exm:

(9, 18, 18, 9, 0) (18, 9, 9, 18, 0)

(6, 15, 15, 9, 9) (6, 9, 9, 12, 18)



SECONDARY FAN AND POLYTOPE

THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in Rd,

• ΣP(P ) has dimension |P | − d− 1,

• ΣF(P ) is the inner normal fan of ΣP(P ),

• The face lattice of ΣP(P ) is isomorphic to the regular subdivisions lattice of P .
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• ΣF(P ) is the inner normal fan of ΣP(P ),

• The face lattice of ΣP(P ) is isomorphic to the regular subdivisions lattice of P .

proof: lower bound on dim(ΣP(P )) by induction on |P |:
• when |P | = 3, ΣP(P ) is a single point,

• for |P | ≥ 4 and any p ∈ P , ΣP(P r p) = ΣP(P ) ∩
{
x ∈ RP

∣∣ xp = α
}

where

α =

{
0 if p inside conv(P ),

vol(conv(P ))− vol(conv(P r p)) if p on the boundary of conv(P ).



SECONDARY FAN AND POLYTOPE

THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in Rd,

• ΣP(P ) has dimension |P | − d− 1,

• ΣF(P ) is the inner normal fan of ΣP(P ),

• The face lattice of ΣP(P ) is isomorphic to the regular subdivisions lattice of P .

proof: lower bound on dim(ΣP(P )) by induction on |P |:
• when |P | = 3, ΣP(P ) is a single point,

• for |P | ≥ 4 and any p ∈ P , ΣP(P r p) = ΣP(P ) ∩
{
x ∈ RP

∣∣ xp = α
}

where

α =

{
0 if p inside conv(P ),

vol(conv(P ))− vol(conv(P r p)) if p on the boundary of conv(P ).

upper bound on dim(ΣP(P )) from the volume and center of mass of conv(P ):

vol(P ) =
∑
4∈T

vol(4) =
∑
4∈T

∑
p∈4

vol(4)

d + 1
=

1

d + 1

∑
p∈P

∑
p∈4∈T

vol(4) =
1

d + 1

∑
p∈P

Φ(T )p.

vol(P )·cm(P ) =
∑
4∈T

vol(4)·cm(4) =
∑
4∈T

vol(4)·
(

1

d + 1

∑
p∈4

p

)
=

1

d + 1

∑
p∈P

Φ(T )p ·p.
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THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in Rd,

• ΣP(P ) has dimension |P | − d− 1,

• ΣF(P ) is the inner normal fan of ΣP(P ),

• The face lattice of ΣP(P ) is isomorphic to the regular subdivisions lattice of P .

proof: T triangulation of P and a height vector h ∈ RP .

fT ,h : conv(P )→ R = piecewise linear map on the simplices of T such that fT ,h(p) = hp.

Then the volume below the hypersurface defined by fT ,h is∫
conv(P )

fT ,ω(x) dx =
∑
4∈T

∫
4

fT ,ω(x) dx =
∑
4∈T

vol(4)

d + 1

∑
p∈4

hp

=
1

d + 1

∑
p∈P

hp ·
∑

p∈4∈T

vol(4) =
〈 Φ(T ) | h 〉

3
.
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Therefore, if T = S(P ,h) 6= T ′ then

〈 Φ(T ) | h 〉 < 〈 Φ(T ′) | h 〉 .

In other words, the normal cone of Φ(T ) in ΣP(P ) is the secondary cone of T .
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QU. Locate the volume vectors of the non-regular triangulations in
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