
Combinatoire des polytopes
Examen du 21/02/2020

Les notes de cours, les TDs (et leurs corrections), et vos notes personnelles sont autorisées. Les
appareils électroniques sont interdits (en particulier les téléphones portables). Il est demandé de répondre
sur des feuilles simples.

Les exercices de cet énoncé sont indépendants et peuvent être traités dans n’importe quel ordre. At-
tention à bien noter les numéros d’exercice et de questions devant vos réponses.

La précision des réponses, la qualité de la rédaction, et les efforts de présentation seront pris en compte
dans la notation.

Exercice 1 (p-sequences). For a polytope P , let pk(P ) be its number of k-gonal 2-faces for each k ≥ 3.

(1) Show that for a simple 3-polytope P , we have∑
k≥3

(6− k) · pk(P ) = 12.

(2) Show that every simple 3-polytope contains at least four faces each of which has at most five edges.

(3) Let C ⊂ R3 be the convex hull of the set of points (p3(P ), p4(P ), p5(P )) for all simple 3-polytopes P .
Show that C is a polyhedron and give its descriptions as intersection of halfspaces, and as polytope
and recession cone.

Exercice 2 (Permutahedron). For n ≥ 1, the permutahedron Perm(n) is defined as the convex hull of
the points (σ(1), . . . , σ(n)) for all permutations σ ∈ Sn.

(1) Draw the permutahedra Perm(1), Perm(2) and Perm(3).

(2) What is the intrinsic dimension of Perm(n)? Justify.

(3) What is the number of vertices of Perm(n)? Justify.

(4) For ∅ 6= I ( [n], show that the inequality
∑

i∈I xi ≥ |I|(|I| + 1)/2 defines a facet FI of Perm(n)
whose combinatorial type is that of the Cartesian product Perm(|I|)× Perm(n− |I|).

An ordered partition of [n] is a partition [n] = I1 t · · · t Ik where the parts are ordered (but the
order among the elements inside each part is irrelevant). We write such a partition as I1|I2| . . . |Ik. For
instance, the ordered partitions 12|35|4 and 4|12|35 are distinct since they have the same parts but in
different order, while the ordered partitions 12|35|4 and 21|53|4 are the same.

(5) Show that, for an ordered partition π = I1|I2| . . . |Ik, the intersection of the facets FI1 , FI1∪I2 , . . . ,
FI1∪···∪Ik−1

defines a (n− k)-dimensional face Fπ of Perm(n). Describe the combinatorics of Fπ.

(6) Conversely, given a non-zero vector c = (c1, . . . , cn), describe (in terms of the coordinates of c) the
ordered partition π such that Fπ is the face of Perm(n) minimizing c.

(7) Describe the face lattice of Perm(n).

(8) Let k, k1, . . . , kp and n, n1, . . . , np be integers such that k = k1 + · · ·+ kp and n = k1n1 + · · ·+ kpnp.
What is the number of faces of Perm(n) with combinatorial type Perm(n1)

k1 × · · · × Perm(np)
kp?
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Exercice 3 (Minkowski summands). The Minkowski sum P +Q of two polytopes P,Q ∈ Rd is the set
P +Q = {p+ q | p ∈ P, q ∈ Q}. We say that Q is a Minkowski summand of P (written Q � P ) if there
is a polytope R such that P = Q+R.

(1) Characterize the condition Q � P when Q and P are 1-dimensional.

(2) Prove that if P � Q and Q � P , then P = Q+ t for some t ∈ Rd.

(3) For u ∈ Rdr0, let P u be the face of P maximized in direction u. Show that if Q � P then Qu � P u.

(4) Characterize the Minkowski summands of a polygon P ⊂ R2. To this end, we label its vertices
by p1, . . . , pn clockwise and we consider its edge directions vi = pi − pi−1 for 1 ≤ i ≤ n (with the
convention p0 = pn).

• Prove that any polygon with the exact same edge directions must be a translate of P .

• Characterize the values (λ1, . . . , λn) ∈ Rn≥0 such that there is a polygon Q ⊂ R2 with edge
directions λi · vi (we set λi = 0 if no multiple of vi appears as an edge direction of Q).

• Show that if Q � P , then its edge directions are of the form λi · vi for some 0 ≤ λi ≤ 1 .

• Show that Q � P if and only if its edge directions are of the form λi · vi for some 0 ≤ λi ≤ 1 .

(5) Prove that Q � P if and only if

(i) dimQu ≤ dimP u for all u ∈ Rd r 0, and

(ii) Qu � P u whenever dimP u = 1.

To prove the only if part

• Construct a map pi 7→ qi that associates a vertex qi ∈ Q to every vertex pi ∈ P .
• Define R = conv{ri = pi − qi}.
• Show that P = Q+R (by contradiction).

(6) For a = (a1, . . . , an) ∈ Rn, let

Perm(a) = conv
{
(aσ(1), . . . , aσ(n))

∣∣ σ ∈ Sn

}
⊂ Rn.

Show that there is a λ > 0 such that λ · Perm(a) � Perm(n), where Perm(n) is the permutahedron
defined in the previous exercice.

Exercice 4 (One-point suspensions). Let V = (
(
p1
1

)
, . . . ,

(
pn
1

)
) ∈ R(d+1)×n be a vector configuration

arising as the homogenization of the n vertices of a d-polytope P . Let G = (g1, . . . , gn) ∈ R(n−d−1)×n be
its Gale dual vector configuration.

(1) Let G′ = (g′0, g
′
1, . . . , g

′
n) be the vector configuration with g′0 =

g1
2 , g

′
1 =

g1
2 and g′i = gi for 2 ≤ i ≤ n.

Explain why G′ is the Gale dual of (the vector configuration arising as the homogenization of the
vertices of) a polytope P ′. What is the dimension of P ′?

(2) Describe the faces of P ′ (with respect to those of P ).

(3) Describe the geometric operation that sends P to P ′. It is called the one-point suspension of p1 in P .

(4) Does every polytope combinatorially equivalent to P ′ arise from a one-point suspension of a polytope
combinatorially equivalent to P?

(5) Show that P ′ has a vertex figure combinatorially equivalent to P .

(6) Argue why the realization space of P ′ is stably equivalent to the realization space of P . (Give only
the main arguments, without writing a full formal proof.)
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