Schnyder woods and applications

V. PILAUD

MPRI 2-38-1. Algorithms and combinatorics for geometric graphs Course not given in 2022
slides available at: http://www.lix.polytechnique.fr/~pilaud/enseignement/MPRI/MPRI-2-38-1-VP-2.pdf
Course notes available at: https://www.lix.polytechnique.fr/~pilaud/enseignement/MPRI/notesCoursMPRI20.pdf

SCHNYDER LABELINGS AND WOODS

PLANAR MAP

$M=$ planar map with three distinguished vertices v_{1}, v_{2}, v_{3} clockwise on the outer face where a half edge is pending in the outer face.

SCHNYDER LABELING

DEF. Schnyder labeling on $M=$ labeling of the angles of M with labels $\{1,2,3\}$ st:
(L1) the angles at the half-edge of v_{i} are labeled $i+1$ and $i-1$ clockwise, (L2) clockwise around each vertex, the labels form intervals of 1's, 2's and 3's, (L3) clockwise around each face, the labels form intervals of 1's, 2's and 3's.

SCHNYDER LABELING

DEF. Schnyder labeling on $M=$ labeling of the angles of M with labels $\{1,2,3\}$ st:
(L1) the angles at the half-edge of v_{i} are labeled $i+1$ and $i-1$ clockwise,
(L2) clockwise around each vertex, the labels form intervals of 1's, 2's and 3's, (L3) clockwise around each face, the labels form intervals of 1's, 2's and 3's.

LEM. The three labels $\{1,2,3\}$ appear among the four angles surrounding any edge.
proof: Count the number of adjacent angles (same vertex and adjacent faces, or adjacent vertices and same face) with distinct labels. There are:

- 3 around each vertex,
- 3 around each face,
- 2 at each half-edge.

Since $3|V|+3|F|=3|E|+6$ by Euler relation, there are also 3 for each edge.

SCHNYDER WOOD

DEF. Schnyder wood on $M=$ (bi-)orientation and (bi-)coloration of the edges of M with $\{1,2,3\}$ st:
(W0) bioriented edges get two distinct colors,
(W1) the half-edge at v_{i} is directed outwards and colored i, (W2) each vertex v has outdegree one in each label, (W3) no interior face whose boundary is a directed cycle in one color.

SCHNYDER LABELINGS VS SCHNYDER WOODS

THM. The transformation given by

is a bijection from Schnyder labelings to Schnyder woods.

SCHNYDER LABELINGS VS SCHNYDER WOODS

THM. The transformation given by

is a bijection from Schnyder labelings to Schnyder woods.
remarks:

- Only two possible situations by the local rules around vertices, edges and faces.
- If M is triangulated, the second situation cannot occur except on the external face, so that there is no internal bioriented edge.

EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation $=$ triangulation obtained from an initial triangle $a b c$ by iteratively refining a triangle $p q r$ into three triangles $s q r, p s r$, and $p q s$. construction tree $=$ ternary tree where $p q r$ is the parent of $s q r, p s r$, and $p q s$.

EXM: STACKED TRIANGULATIONS

EXM: STACKED TRIANGULATIONS

EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation $=$ triangulation obtained from an initial triangle $a b c$ by iteratively refining a triangle $p q r$ into three triangles $s q r, p s r$, and $p q s$. construction tree $=$ ternary tree where $p q r$ is the parent of $s q r, p s r$, and $p q s$.

QU. Numbers of vertices, edges and faces of a stacked triangulation?

- in terms of the number of stacking operations,
- in terms of the construction tree.

EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation $=$ triangulation obtained from an initial triangle $a b c$ by iteratively refining a triangle $p q r$ into three triangles $s q r, p s r$, and $p q s$. construction tree $=$ ternary tree where $p q r$ is the parent of $s q r, p s r$, and $p q s$.

REM. In a stacked triangulation obtained after n stacking operations, and with construction tree C,

- number of vertices $=3+n=3+$ number interior nodes in C,
- number of edges $=3(n+1)=3+$ number edges in C,
- number of faces $=2 n+1=$ number of leaves of C.

EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation $=$ triangulation obtained from an initial triangle $a b c$ by iteratively refining a triangle $p q r$ into three triangles $s q r, p s r$, and $p q s$. construction tree $=$ ternary tree where $p q r$ is the parent of $s q r, p s r$, and $p q s$.

PROP. A stacked triangulation admits a unique Schnyder labeling and Schnyder wood.

EXM: STACKED TRIANGULATIONS

DEF. stacked triangulation $=$ triangulation obtained from an initial triangle $a b c$ by iteratively refining a triangle $p q r$ into three triangles $s q r, p s r$, and $p q s$. construction tree $=$ ternary tree where $p q r$ is the parent of $s q r, p s r$, and $p q s$.

PROP. A stacked triangulation admits a unique Schnyder labeling and Schnyder wood.
proof idea: induction.

EXM: STACKED TRIANGULATIONS

SCHNYDER EMBEDDING

TREES

DEF. M planar map with Schnyder wood.

TREES

DEF. M planar map with Schnyder wood.

$T_{i}=$ directed graph formed by edges colored i.

DEF. M planar map with Schnyder wood.
$T_{i}=$ directed graph formed by edges colored i.

PROP. T_{i} is a directed tree rooted at v_{i}.
proof ideas:

- All vertices except v_{i} have outdegree 1 , so enough to prove acyclicity.
- In fact, $D_{i}=T_{i} \cup T_{i-1}^{\mathrm{rev}} \cup T_{i+1}^{\mathrm{rev}}$ is already acyclic if we ignore bidirected edges or paths. If Z is an area minimal cycle in D_{i}, then:
- Z bounds a single face F (otherwise, it has a chord or contains a vertex...),
- if Z is clockwise, no angle of F has label $i+1$.

REGIONS

DEF. For a vertex v of M, denote:

- $P_{i}(v)=$ directed path in T_{i} to the root v_{i},
- $R_{i}(v)=$ region bounded by the two paths $P_{i-1}(v)$ and $P_{i+1}(v)$,
- $r_{i}(v)=$ number of faces in region $R_{i}(v)$.

REGIONS

DEF. For a vertex v of M, denote:

- $P_{i}(v)=$ directed path in T_{i} to the root v_{i},
- $R_{i}(v)=$ region bounded by the two paths $P_{i-1}(v)$ and $P_{i+1}(v)$,
- $r_{i}(v)=$ number of faces in region $R_{i}(v)$.

QU. Compute $r_{1} r_{2} r_{3}$ for all vertices:

REGIONS

DEF. For a vertex v of M, denote:

- $P_{i}(v)=$ directed path in T_{i} to the root v_{i},
- $R_{i}(v)=$ region bounded by the two paths $P_{i-1}(v)$ and $P_{i+1}(v)$,
- $r_{i}(v)=$ number of faces in region $R_{i}(v)$.

REM. $r_{1} r_{2} r_{3}$ are given by:

REGIONS

$R_{i}(v)=$ region bounded by the two paths $P_{i-1}(v)$ and $P_{i+1}(v)$.
PROP. $u, v=$ two adjacent vertices in the map M. Then:
(R1) if there is a unidirected edge colored i from u to v, then

$$
R_{i}(u) \subsetneq R_{i}(v), \quad R_{i-1}(u) \supsetneq R_{i-1}(v), \quad \text { and } \quad R_{i+1}(u) \supsetneq R_{i+1}(v)
$$

(R2) if there is a bidirected edge colored $i+1$ from u to v and $i-1$ from v to u, then

$$
R_{i}(u)=R_{i}(v), \quad R_{i-1}(u) \supsetneq R_{i-1}(v), \quad \text { and } \quad R_{i+1}(u) \subsetneq R_{i+1}(v)
$$

$$
R_{i}(u)=C \subsetneq B \cup C \cup D=R_{i}(v)
$$

$$
R_{i-1}(u)=D \cup E \supsetneq E=R_{i-1}(v)
$$

$$
R_{i+1}(u)=A \cup B \supsetneq A=R_{i+1}(v)
$$

$$
\begin{aligned}
& R_{i}(u)=H=R_{i}(v) \\
& R_{i-1}(u)=G \cup I \supsetneq I=R_{i-1}(v) \\
& R_{i+1}(u)=F \subsetneq F \cup G=R_{i+1}(v)
\end{aligned}
$$

SCHNYDER EMBEDDING

$M=$ planar map with f faces (including the unbounded one), endowed with a Schnyder wood.
$\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, p_{3}=$ three arbitrary non-colinear points in the plane.
THM. The map

$$
\mu: v \longmapsto \frac{1}{f-1}\left(r_{1}(v) \cdot \boldsymbol{p}_{1}+r_{2}(v) \cdot \boldsymbol{p}_{2}+r_{3}(v) \cdot p_{3}\right)
$$

defines a straightline embedding of M in the plane where all faces are convex.

EXM: STACKED TRIANGULATIONS

QU. Describe on the construction tree C of a stacked triangulation:

- the trees T_{1}, T_{2} and T_{3},
- the sizes $r_{1}(v), r_{2}(v)$ and $r_{3}(v)$ of the regions of a vertex v.

Draw the Schnyder embedding for $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}$ being the vertices of an equilateral triangle.

EXM: STACKED TRIANGULATIONS

PROP. The tree T_{i} is obtained by contracting all edges colored $i-1$ and $i+1$ in C

PROP. Assume v is inserted in triangle t, and let γ be the path from t to the root in C. The size $r_{i}(v)$ is obtained by summing the number of leaves of the subtrees of the blue children of the nodes of γ that are not in γ.
proof idea: induction.

EXM: STACKED TRIANGULATIONS

EXM: STACKED TRIANGULATIONS

EXM: STACKED TRIANGULATIONS

GEODESIC MAPS ON ORTHOGONAL SURFACES

DOMINANCE ORDER

DEF. dominance order in $\mathbb{R}^{3}=\boldsymbol{u} \leq \boldsymbol{v} \Longleftrightarrow u_{i} \leq v_{i}$ for all $i \in[3]$ (componentwise).

DEF. cone dominating $\boldsymbol{y} \in \mathbb{R}^{3}$

$$
\Delta_{y}=\left\{\boldsymbol{z} \in \mathbb{R}^{3} \mid \boldsymbol{y} \leq \boldsymbol{z}\right\}
$$

(= upper ideal of \boldsymbol{y})
cone dominated by $\boldsymbol{y} \in \mathbb{R}^{3}$

$$
\nabla_{\boldsymbol{y}}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid \boldsymbol{x} \leq \boldsymbol{y}\right\}
$$

$(=$ lower ideal of $\boldsymbol{y})$

ORTHOGONAL SURFACE

DEF. dominance order in $\mathbb{R}^{3}=\boldsymbol{u} \leq \boldsymbol{v} \Longleftrightarrow u_{i} \leq v_{i}$ for all $i \in[3]$ (componentwise).

$$
\begin{array}{lc}
\text { DEF. } & \text { cone dominating } \boldsymbol{y} \in \mathbb{R}^{3} \\
\Delta_{y}=\left\{\boldsymbol{z} \in \mathbb{R}^{3} \mid \boldsymbol{y} \leq \boldsymbol{z}\right\} & \nabla_{\boldsymbol{y}}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid \boldsymbol{x} \leq \boldsymbol{y}\right\}
\end{array}
$$

DEF. $\langle\boldsymbol{V}\rangle=\left\{\boldsymbol{z} \in \mathbb{R}^{3} \mid \boldsymbol{v} \leq \boldsymbol{z}\right.$ for some $\left.\boldsymbol{v} \in \boldsymbol{V}\right\}=\bigcup_{\boldsymbol{v} \in \boldsymbol{V}} \Delta_{\boldsymbol{v}}$.

orthogonal surface $\mathcal{S}_{V}=$ boundary of $\langle\boldsymbol{V}\rangle$
(assume now that $\boldsymbol{V}=$ antichain)

ELBOW GEODESICS AND COORDINATE ARCS

DEF. On an orthogonal surface \mathcal{S}_{V}, define

- elbow geodesic $=$ union of the segments from $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}$ to $\boldsymbol{u} \vee \boldsymbol{v}=\left[\max \left(u_{i}, v_{i}\right)\right]_{i \in[n]}$,
- coordinate arcs $=$ (not always bounded) segments from $\boldsymbol{v} \in \boldsymbol{V}$ in an axis direction.

elbow geodesics

coordinate arcs

GEODESIC EMBEDDING

DEF. geodesic embedding of a map M on a surface $\mathcal{S}_{V}=$ drawing of M on \mathcal{S}_{V} st:
(G1) there is a bijection between the points of \boldsymbol{V} and the vertices of M,
(G2) every edge of M is an elbow geodesic in \mathcal{S}_{V} and every bounded coordinate arc is part of an edge of M,
(G3) the drawing is crossing-free.

GEODESIC EMBEDDINGS VS SCHNYDER WOODS

THM. If \boldsymbol{V} is an axial antichain, then a geodesic embedding of a map M on \mathcal{S}_{V} induces a Schnyder wood on M.

proof idea:

- label the angles according to the color of the flat region containing it,
- orient and color the edges according to the three axis. An elbow geodesic can get one or two colors depending on whether it contains one or two bounded coordinate arcs.

GEODESIC EMBEDDINGS VS SCHNYDER WOODS

THM. If \boldsymbol{V} is an axial antichain, then a geodesic embedding of a map M on \mathcal{S}_{V} induces a Schnyder wood on M.

proof idea:

- label the angles according to the color of the flat region containing it,
- orient and color the edges according to the three axis. An elbow geodesic can get one or two colors depending on whether it contains one or two bounded coordinate arcs.

GEODESIC EMBEDDINGS VS SCHNYDER WOODS

THM. If \boldsymbol{V} is an axial antichain, then a geodesic embedding of a map M on \mathcal{S}_{V} induces a Schnyder wood on M.

proof idea:

- label the angles according to the color of the flat region containing it,
- orient and color the edges according to the three axis. An elbow geodesic can get one or two colors depending on whether it contains one or two bounded coordinate arcs.

GEODESIC EMBEDDINGS VS SCHNYDER WOODS

THM. If \boldsymbol{V} is an axial antichain, then a geodesic embedding of a map M on $\mathcal{S}_{\boldsymbol{V}}$ induces a Schnyder wood on M.

proof idea:

- label the angles according to the color of the flat region containing it,
- orient and color the edges according to the three axis. An elbow geodesic can get one or two colors depending on whether it contains one or two bounded coordinate arcs.

GEODESIC EMBEDDINGS VS SCHNYDER WOODS

THM. If \boldsymbol{V} is an axial antichain, then a geodesic embedding of a map M on $\mathcal{S}_{\boldsymbol{V}}$ induces a Schnyder wood on M.

THM. Given a Schnyder wood W on a planar map M, the region vectors of the vertices of M with respect to W form an axial antichain V inducing a geodesic embedding of M on \mathcal{S}_{V}.

FROM GEODESIC EMBEDDINGS TO SCHNYDER EMBEDDINGS

THM. The projection of the geodesic embedding onto the plane $v_{1}+v_{2}+v_{3}=f-1$ gives a planar drawing of M whose edges are bended segments. Replacing them by straight segments preserves the non-crossing-freeness.

proof idea: when straightening the geodesic embedding, the elbow geodesic joining \boldsymbol{u} and \boldsymbol{v} is controled by $\nabla_{\boldsymbol{u} \vee \boldsymbol{v}}$.

SCHNYDER EMBEDDING

$M=$ planar map with f faces (including the unbounded one), endowed with a Schnyder wood.
$\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}=$ three arbitrary non-colinear points in the plane.

THM. The map

$$
\mu: v \longmapsto \frac{1}{f-1}\left(r_{1}(v) \cdot \boldsymbol{p}_{1}+r_{2}(v) \cdot \boldsymbol{p}_{2}+r_{3}(v) \cdot \boldsymbol{p}_{3}\right)
$$

defines a straightline embedding of M in the plane where all faces are convex.

DEF. dual map of $M=$ exchange vertices \longleftrightarrow faces.
suspended dual map $M^{\star}=$ dual map of M where the vertex corresponding to the external face is split into three vertices.
primal-dual map $\widetilde{M}=$ superimposition of the map M and its suspended dual map M^{\star} with additional vertices at the edge intersections.

PRIMAL-DUAL GEODESIC EMBEDDING

THM. Reversing the orientation, the same orthogonal surface admits a geodesic embedding of the map M, of its suspended dual map M^{\star}, and of its primal-dual map \widetilde{M}.

EXM: STACKED TRIANGULATIONS

ALPHA-ORIENTATIONS

α-ORIENTATION

DEF. $G=(V, E)$ a graph, $\alpha: V \rightarrow \mathbb{N}$.
α-orientation $=$ edge orientation of G such that any vertex v has $\alpha(v)$ outgoing edges.
remark: α-orientation do not always exists, even when $\sum_{v \in V} \alpha(v)=|E|$ and $\alpha(v) \leq \operatorname{deg}(v)$ for all $v \in V$.

PROP. Reversing an oriented cycle in an α-orientation yields another α-orientation.

3-ORIENTATIONS IN TRIANGULATIONS

DEF. $M=$ triangulated planar map with external vertices v_{1}, v_{2}, v_{3}, and edges e_{1}, e_{2}, e_{3} 3-orientation $=\alpha$-orientation of $M \backslash\left\{e_{1}, e_{2}, e_{3}\right\}$, where $\alpha(v)=3$ except $\alpha\left(v_{1}\right)=\alpha\left(v_{2}\right)=\alpha\left(v_{3}\right)=0$.

THM. For a triangulated triangulated map M, there is a bijection 3-orientations of $M \longleftrightarrow$ Schnyder woods of M.

3-ORIENTATIONS IN TRIANGULATIONS

THM. For a triangulated triangulated map M, there is a bijection

$$
\text { 3-orientations of } M \longleftrightarrow \text { Schnyder woods of } M
$$

proof idea:

- A Schnyder woods clearly gives a 3-orientation.
- Conversely, consider the central paths in a 3-orientation and prove that they never self-intersect, nor intersect twice.

BEYOND TRIANGULATIONS

remark: for an arbitrary planar map, there are more Schnyder woods than 3 -orientations...

BEYOND TRIANGULATIONS

remark: for an arbitrary planar map, there are more Schnyder woods than 3-orientations...

BEYOND TRIANGULATIONS

remark: for an arbitrary planar map, there are more Schnyder woods than 3-orientations...
... but distinct Schnyder woods yield geodesic embeddings on distinct orthogonal surfaces...

BEYOND TRIANGULATIONS

remark: for an arbitrary planar map, there are more Schnyder woods than 3-orientations...
... but distinct Schnyder woods yield geodesic embeddings on distinct orthogonal surfaces...
... with distinct orientations for the suspended duals...

BEYOND TRIANGULATIONS

THM. For a 3-connected planar map M, there is a bijection α-orientations of the primal-dual $\widetilde{M} \longleftrightarrow$ Schnyder woods of M where $\alpha(\circ)=\alpha(\bullet)=3$ while $\alpha(\square)=1$.

BEYOND TRIANGULATIONS

THM. For a 3-connected planar map M, there is a bijection α-orientations of the primal-dual $\widetilde{M} \longleftrightarrow$ Schnyder woods of M where $\alpha(\circ)=\alpha(\bullet)=3$ while $\alpha(\square)=1$.

TD-DELAUNAY TRIANGULATIONS

VORONOI DIAGRAM

DEF. $\quad \boldsymbol{P}=$ set of sites in \mathbb{R}^{n}.
$\underline{\text { Voronoi region } \operatorname{Vor}(\boldsymbol{p}, \boldsymbol{P})=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid\|\boldsymbol{x}-\boldsymbol{p}\| \leq\|\boldsymbol{x}-\boldsymbol{q}\| \text { for all } \boldsymbol{q} \in \boldsymbol{P}\right\} . . ~ . ~ . ~}$
Voronoi diagram $\operatorname{Vor}(\boldsymbol{P})=$ partition of \mathbb{R}^{n} formed by $\operatorname{Vor}(\boldsymbol{p}, \boldsymbol{P})$ for $\boldsymbol{p} \in \boldsymbol{P}$.

VORONOI DIAGRAM

DEF. $\boldsymbol{P}=$ set of sites in \mathbb{R}^{n}.
Voronoi region $\operatorname{Vor}(\boldsymbol{p}, \boldsymbol{P})=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid\|\boldsymbol{x}-\boldsymbol{p}\| \leq\|\boldsymbol{x}-\boldsymbol{q}\|\right.$ for all $\left.\boldsymbol{q} \in \boldsymbol{P}\right\}$.
Voronoi diagram $\operatorname{Vor}(\boldsymbol{P})=$ partition of \mathbb{R}^{n} formed by $\operatorname{Vor}(\boldsymbol{p}, \boldsymbol{P})$ for $\boldsymbol{p} \in \boldsymbol{P}$.

VORONOI DIAGRAM

DEF. $\boldsymbol{P}=$ set of sites in \mathbb{R}^{n}.
$\underline{\text { Voronoi region } \operatorname{Vor}(\boldsymbol{p}, \boldsymbol{P})=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid\|\boldsymbol{x}-\boldsymbol{p}\| \leq\|\boldsymbol{x}-\boldsymbol{q}\| \text { for all } \boldsymbol{q} \in \boldsymbol{P}\right\} . . ~}$
Voronoi diagram $\operatorname{Vor}(\boldsymbol{P})=$ partition of \mathbb{R}^{n} formed by $\operatorname{Vor}(\boldsymbol{p}, \boldsymbol{P})$ for $\boldsymbol{p} \in \boldsymbol{P}$.

DELAUNAY COMPLEX

DEF. $\boldsymbol{P}=$ set of sites in \mathbb{R}^{n}.
Voronoi region $\operatorname{Vor}(\boldsymbol{p}, \boldsymbol{P})=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid\|\boldsymbol{x}-\boldsymbol{p}\| \leq\|\boldsymbol{x}-\boldsymbol{q}\|\right.$ for all $\left.\boldsymbol{q} \in \boldsymbol{P}\right\}$.
Voronoi diagram $\operatorname{Vor}(\boldsymbol{P})=$ partition of \mathbb{R}^{n} formed by $\operatorname{Vor}(\boldsymbol{p}, \boldsymbol{P})$ for $\boldsymbol{p} \in \boldsymbol{P}$.

DEF. Delaunay complex $\operatorname{Del}(\boldsymbol{P})=$ intersection complex of $\operatorname{Vor}(\boldsymbol{P})$

$$
\operatorname{Del}(\boldsymbol{P})=\left\{\operatorname{conv}(\boldsymbol{X}) \mid \boldsymbol{X} \subseteq \boldsymbol{P} \text { and } \bigcap_{\boldsymbol{p} \in \boldsymbol{X}} \operatorname{Vor}(\boldsymbol{p}, \boldsymbol{P}) \neq \varnothing\right\} .
$$

EMPTY CIRCLES

PROP. For any three points $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}$ of \boldsymbol{P},

- $\boldsymbol{p} \boldsymbol{q}$ is an edge of $\operatorname{Del}(\boldsymbol{P}) \Longleftrightarrow$ there is an empty circle passing through \boldsymbol{p} and \boldsymbol{q},
- $\boldsymbol{p q} \boldsymbol{r}$ is a triangle of $\operatorname{Del}(\boldsymbol{P}) \Longleftrightarrow$ the circumcircle of $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}$ is empty.

proof idea: consider the circle centered at the intersection of the Voronoi regions and passing through the Voronoi sites.

EMPTY CIRCLES

PROP. For any three points $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}$ of \boldsymbol{P},

- $\boldsymbol{p} \boldsymbol{q}$ is an edge of $\operatorname{Del}(\boldsymbol{P}) \Longleftrightarrow$ there is an empty circle passing through \boldsymbol{p} and \boldsymbol{q},
- $\boldsymbol{p q} \boldsymbol{q}$ is a triangle of $\operatorname{Del}(\boldsymbol{P}) \Longleftrightarrow$ the circumcircle of $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}$ is empty.

CORO. In two adjacent triangles of a Delaunay triangulation, the sum of the two opposite angles is at most π.

EMPTY CIRCLES

PROP. For any three points $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}$ of \boldsymbol{P},

- $\boldsymbol{p} \boldsymbol{q}$ is an edge of $\operatorname{Del}(\boldsymbol{P}) \Longleftrightarrow$ there is an empty circle passing through \boldsymbol{p} and \boldsymbol{q},
- $\boldsymbol{p q} \boldsymbol{r}$ is a triangle of $\operatorname{Del}(\boldsymbol{P}) \Longleftrightarrow$ the circumcircle of $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}$ is an empty circle.

EXM: STACKED TRIANGULATIONS

QU. Consider the stacked triangulation

Does this realization look Delaunay? Can you provide a Delaunay realization?

EXM: STACKED TRIANGULATIONS

REM. The stacked triangulation

has no Delaunay realization.
proof: In a Delaunay realization of this stacked triangulation, we would have

$$
\begin{aligned}
& \quad a+\bar{a}<\pi, \quad b+\bar{b}<\pi, \quad c+\bar{c}<\pi \\
& \text { and } \quad a+\bar{c}+d=\bar{a}+b+\bar{d}=\bar{b}+c+\underline{d}=2 \pi .
\end{aligned}
$$

Thus $d+\bar{d}+\underline{d}>3 \pi$ and at least one of d, \bar{d} and \underline{d} is larger than π, a contradiction.

EXM: STACKED TRIANGULATIONS

REM. The stacked triangulation

has no Delaunay realization.

THM. A stacked triangulation admits a Delaunay realization if and only if its construction tree has no ternary node after deletion of all its leaves.
proof ideas:

- one direction follows from the example above,
- for the opposite direction, find an explicit construction (see Exercise 113 course notes).

QUASI-METRICS

DEF. quasi-metric on $Q=$ function $\delta: Q^{2} \rightarrow \mathbb{R}_{\geq 0}$ st:

- separability: $\delta(p, q)=0 \Longleftrightarrow p=q$,
- triangular inequality: $\delta(p, q)+\delta(q, r) \geq \delta(p, r)$.

DEF. $P \subseteq Q$ a set of sites of Q.
δ-Voronoi region $\operatorname{Vor}_{\delta}(p, P)=\{r \in Q \mid \delta(p, r) \leq \delta(q, r)$ for all $q \in P\}$. δ-Voronoi diagram $\operatorname{Vor}_{\delta}(P)=$ partition of Q formed by $\operatorname{Vor}_{\delta}(p, P)$ for $p \in P$.

DEF. δ-Delaunay complex $\operatorname{Del}_{\delta}(P)=$ intersection complex of $\operatorname{Vor}_{\delta}(P)$

$$
\operatorname{Del}_{\delta}(P)=\left\{X \subseteq P \mid \bigcap_{p \in X} \operatorname{Vor}_{\delta}(p, P) \neq \varnothing\right\} \subseteq 2^{P}
$$

TRIANGULAR DISTANCE

Fix $c \in \mathbb{R}_{\geq 0}$, and consider the hyperplane $\boldsymbol{H}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=c\right\}$. and its standard equilateral triangle $\triangle=\operatorname{conv}\left(c \boldsymbol{e}_{1}, c \boldsymbol{e}_{2}, c \boldsymbol{e}_{3}\right)$

DEF. triangular distance between $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{H}=$

$$
\mathrm{TD}(\boldsymbol{x}, \boldsymbol{y})=\min \left\{\lambda \in \mathbb{R}_{\geq 0} \mid \boldsymbol{x} \in \boldsymbol{y}+\lambda(\triangle-c \mathbb{1} / 3)\right\} .
$$

remark: intuitively, $\operatorname{TD}(\boldsymbol{x}, \boldsymbol{y})$ is obtained by dilating a standard equilateral triangle \triangle centered at \boldsymbol{y} until it reaches \boldsymbol{x}.

remark: TD is a quasi-distance, but is not symmetric.

GEODESIC EMBEDDINGS VS TD-DELAUNAY REALIZATIONS

PROP. Given a Schnyder wood W on a planar map M, the region vectors of the vertices of M with respect to W define a point-set whose TD-Delaunay triangulation is isomorphic to M.

CORO. Any 3-connected planar graph admits a TD-Delaunay realization.

EMPTY REVERSED EQUILATERAL TRIANGLES

anti-standard equilateral triangle $\nabla=-\triangle$
PROP. For any points $\boldsymbol{p}, \boldsymbol{q}$ of \boldsymbol{P} and any $\boldsymbol{Q} \subseteq \boldsymbol{P}$,

- $\boldsymbol{p} \boldsymbol{q}$ is an edge of $\operatorname{Del}_{\mathrm{TD}}(\boldsymbol{P}) \Longleftrightarrow$ there is an empty ∇ passing through \boldsymbol{p} and \boldsymbol{q},
- Q belongs to a face of $\operatorname{Del}_{\mathrm{TD}}(\boldsymbol{P}) \Longleftrightarrow$ the circumscribed ∇ of Q is empty.

EMPTY REVERSED EQUILATERAL TRIANGLES

anti-standard equilateral triangle $\nabla=-\triangle$
PROP. For any points $\boldsymbol{p}, \boldsymbol{q}$ of \boldsymbol{P} and any $\boldsymbol{Q} \subseteq \boldsymbol{P}$,

- $\boldsymbol{p} \boldsymbol{q}$ is an edge of $\operatorname{Del}_{\mathrm{TD}}(\boldsymbol{P}) \Longleftrightarrow$ there is an empty ∇ passing through \boldsymbol{p} and \boldsymbol{q},
- Q belongs to a face of $\operatorname{Del}_{\mathrm{TD}}(\boldsymbol{P}) \Longleftrightarrow$ the circumscribed ∇ of Q is empty.

PROP. In a TD-triangulation, the edges around a vertex look geometrically like

In particular, the paths $P_{1}(v), P_{1}(v)$ and $P_{1}(v)$ stay in the red, blue and green angles.

EXISTENCE OF SCHNYDER WOODS

EXISTENCE

THM. Any 3-connected planar map admits a Schnyder wood.

CORO. Any 3-connected planar map with f faces admits a straight line embedding with vertices located on a $(f-1) \times(f-1)$ grid.

remark: Original proofs of Schnyder (for triangulations) and Felsner (for maps) based on edge contractions (difficult since contractions do not preserve 3-connectedness). Here, proof for triangulations based on canonical orderings (a similar proof for arbitrary 3 -connected planar maps is possible but more difficult).

CANONICAL ORDERING

$M=$ triangulated planar map (except the external face)
DEF. canonical ordering of $M=$ order on the vertices v_{1}, \ldots, v_{n} such that for all $k \geq 3$, the submap M_{k} of M induced by $\left\{v_{1}, \ldots, v_{k}\right\}$ satisfies:

- M_{k} is connected and its boundary is a simple cycle,
- M_{k} is triangulated,
- v_{k+1} is in the outer face of M_{k}.

PROP. Any triangulated map admits a canonical ordering.
proof idea: start from M and delete a vertex on the outer face incident to only two other vertices of the outer face.
Such a vertex exists since:

- either all vertices are valid,
- or there is a minimal length chord, separating at least a valid vertex.

EXISTENCE FROM A CANONICAL ORDERING

PROP. Any triangulated map admits a canonical ordering.

PROP. A canonical ordering defines a Schnyder woods, using the local rule

THREE APPLICATIONS OF SCHNYDER WOODS

CONTACT REPRESENTATIONS

DEF. $\boldsymbol{X}=$ set of compact bodies whose interiors are pairwise disjoint. contact graph of $\boldsymbol{X}=$ graph with

- vertices $=$ bodies of \boldsymbol{X}
- edges $=$ contacts between the bodies of \boldsymbol{X}.
contact representation of $G=$ set \boldsymbol{X} whose contact graph is isomorphic to G.

(img src: Wikipedia)

THM. (Circle packing) Any planar simple graph has a circle contact representation.
remark: in fact, the Koebe-Andreev-Thurston theorem says that this circle contact representation is unique up to M $\tilde{A} \llbracket$ bius transformations and reflections in lines.

TRIANGLE-CONTACT REPRESENTATIONS

TRIANGLE-CONTACT REPRESENTATIONS

INTERVAL GRAPHS

DEF. interval graph $=$ intersection graph of intervals.

PROP. A graph $G=(V, E)$ is an interval graph if and only if

- all induced cycles are triangles,
- there is a partial order on V whose comparability graph is the complement of G.

BOXICITY

DEF. boxicity of $G=$ smallest d such that there exists axis-parallel boxes in \mathbb{R}^{d} whose intersection graph is isomorphic to G.

QU. What is the boxicity of

- a complete graph?
- a cycle of length at least 4?

BOXICITY

DEF. boxicity of $G=$ smallest d such that there exists axis-parallel boxes in \mathbb{R}^{d} whose intersection graph is isomorphic to G.

PROP. The boxicity of $G=(V, E)$ is the smallest d such that there exists d interval graphs $G_{1}=\left(V, E_{1}\right), \ldots, G_{d}=\left(V, E_{d}\right)$ such that $E=E_{1} \cap \cdots \cap E_{d}$.

PROP. The boxicity of $G=(V, E)$ is at most $|V| / 2$.

BOXICITY

DEF. boxicity of $G=$ smallest d such that there exists axis-parallel boxes in \mathbb{R}^{d} whose intersection graph is isomorphic to G.

THM. Any planar graph has boxicity 3 .
remark: initially proved by Thomassen with a different method. proof idea:

- enough to consider triangulations,
- use Schnyder woods and geodesic embeddings.

GEOMETRIC SPANNERS

$G=(V, E)$ graph weighted by $\omega: E \rightarrow \mathbb{R}_{>0}$.
weight of a path $e_{1}, \ldots, e_{k}=\sum_{i \in[k]} \omega\left(e_{i}\right)$.
$d_{G}(u, v)=$ minimum weight of a path between u and v in G.
exm: $G=(V, E)$ geometric graph and $\omega(u, v)=\|u-v\|$.

DEF. t-spanner of $G=$ subgraph H of G such that $d_{H}(u, v) \leq t \cdot d_{G}(u, v)$ for all $u, v \in V$. stretch factor of $H=$ smallest factor t such that H is a t-spanner of G.
geometric spanner $=$ spanner of the complete geometric graph.

GEOMETRIC SPANNERS

DEF. t-spanner of $G=$ subgraph H of G such that $d_{H}(u, v) \leq t \cdot d_{G}(u, v)$ for all $u, v \in V$. stretch factor of $H=$ smallest factor t such that H is a t-spanner of G. geometric spanner $=$ spanner of the complete geometric graph.

THM.

- The complete geometric graph is a 1-spanner.
- The Delaunay triangulation is a t-spanner for $(\pi / 2<) 1.5846<t<1.998(<2)$.
- The TD-Delaunay is a 2-spanner.
proof idea: for the TD-triangulation

GEOMETRIC SPANNERS

DEF. t-spanner of $G=$ subgraph H of G such that $d_{H}(u, v) \leq t \cdot d_{G}(u, v)$ for all $u, v \in V$. stretch factor of $H=$ smallest factor t such that H is a t-spanner of G. geometric spanner $=$ spanner of the complete geometric graph.

THM.

- The complete geometric graph is a 1-spanner.
- The Delaunay triangulation is a t-spanner for $(\pi / 2<) 1.5846<t<1.998(<2)$.
- The TD-Delaunay is a 2-spanner.

GEOMETRIC SPANNERS

DEF. For $i \in[3]$ and $\boldsymbol{p} \in \boldsymbol{P}$, denote by

- parent $_{i}(\boldsymbol{p})=$ target of the unique outgoing edge of $\operatorname{Del}_{\mathrm{TD}}(\boldsymbol{P})$ colored by i.
- children $_{i}(\boldsymbol{p})=$ all points $\boldsymbol{q} \in \boldsymbol{P}$ such that $\boldsymbol{p}=\operatorname{parent}_{i}(\boldsymbol{q})$.
- $\operatorname{closest}_{i}(\boldsymbol{p})=$ point of $\operatorname{children}_{i}(\boldsymbol{p})$ closest to \boldsymbol{p} for the triangular distance.
- $\operatorname{first}_{i}(\boldsymbol{p})$ and $\operatorname{last}_{i}(\boldsymbol{p})=$ first and last points of $\operatorname{children}_{i}(\boldsymbol{p})$ clockwise around $^{\boldsymbol{p}}$.

THM. (Bonichon, Gavoille, Hanusse, and Perkovic)
The subgraph of the TD-Delaunay triangulation $\operatorname{Del}_{\mathrm{TD}}(\boldsymbol{P})$ obtained by erasing at each vertex \boldsymbol{p} all incoming arcs except the $\operatorname{arcs}^{\operatorname{first}_{i}(\boldsymbol{p})}$, last $_{i}(\boldsymbol{p})$ and closest $_{i}(\boldsymbol{p})$ for $i \in[3]$ (if they exist) is a planar 6 -spanner with degree at most 12 .

SOME REFERENCES

SOME REFERENCES

- Stefan Felsner. Geometric graphs and arrangements.

Advanced Lectures in Mathematics. Friedr. Vieweg \& Sohn, Wiesbaden, 2004.

- Stefan Felsner. Lattice Structures from Planar Graphs. Electron. J. Combin. 11, \#R15, 2004.
- Walter Schnyder. Planar graphs and poset dimension. Order, 5(4):323-343, 1989.

