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SCHNYDER LABELINGS AND WOODS



PLANAR MAP

v1

v2
v3

M = planar map with three distinguished vertices v1, v2, v3 clockwise on the outer face

where a half edge is pending in the outer face.



SCHNYDER LABELING
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DEF. Schnyder labeling on M = labeling of the angles of M with labels {1, 2, 3} st:

(L1) the angles at the half-edge of vi are labeled i + 1 and i− 1 clockwise,

(L2) clockwise around each vertex, the labels form intervals of 1’s, 2’s and 3’s,

(L3) clockwise around each face, the labels form intervals of 1’s, 2’s and 3’s.
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SCHNYDER LABELING

DEF. Schnyder labeling on M = labeling of the angles of M with labels {1, 2, 3} st:

(L1) the angles at the half-edge of vi are labeled i + 1 and i− 1 clockwise,

(L2) clockwise around each vertex, the labels form intervals of 1’s, 2’s and 3’s,

(L3) clockwise around each face, the labels form intervals of 1’s, 2’s and 3’s.
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LEM. The three labels {1, 2, 3} appear among the four angles surrounding any edge.

proof: Count the number of adjacent angles (same vertex and adjacent faces, or adjacent

vertices and same face) with distinct labels. There are:

• 3 around each vertex,

• 3 around each face,

• 2 at each half-edge.

Since 3|V | + 3|F | = 3|E| + 6 by Euler relation, there are also 3 for each edge.



SCHNYDER WOOD
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DEF. Schnyder wood on M = (bi-)orientation and (bi-)coloration of the edges of M

with {1, 2, 3} st:

(W0) bioriented edges get two distinct colors,

(W1) the half-edge at vi is directed outwards and colored i,

(W2) each vertex v has outdegree one in each label,

(W3) no interior face whose boundary is a directed cycle in one color.
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SCHNYDER LABELINGS VS SCHNYDER WOODS
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THM. The transformation given by

i
i

i ‒1
i+1

i

i i
i ‒1i+1

i ‒1 i+1

is a bijection from Schnyder labelings to Schnyder woods.



SCHNYDER LABELINGS VS SCHNYDER WOODS

THM. The transformation given by

i
i

i ‒1
i+1

i

i i
i ‒1i+1

i ‒1 i+1

is a bijection from Schnyder labelings to Schnyder woods.

remarks:

• Only two possible situations by the local rules around vertices, edges and faces.

• If M is triangulated, the second situation cannot occur except on the external face,

so that there is no internal bioriented edge.



EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation = triangulation obtained from an initial triangle abc by

iteratively refining a triangle pqr into three triangles sqr, psr, and pqs.

construction tree = ternary tree where pqr is the parent of sqr, psr, and pqs.

pqr

psrsqr pqs

p

qr
s
sqr

pqspsr



EXM: STACKED TRIANGULATIONS
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f

abc

abddbc adc

aecedc ade afdfbd abf

age aidadg afigde ifdfhd fbhhbd



EXM: STACKED TRIANGULATIONS

a

bc d

g e h i

f

abc

abddbc adc

aecedc ade afdfbd abf

agc ahd aifaeg afh abigec hfd ibf

a

bc d

e g i f

h

abc

abddbc adc

aecedc ade afdfbd abf

age aidadg afigde ifdfhd fbhhbd



EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation = triangulation obtained from an initial triangle abc by

iteratively refining a triangle pqr into three triangles sqr, psr, and pqs.

construction tree = ternary tree where pqr is the parent of sqr, psr, and pqs.

pqr

psrsqr pqs

p

qr
s
sqr

pqspsr

QU. Numbers of vertices, edges and faces of a stacked triangulation?

• in terms of the number of stacking operations,

• in terms of the construction tree.



EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation = triangulation obtained from an initial triangle abc by

iteratively refining a triangle pqr into three triangles sqr, psr, and pqs.

construction tree = ternary tree where pqr is the parent of sqr, psr, and pqs.

pqr

psrsqr pqs

p

qr
s
sqr

pqspsr

REM. In a stacked triangulation obtained after n stacking operations, and with con-

struction tree C,

• number of vertices = 3 + n = 3 + number interior nodes in C,

• number of edges = 3(n + 1) = 3 + number edges in C,

• number of faces = 2n + 1 = number of leaves of C.



EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation = triangulation obtained from an initial triangle abc by

iteratively refining a triangle pqr into three triangles sqr, psr, and pqs.

construction tree = ternary tree where pqr is the parent of sqr, psr, and pqs.

pqr

psrsqr pqs

p

qr
s
sqr

pqspsr

PROP. A stacked triangulation admits a unique Schnyder labeling and Schnyder wood.



EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation = triangulation obtained from an initial triangle abc by

iteratively refining a triangle pqr into three triangles sqr, psr, and pqs.

construction tree = ternary tree where pqr is the parent of sqr, psr, and pqs.

pqr

psrsqr pqs

p

qr
s

s
s

sqr

pqspsr

PROP. A stacked triangulation admits a unique Schnyder labeling and Schnyder wood.

proof idea: induction.



EXM: STACKED TRIANGULATIONS
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SCHNYDER EMBEDDING



TREES

DEF. M planar map with Schnyder wood.
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TREES

DEF. M planar map with Schnyder wood.
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TREES

DEF. M planar map with Schnyder wood.

Ti = directed graph formed by edges colored i.
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PROP. Ti is a directed tree rooted at vi.

proof ideas:

• All vertices except vi have outdegree 1, so enough to prove acyclicity.

• In fact, Di = Ti ∪ T rev
i−1 ∪ T rev

i+1 is already acyclic if we ignore bidirected edges or paths.

If Z is an area minimal cycle in Di, then:

– Z bounds a single face F (otherwise, it has a chord or contains a vertex...),

– if Z is clockwise, no angle of F has label i + 1.



REGIONS

DEF. For a vertex v of M , denote:

• Pi(v) = directed path in Ti to the root vi,

• Ri(v) = region bounded by the two paths Pi−1(v) and Pi+1(v),

• ri(v) = number of faces in region Ri(v).



REGIONS

DEF. For a vertex v of M , denote:

• Pi(v) = directed path in Ti to the root vi,

• Ri(v) = region bounded by the two paths Pi−1(v) and Pi+1(v),

• ri(v) = number of faces in region Ri(v).

QU. Compute r1r2r3 for all vertices:

212



REGIONS

DEF. For a vertex v of M , denote:

• Pi(v) = directed path in Ti to the root vi,

• Ri(v) = region bounded by the two paths Pi−1(v) and Pi+1(v),

• ri(v) = number of faces in region Ri(v).

REM. r1r2r3 are given by:
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REGIONS

Ri(v) = region bounded by the two paths Pi−1(v) and Pi+1(v).

PROP. u, v = two adjacent vertices in the map M . Then:

(R1) if there is a unidirected edge colored i from u to v, then

Ri(u) ( Ri(v), Ri−1(u) ) Ri−1(v), and Ri+1(u) ) Ri+1(v),

(R2) if there is a bidirected edge colored i+ 1 from u to v and i− 1 from v to u, then

Ri(u) = Ri(v), Ri−1(u) ) Ri−1(v), and Ri+1(u) ( Ri+1(v).

B
C

D

A Ev

u

i ‒1 i+1

i ‒1 i+1

i

F
G

H

I
u v

i i

i ‒1 i+1

i ‒1i+1

Ri(u) = C ( B ∪ C ∪D = Ri(v) Ri(u) = H = Ri(v)

Ri−1(u) = D ∪ E ) E = Ri−1(v) Ri−1(u) = G ∪ I ) I = Ri−1(v)

Ri+1(u) = A ∪B ) A = Ri+1(v) Ri+1(u) = F ( F ∪G = Ri+1(v)



SCHNYDER EMBEDDING

M = planar map with f faces (including the unbounded one),

endowed with a Schnyder wood.

p1,p2,p3 = three arbitrary non-colinear points in the plane.

THM. The map

µ : v 7−→ 1

f − 1

(
r1(v) · p1 + r2(v) · p2 + r3(v) · p3

)
defines a straightline embedding of M in the plane where all faces are convex.
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EXM: STACKED TRIANGULATIONS

a

bc d

e g i f

h

abc

abddbc adc

aecedc ade afdfbd abf

age aidadg afigde ifdfhd fbhhbd

QU. Describe on the construction tree C of a stacked triangulation:

• the trees T1, T2 and T3,

• the sizes r1(v), r2(v) and r3(v) of the regions of a vertex v.

Draw the Schnyder embedding for p1,p2,p3 being the vertices of an equilateral triangle.



EXM: STACKED TRIANGULATIONS

a
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h

abc

abddbc adc

aecedc ade afdfbd abf

age aidadg afigde ifdfhd fbhhbd

PROP. The tree Ti is obtained by contracting all edges colored i− 1 and i + 1 in C

PROP. Assume v is inserted in triangle t, and let γ be the path from t to the root in C.

The size ri(v) is obtained by summing the number of leaves of the subtrees of the blue

children of the nodes of γ that are not in γ.

proof idea: induction.
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GEODESIC MAPS ON ORTHOGONAL SURFACES



DOMINANCE ORDER

DEF. dominance order in R3 = u ≤ v ⇐⇒ ui ≤ vi for all i ∈ [3] (componentwise).

DEF. cone dominating y ∈ R3 cone dominated by y ∈ R3

∆y =
{
z ∈ R3

∣∣ y ≤ z
}

∇y =
{
x ∈ R3

∣∣ x ≤ y
}

(= upper ideal of y) (= lower ideal of y)



ORTHOGONAL SURFACE

DEF. dominance order in R3 = u ≤ v ⇐⇒ ui ≤ vi for all i ∈ [3] (componentwise).

DEF. cone dominating y ∈ R3 cone dominated by y ∈ R3

∆y =
{
z ∈ R3

∣∣ y ≤ z
}

∇y =
{
x ∈ R3

∣∣ x ≤ y
}

DEF. 〈V 〉 =
{
z ∈ R3

∣∣ v ≤ z for some v ∈ V
}

=
⋃
v∈V

∆v.

orthogonal surface SV = boundary of 〈V 〉 (assume now that V = antichain)



ELBOW GEODESICS AND COORDINATE ARCS

DEF. On an orthogonal surface SV , define

• elbow geodesic = union of the segments from u,v ∈ V to u∨v = [max(ui, vi)]i∈[n],

• coordinate arcs = (not always bounded) segments from v ∈ V in an axis direction.

elbow geodesics coordinate arcs



GEODESIC EMBEDDING

DEF. geodesic embedding of a map M on a surface SV = drawing of M on SV st:

(G1) there is a bijection between the points of V and the vertices of M ,

(G2) every edge of M is an elbow geodesic in SV and every bounded coordinate arc is

part of an edge of M ,

(G3) the drawing is crossing-free.



GEODESIC EMBEDDINGS VS SCHNYDER WOODS

THM. If V is an axial antichain, then a geodesic embedding of a map M on SV induces

a Schnyder wood on M .

proof idea:

• label the angles according to the color of the flat region containing it,

• orient and color the edges according to the three axis. An elbow geodesic can get one

or two colors depending on whether it contains one or two bounded coordinate arcs.
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THM. If V is an axial antichain, then a geodesic embedding of a map M on SV induces

a Schnyder wood on M .

proof idea:

• label the angles according to the color of the flat region containing it,

• orient and color the edges according to the three axis. An elbow geodesic can get one

or two colors depending on whether it contains one or two bounded coordinate arcs.



GEODESIC EMBEDDINGS VS SCHNYDER WOODS

THM. If V is an axial antichain, then a geodesic embedding of a map M on SV induces

a Schnyder wood on M .

1
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proof idea:

• label the angles according to the color of the flat region containing it,

• orient and color the edges according to the three axis. An elbow geodesic can get one

or two colors depending on whether it contains one or two bounded coordinate arcs.



GEODESIC EMBEDDINGS VS SCHNYDER WOODS

THM. If V is an axial antichain, then a geodesic embedding of a map M on SV induces

a Schnyder wood on M .
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proof idea:

• label the angles according to the color of the flat region containing it,

• orient and color the edges according to the three axis. An elbow geodesic can get one

or two colors depending on whether it contains one or two bounded coordinate arcs.



GEODESIC EMBEDDINGS VS SCHNYDER WOODS

THM. If V is an axial antichain, then a geodesic embedding of a map M on SV induces

a Schnyder wood on M .

1

23

THM. Given a Schnyder wood W on a planar map M , the region vectors of the vertices

of M with respect to W form an axial antichain V inducing a geodesic embedding

of M on SV .



FROM GEODESIC EMBEDDINGS TO SCHNYDER EMBEDDINGS

THM. The projection of the geodesic embedding onto the plane v1 + v2 + v3 = f − 1

gives a planar drawing of M whose edges are bended segments. Replacing them by

straight segments preserves the non-crossing-freeness.
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proof idea: when straightening the geodesic embedding, the elbow geodesic joining u

and v is controled by ∇u∨v.



SCHNYDER EMBEDDING

M = planar map with f faces (including the unbounded one),

endowed with a Schnyder wood.

p1,p2,p3 = three arbitrary non-colinear points in the plane.

THM. The map

µ : v 7−→ 1

f − 1

(
r1(v) · p1 + r2(v) · p2 + r3(v) · p3

)
defines a straightline embedding of M in the plane where all faces are convex.
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PRIMAL-DUAL MAP

M M̃ M ?

DEF. dual map of M = exchange vertices ←→ faces.

suspended dual map M ? = dual map of M where the vertex corresponding to

the external face is split into three vertices.

primal-dual map M̃ = superimposition of the map M and its suspended dual map M ?

with additional vertices at the edge intersections.



PRIMAL-DUAL GEODESIC EMBEDDING
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THM. Reversing the orientation, the same orthogonal surface admits a geodesic em-

bedding of the map M , of its suspended dual map M ?, and of its primal-dual map M̃ .



EXM: STACKED TRIANGULATIONS
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ALPHA-ORIENTATIONS



α-ORIENTATION

DEF. G = (V,E) a graph, α : V → N.

α-orientation = edge orientation of G such that any vertex v has α(v) outgoing edges.

remark: α-orientation do not always exists,

even when
∑

v∈V α(v) = |E| and α(v) ≤ deg(v) for all v ∈ V .

PROP. Reversing an oriented cycle in an α-orientation yields another α-orientation.



3-ORIENTATIONS IN TRIANGULATIONS

DEF. M = triangulated planar map with external vertices v1, v2, v3, and edges e1, e2, e3
3-orientation = α-orientation of M r {e1, e2, e3},

where α(v) = 3 except α(v1) = α(v2) = α(v3) = 0.

THM. For a triangulated triangulated map M , there is a bijection

3-orientations of M ←→ Schnyder woods of M .

v1

v2v3

v1

v2v3



3-ORIENTATIONS IN TRIANGULATIONS

THM. For a triangulated triangulated map M , there is a bijection

3-orientations of M ←→ Schnyder woods of M .

proof idea:

• A Schnyder woods clearly gives a 3-orientation.

• Conversely, consider the central paths in a 3-orientation and prove that they never

self-intersect, nor intersect twice.

v1

v2v3

v1

v2v3



BEYOND TRIANGULATIONS

1

23

1

23

remark: for an arbitrary planar map, there are more Schnyder woods than 3-orientations...
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BEYOND TRIANGULATIONS
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remark: for an arbitrary planar map, there are more Schnyder woods than 3-orientations...

... but distinct Schnyder woods yield geodesic embeddings on distinct orthogonal surfaces...



BEYOND TRIANGULATIONS
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remark: for an arbitrary planar map, there are more Schnyder woods than 3-orientations...

... but distinct Schnyder woods yield geodesic embeddings on distinct orthogonal surfaces...

... with distinct orientations for the suspended duals...



BEYOND TRIANGULATIONS
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THM. For a 3-connected planar map M , there is a bijection

α-orientations of the primal-dual M̃ ←→ Schnyder woods of M

where α(◦) = α(•) = 3 while α(�) = 1.



BEYOND TRIANGULATIONS

THM. For a 3-connected planar map M , there is a bijection

α-orientations of the primal-dual M̃ ←→ Schnyder woods of M

where α(◦) = α(•) = 3 while α(�) = 1.



TD-DELAUNAY TRIANGULATIONS



VORONOI DIAGRAM

DEF. P = set of sites in Rn.

Voronoi region Vor(p,P ) =
{
x ∈ R2

∣∣ ‖x− p‖ ≤ ‖x− q‖ for all q ∈ P
}

.

Voronoi diagram Vor(P ) = partition of Rn formed by Vor(p,P ) for p ∈ P .
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VORONOI DIAGRAM

DEF. P = set of sites in Rn.

Voronoi region Vor(p,P ) =
{
x ∈ R2

∣∣ ‖x− p‖ ≤ ‖x− q‖ for all q ∈ P
}

.

Voronoi diagram Vor(P ) = partition of Rn formed by Vor(p,P ) for p ∈ P .



DELAUNAY COMPLEX

DEF. P = set of sites in Rn.

Voronoi region Vor(p,P ) =
{
x ∈ R2

∣∣ ‖x− p‖ ≤ ‖x− q‖ for all q ∈ P
}

.

Voronoi diagram Vor(P ) = partition of Rn formed by Vor(p,P ) for p ∈ P .

DEF. Delaunay complex Del(P ) = intersection complex of Vor(P )

Del(P ) =
{

conv(X)
∣∣X ⊆ P and

⋂
p∈X

Vor(p,P ) 6= ∅
}
.



EMPTY CIRCLES

PROP. For any three points p, q, r of P ,

• pq is an edge of Del(P ) ⇐⇒ there is an empty circle passing through p and q,

• pqr is a triangle of Del(P ) ⇐⇒ the circumcircle of p, q, r is empty.

proof idea: consider the circle centered at the intersection of the Voronoi regions and

passing through the Voronoi sites.



EMPTY CIRCLES

PROP. For any three points p, q, r of P ,

• pq is an edge of Del(P ) ⇐⇒ there is an empty circle passing through p and q,

• pqr is a triangle of Del(P ) ⇐⇒ the circumcircle of p, q, r is empty.

CORO. In two adjacent triangles of a Delaunay triangulation, the sum of the two

opposite angles is at most π.



EMPTY CIRCLES

PROP. For any three points p, q, r of P ,

• pq is an edge of Del(P ) ⇐⇒ there is an empty circle passing through p and q,

• pqr is a triangle of Del(P ) ⇐⇒ the circumcircle of p, q, r is an empty circle.



EXM: STACKED TRIANGULATIONS

QU. Consider the stacked triangulation

Does this realization look Delaunay? Can you provide a Delaunay realization?



EXM: STACKED TRIANGULATIONS

REM. The stacked triangulation

a a
b

b c

c
d d

d

has no Delaunay realization.

proof: In a Delaunay realization of this stacked triangulation, we would have

a + a < π, b + b < π, c + c < π,

and a + c + d = a + b + d = b + c + d = 2π.

Thus d + d + d > 3π and at least one of d, d and d is larger than π, a contradiction.



EXM: STACKED TRIANGULATIONS

REM. The stacked triangulation

a a
b

b c

c
d d

d

has no Delaunay realization.

THM. A stacked triangulation admits a Delaunay realization if and only if its construc-

tion tree has no ternary node after deletion of all its leaves.

proof ideas:

• one direction follows from the example above,

• for the opposite direction, find an explicit construction (see Exercise 113 course notes).



QUASI-METRICS

DEF. quasi-metric on Q = function δ : Q2 → R≥0 st:

• separability: δ(p, q) = 0 ⇐⇒ p = q,

• triangular inequality: δ(p, q) + δ(q, r) ≥ δ(p, r).

DEF. P ⊆ Q a set of sites of Q.

δ-Voronoi region Vorδ(p, P ) = {r ∈ Q | δ(p, r) ≤ δ(q, r) for all q ∈ P}.
δ-Voronoi diagram Vorδ(P ) = partition of Q formed by Vorδ(p, P ) for p ∈ P .

DEF. δ-Delaunay complex Delδ(P ) = intersection complex of Vorδ(P )

Delδ(P ) =
{
X ⊆ P

∣∣ ⋂
p∈X

Vorδ(p, P ) 6= ∅
}
⊆ 2P .



TRIANGULAR DISTANCE

Fix c ∈ R≥0, and consider the hyperplane H =
{
x ∈ R3

∣∣ x1 + x2 + x3 = c
}

.

and its standard equilateral triangle 4 = conv(ce1, ce2, ce3)

DEF. triangular distance between x,y ∈H =

td(x,y) = min
{
λ ∈ R≥0

∣∣ x ∈ y + λ(4− c11/3)
}
.

remark: intuitively, td(x,y) is obtained by dilating a standard equilateral triangle 4
centered at y until it reaches x.

remark: td is a quasi-distance, but is not symmetric.



GEODESIC EMBEDDINGS VS TD-DELAUNAY REALIZATIONS

PROP. Given a Schnyder wood W on a planar map M , the region vectors of the

vertices of M with respect to W define a point-set whose td-Delaunay triangulation

is isomorphic to M .

1
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CORO. Any 3-connected planar graph admits a td-Delaunay realization.



EMPTY REVERSED EQUILATERAL TRIANGLES

anti-standard equilateral triangle O = −4

PROP. For any points p, q of P and any Q ⊆ P ,

• pq is an edge of Deltd(P ) ⇐⇒ there is an empty O passing through p and q,

• Q belongs to a face of Deltd(P ) ⇐⇒ the circumscribed O of Q is empty.

1

23

1

23



EMPTY REVERSED EQUILATERAL TRIANGLES

anti-standard equilateral triangle O = −4

PROP. For any points p, q of P and any Q ⊆ P ,

• pq is an edge of Deltd(P ) ⇐⇒ there is an empty O passing through p and q,

• Q belongs to a face of Deltd(P ) ⇐⇒ the circumscribed O of Q is empty.

PROP. In a td-triangulation, the edges around a vertex look geometrically like

In particular, the paths P1(v), P1(v) and P1(v) stay in the red, blue and green angles.



EXISTENCE OF SCHNYDER WOODS



EXISTENCE

THM. Any 3-connected planar map admits a Schnyder wood.

CORO. Any 3-connected planar map with f faces admits a straight line embedding with

vertices located on a (f − 1)× (f − 1) grid.

remark: Original proofs of Schnyder (for triangulations) and Felsner (for maps) based on

edge contractions (difficult since contractions do not preserve 3-connectedness).

Here, proof for triangulations based on canonical orderings (a similar proof for arbitrary

3-connected planar maps is possible but more difficult).



CANONICAL ORDERING

M = triangulated planar map (except the external face)

DEF. canonical ordering of M = order on the vertices v1, . . . , vn such that for all k ≥ 3,

the submap Mk of M induced by {v1, . . . , vk} satisfies:

• Mk is connected and its boundary is a simple cycle,

• Mk is triangulated,

• vk+1 is in the outer face of Mk.

PROP. Any triangulated map admits a canonical ordering.

proof idea: start from M and delete a vertex on the outer face incident to only two other

vertices of the outer face.

Such a vertex exists since:

• either all vertices are valid,

• or there is a minimal length chord,

separating at least a valid vertex.



EXISTENCE FROM A CANONICAL ORDERING

PROP. Any triangulated map admits a canonical ordering.

PROP. A canonical ordering defines a Schnyder woods, using the local rule

v

v1

v2
v5

v3

v4

v1

v2
v5

v3

v4

v1

v2
v5

v3

v4

v1

v2
v5

v3

v4



THREE APPLICATIONS OF SCHNYDER WOODS



CONTACT REPRESENTATIONS

DEF. X = set of compact bodies whose interiors are pairwise disjoint.

contact graph of X = graph with

• vertices = bodies of X

• edges = contacts between the bodies of X.

contact representation of G = set X whose contact graph is isomorphic to G.

(img src: Wikipedia)

THM. (Circle packing) Any planar simple graph has a circle contact representation.

remark: in fact, the Koebe–Andreev–Thurston theorem says that this circle contact rep-

resentation is unique up to MÃ¶bius transformations and reflections in lines.



TRIANGLE-CONTACT REPRESENTATIONS

3 2

1



TRIANGLE-CONTACT REPRESENTATIONS



INTERVAL GRAPHS

DEF. interval graph = intersection graph of intervals.

PROP. A graph G = (V,E) is an interval graph if and only if

• all induced cycles are triangles,

• there is a partial order on V whose comparability graph is the complement of G.



BOXICITY

DEF. boxicity of G = smallest d such that there exists axis-parallel boxes in Rd whose

intersection graph is isomorphic to G.

QU. What is the boxicity of

• a complete graph?

• a cycle of length at least 4?



BOXICITY

DEF. boxicity of G = smallest d such that there exists axis-parallel boxes in Rd whose

intersection graph is isomorphic to G.

PROP. The boxicity of G = (V,E) is the smallest d such that there exists d interval

graphs G1 = (V,E1), . . . , Gd = (V,Ed) such that E = E1 ∩ · · · ∩ Ed.

PROP. The boxicity of G = (V,E) is at most |V |/2.



BOXICITY

DEF. boxicity of G = smallest d such that there exists axis-parallel boxes in Rd whose

intersection graph is isomorphic to G.

THM. Any planar graph has boxicity 3.

remark: initially proved by Thomassen with a different method.

proof idea:

• enough to consider triangulations,

• use Schnyder woods and geodesic embeddings.
1
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GEOMETRIC SPANNERS

G = (V,E) graph weighted by ω : E → R>0.

weight of a path e1, . . . , ek =
∑

i∈[k] ω(ei).

dG(u, v) = minimum weight of a path between u and v in G.

exm: G = (V,E) geometric graph and ω(u, v) = ‖u− v‖.

DEF. t-spanner of G = subgraph H of G such that dH(u, v) ≤ t·dG(u, v) for all u, v ∈ V .

stretch factor of H = smallest factor t such that H is a t-spanner of G.

geometric spanner = spanner of the complete geometric graph.



GEOMETRIC SPANNERS

DEF. t-spanner of G = subgraph H of G such that dH(u, v) ≤ t·dG(u, v) for all u, v ∈ V .

stretch factor of H = smallest factor t such that H is a t-spanner of G.

geometric spanner = spanner of the complete geometric graph.

THM.

• The complete geometric graph is a 1-spanner.

• The Delaunay triangulation is a t-spanner for (π/2 <) 1.5846 < t < 1.998 (< 2).

• The td-Delaunay is a 2-spanner.

proof idea: for the td-triangulation
1
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p

q

p

q

p

q



GEOMETRIC SPANNERS

DEF. t-spanner of G = subgraph H of G such that dH(u, v) ≤ t·dG(u, v) for all u, v ∈ V .

stretch factor of H = smallest factor t such that H is a t-spanner of G.

geometric spanner = spanner of the complete geometric graph.

THM.

• The complete geometric graph is a 1-spanner.

• The Delaunay triangulation is a t-spanner for (π/2 <) 1.5846 < t < 1.998 (< 2).

• The td-Delaunay is a 2-spanner.



GEOMETRIC SPANNERS

DEF. For i ∈ [3] and p ∈ P , denote by

• parenti(p) = target of the unique outgoing edge of Deltd(P ) colored by i.

• childreni(p) = all points q ∈ P such that p = parenti(q).

• closesti(p) = point of childreni(p) closest to p for the triangular distance.

• firsti(p) and lasti(p) = first and last points of childreni(p) clockwise around p.

THM. (Bonichon, Gavoille, Hanusse, and Perkovic)

The subgraph of the td-Delaunay triangulation Deltd(P ) obtained by erasing at each

vertex p all incoming arcs except the arcs firsti(p), lasti(p) and closesti(p) for i ∈ [3]

(if they exist) is a planar 6-spanner with degree at most 12.
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