
Combinatoire des polytopes
Examen du 21/02/2019

Exercice 1 (Trivalent vertices and faces).
(1) Show that for any 3-dimensional polytope with v3 vertices of degree 3 and f3 facets of degree 3

(i.e. triangles), we have the inequality v3 + f3 ≥ 8.
(2) Give examples of 3-dimensional polytopes with (v3, f3) = (8, 0), (6, 2), (4, 4), (2, 6) and (0, 8).
(3) Can the other pairs (v3, f3) with v3 + f3 = 8 be reached?

Solution.
(1) Let P be a 3-dimensional polytope. For i ≥ 3, we denote by vi (resp. fi) the number of ver-

tices (resp. facets) of P of degree i. We also denote by v :=
∑

i≥3 vi the number of vertices, by e
the number of edges, and by f :=

∑
i≥3 fi the number of facets of P . By Euler’s relation, we

have v − e+ f = 2, and by double counting the number of vertex-edge and edge-facet incidences,
we obtain

∑
i≥3 ivi = 2e =

∑
i≥3 ifi. We therefore obtain that

8 = 4v − 4e+ 4f = 4
∑
i≥3

vi −
∑
i≥3

ivi −
∑
i≥3

ifi + 4
∑
i≥3

fi =
∑
i≥3

(4− i)(vi + fi)

and thus
v3 + f3 = 8 +

∑
i≥5

(i− 4)(vi + fi) ≥ 8.

(2) Cube, triangular prism, tetrahedron, triangular bipyramid, octahedron. See Figure ??.

(8, 0) (6, 2) (4, 4) (2, 6) (0, 8)

Figure 1: Examples of 3-dimensional polytopes with v3 + f3 = 8.

(3) Assume now that v3 is odd. Since 2e =
∑

i≥3 ivi, it implies that there is another odd integer i such
that vi is odd, and thus non-zero. We obtain that v3 + f3 ≥ 8 + (i − 4)vi ≥ 9. The proof is similar
when fi is odd. Note that all pairs (v3, f3) with v3 + f3 = 9 are possible. We have represented some
of them in Figure ??, the others are obtained by polarity.

(8, 1) (7, 2) (4, 5) (3, 6)

Figure 2: Examples of 3-dimensional polytopes with v3 + f3 = 9.
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Exercice 2 (Gram formula for angles). Consider a d-dimensional polytope P , a face F of P , and a
sufficiently small ball BF centered at a point in the relative interior of F . We call the solid angle of P
at F the fraction αF of BF that is contained in P . We denote by αi the sum of the solid angles of P at
its i-dimensional faces. We want to prove the following analogue of Euler’s formula for solid angles:

d∑
i=0

(−1)iαi = 0.

(1) Show that this formula is equivalent to

d−2∑
i=0

(−1)iαi = (−1)d
(
fd−1/2− 1

)
where fd−1 is the number of (d− 1)-dimensional faces of P .

(2) Show the result for a 2-dimensional polytope P .

(3) Consider now a 3-dimensional polytope P . Choose a random direction u on the 2-dimensional sphere
and project P orthogonally to this direction u to a polygon Pu.

• What is the probability that a vertex v of P does not project to a vertex in the projected
polygon Pu in terms of the solid angle of P at v?
• Deduce the expected number of vertices of the projected polygon Pu.
• What is the expected number of edges of the projected polygon Pu?
• Using these expectations, show that α0 − α1 = −f2/2 + 1.

(4) Extend this method to any dimension d.

Solution.
(1) Since the whole ball centered at a point in the relative interior of P is included in P , we have αd = 1.

Similarly, precisely half of a small ball centered at a point in the relative interior of a facet is contained
in P , so that αd−1 = fd−1/2. The formulas are thus clearly equivalent.

(2) In dimension 2, consider an n-gon P , and let w be a point in its relative interior. Cut the polygon P
into triangles formed by an edge of P and w. Since the sum of the angles in a triangle is π and the
sum of the angles around w is 2π, we obtain that 2π ·α1 = nπ−2π and therefore α1 = n/2−1. This
is precisely the second formula for d = 2.

(3) A vertex v of P does not project to a vertex of the projected polygon Pu if and only if the direction u or
its opposite belongs to the solid angle of P at v. Therefore, the probability that v does not project to
a vertex of Pu is 2αv. Thus, the expected number of vertices is

∑
v∈V (1−2αv) = f0−2α0. Similarly,

the expected number of edges is
∑

e∈E(1− 2αe) = f1 − 2α1. Since the projected polygon Pu has the
same number of vertices and edges, these two expectations coincide, so that f0 − 2α0 = f1 − 2α1.
Equivalently, α0 − α1 = (f0 − f1)/2 = f2/2 − 1 by Euler’s formula. This is precisely the second
formula for d = 3.

(4) We apply the same strategy. We choose a random direction u and consider the (d− 1)-dimensional
polytope Pu obtained by projection of P orthogonally to this direction u. For any i ≤ d − 2, an
i-dimensional face F of P is not projected to an i-dimensional face in the projected polytope Pu

if and only if the direction u or its opposite belongs to the solid angle of P at F . Therefore, the
expected number of i-dimensional faces of the projected polytope Pu is

∑
F i-face(1−2αF ) = fi−2αi.

By Euler’s formula on the projected polytope Pu and linearity of the expectation, we obtain that

d−2∑
i=0

(−1)i(fi − 2αi) = (−1)d,
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which gives by Euler’s formula on the polytope P

d−2∑
i=0

(−1)iαi =
1

2

(
(−1)d+1 +

d−2∑
i=0

(−1)ifi

)
=

1

2

(
(−1)d−1 − (−1)d − (−1)d−1fd−1

)
= (−1)d

(
fd−1/2− 1

)
.

Exercice 3 (A 4-dimensional polytope with a non-prescribable 2-face).

(1) Consider a polytope P with vertex-facet incidence graph I. In other words, I is the bipartite graph
whose nodes are the vertices of P and the facets of P , and with an arc from a vertex v to a facet F
if and only if v belongs to F .

• Show that the faces of P are in bijection with the maximal complete bipartite subgraphs of I,
i.e. with inclusion maximal pairs (V,F) where V is a subset of vertices of P and F is a subset
of facets of P such that v ∈ F for any v ∈ V and F ∈ F .
• Deduce that the face lattice of P is completely determined by the vertex-facet incidences of P .
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Figure 3: A Schlegel diagram (left) and a Gale diagram (right).

(2) Consider the Schlegel diagram of a 4-dimensional polytope Q on the left of Figure 1.

• What is the number of vertices and facets of Q?
• List all facets of Q (for each facet F , just list the vertices of F in alphabetical order). Label

these facets from 1 to 8 in lexicographic order.

(3) Consider the planar affine Gale diagram G of a polytope R on the right of Figure 1.

• What is the dimension and the number of vertices of R?
• List all circuits C of G for which C4 6= 0 and C6 6= 0.
• List all cocircuits X of G for which X1 = 0.
• What are the facets of R?

(4) Show that the face lattices of the polytopes Q and R are opposite.

(5) Show that the polytope Q has an hexagonal 2-dimensional face whose geometry cannot be prescribed,
meaning that there are hexagons which cannot appear as a 2-face of any polytope combinatorially
equivalent to Q. For this, prove that

• any convex hexagon with alternating black and white vertices is the affine Gale diagram of a
polytope,

• for any polytope combinatorially equivalent to R, the three lines passing through the vertices 2
and 4, through the vertices 3 and 5, and through the vertices 7 and 8, of the Gale diagram G
must be concurrent,

• the iterated vertex figure (R/v1)/v2 cannot be prescribed for R,
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• and conclude by polarity.

(6) We recall from TD F that a polytope is neighborly if and only if its Gale diagram is balanced,
meaning that there are at least

⌊
n−r+1

2

⌋
vectors on each side of any hyperplane spanned by r − 1

vectors (where r is the dimension of G). Show that any convex polygon with alternating black and
white vertices is the affine Gale diagram of a neighborly polytope. What are the dimension, the
number of vertices and the number of facets of this polytope?

Solution.
(1) A face X can be seen as the convex hull of its set V of vertices or as the intersection of the set F of

facets containing X. For any v ∈ V and F ∈ F , we have v ∈ X ⊆ F . Therefore, the face X defines
a complete bipartite subgraph of I. It is maximal since we have taken all vertices of X in V and
all facets containing X in F . Conversely, consider a maximal complete bipartite subgraph of I with
nodes V ∪F . Since it contains all vertices of V, the intersection of the facets of F is non-empty, and
thus defines a face X of P . This face X contains precisely the vertices of V and is contained precisely
in the facets of F .

(2) The polytope Q has 12 vertices and 8 facets (don’t forget the exterior facet!). Its facets are:
1:ABCDEFGH, 2:ABCIJK, 3:ABEFIJ, 4:ACDIKL, 5:ADEHIL, 6:BCDFGHJKL, 7:EFGIJK, 8:EGHIKL.

(3) G is an affine Gale diagram of rank r = 2 with n = 8 vertices. Therefore, the polytope R has
dimension d = n− r − 2 = 4 and n = 8 vertices. The circuits of G correspond to support minimal
affine dependences, and the cocircuits of G correspond to support minimal affine evaluations (being
careful in both cases with the signs of the vertices). Therefore we obtain:

• the circuits C with C4 6= 0 6= C6 are 0+0+0+00, 00−+0+−0, 00−+0+0+, and their opposites,
• the cocircuits X with X1 = 0 are 00+0−0−+, 0+0−00−+, 0−++−000, and their opposites.

The facets of R are given by the complements of its positive cocircuits, thus by the complements of
the positive circuits of its Gale diagram. The positive circuits of G are:
A:678, B:4578, C:3578, D:2378, E:246, F:2458, G:2345, H:2347, I:16, J:1458, K:135, L:1237.
Therefore, the facets are:
A:12345, B:1236, C:1246, D:1456, E:13578, F:1367, G:1678, H:1568, I:234578, J:2367, K:24678, L:4568.

(4) From Questions (2) and (3), we obtain that the polytopes Q and R have opposite vertex-facet incident
graphs. The result thus follows from Question (1).

(5) Consider any convex polygon X with alternating black and white vertices. Any line passing through
two points of X has

• either two black points and two white points on one side,
• or one black point on one side and two black points and one white point on the other side,
• or one white point on one side an two white points and one black point on the other side,
• or one black point and one white point on each side.

This shows the criterion for a colored point set to be an affine Gale diagram.

Consider now the affine Gale diagram of any polytope combinatorially equivalent to R. Since 12345
forms a facet of this polytope, its complement 678 defines a positive cocircuit, and thus a positive
circuit of its Gale diagram. Therefore, the points 6, 7 and 8 are aligned in the affine Gale diagram
of this polytope. We obtained similarly (considering the facets 13578, 24678 and 234578 of the
polytope) that the points 2, 4 and 6 are aligned, that the points 1, 3 and 5 are aligned, and that
the points 1 and 6 coincide. Therefore, the lines passing through the vertices 2 and 4, through the
vertices 3 and 5, and through the vertices 7 and 8, must be concurrent.

Consider now a convex hexagon X with alternating black and white vertices labeled 2, 3, 7, 8, 5
and 4, in which the three lines 24, 35 and 78 are not concurrent. We obtain from the first observation
that this hexagon X is the affine Gale diagram of an hexagon Y . Since X cannot be completed to a
Gale diagram of R, Y cannot be the hexagonal iterated vertex figure of a polytope combinatorially
equivalent to R (recall that contraction and deletion are dual, and hence that removing elements in
the dual corresponds to taking vertex figures).
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Finally, face figures of R correspond to the polars of faces of Q, by polarity. Hence the polar of Y
cannot be an hexagonal 2-dimensional face of Q.

(6) We just need to check that a convex 2m-gon with alternating black and white vertices is balanced,
i.e. that for any line passing through two of its points, the number of black points on one side plus
the number of white points on the other side is at least m− 1. There are three types of such lines:

• lines with two black endpoints: it has k black points and k + 1 white points on one side, and
m− k− 2 black points and m− k− 1 white points on the other side. Therefore, the number of
black points on one side plus black points on the other side is m− 1.
• lines with two white endpoints: the argument is symmetric.
• lines with endpoints of distinct colors: it has k black points and k white points on one side, and
m− k− 1 black points and m− k− 1 white points on the other side. Therefore, the number of
black points on one side plus white points on the other side is m− 1.

Let P be a polytope whose affine Gale diagram is a 2m-gon with alternating black and white vertices.
The number of vertices of P is 2m and the dimension of P is d = 2m − 2 − 2 = 2m − 4. Finally,
the facets of P correspond to positive circuits in the bicolored polygon, that is pairs of crossing
diagonals (δ•, δ◦), where δ• has two black endpoints and δ◦ has two white endpoints. To count these
pairs, we choose one vertex of the diagonal δ•, the length ` of δ• and it determines the number of
possible diagonals δ◦. We obtain that the number f of facets of P is

f =
m

2

m−1∑
`=1

i(m− i) =
m

2

(m2(m− 1)

2
− (m− 1)m(2m− 1)

6

)
=

(m− 1)m2(m+ 1)

12
.

Note that this is also the number of facets of the cyclic polytope of dimension 2m − 4 with 2m
vertices, given according to Exercise 7(4)(c) of TD C by(

2m− 2− 2m−6
2

2m−6
2

)
+

(
2m− 2m−4

2
2m−4

2

)
=

(
m+ 1

m− 3

)
+

(
m+ 2

m− 2

)
=

(m− 1)m2(m+ 1)

12
.

Exercice 4 (Realization space of a polytope). Let v1, . . . , vd be d affinely independent points in Rd,
and H be the hyperplane they span.

(1) Given a point p ∈ Rd, how can you check (algebraically) whether p ∈ H, and if p /∈ H, in which of
the open halfspaces defined by H does p lie?

(2) Given p, q ∈ Rd, how can you check (algebraically) whether p and q lie in the same open halfspace
defined by H?

(3) Prove that the realization space of a polytope is a primary basic semialgebraic set.

(4) (If you did not already do it in the previous point.) Prove that the realization space of a (simplicial)
d-dimensional polytope is a primary basic semialgebraic set defined by polynomials of degree at
most d.

(Do it only for simplicial polytopes if you find it easier.)

Solution.

(1) We need to check the sign of the determinant of the (d+ 1)× (d+ 1)-matrix
(
v1 · · · vd p
1 · · · 1 1

)
. If

it is 0, then p ∈ H, and otherwise the sign determines the side.

(2) We need to check that the determinants
∣∣∣∣v1 · · · vd p

1 · · · 1 1

∣∣∣∣ and ∣∣∣∣v1 · · · vd q
1 · · · 1 1

∣∣∣∣ are non-zero and have

the same sign. That is, that their product is positive.
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(3) From the face lattice we can determine an affine basis for every facet F . Assume that B = (v1, . . . , vd)

is an affine basis for F , and let sB(p) =

∣∣∣∣v1 · · · vd p
1 · · · 1 1

∣∣∣∣. Then for every vertex p of F , we require

sB(p) = 0, and for every pair of vertices p, q /∈ F , we require sB(p) · sB(q) > 0. (If there is a
single vertex outside F , then it must belong to the affine basis of P and the sign of the determinant
is already determined by the definition of the realization space.) These polynomial equations and
inequalities describe the realization space of P as a (primary basic) semi-algebraic set, as they certify
the vertex-facet incidences.

(4) Note that the description given in the previous answer involves a product of two determinants, and
hence polynomials of degree 2d. However, if one already knows the sign of sB(p) for a vertex p /∈ F ,
then one can simplify the inequalities. Indeed, if for instance we know that sB(p) > 0, then the
inequalities corresponding to the facet F become sB(q) > 0 for all q /∈ F , which is a polynomial
inequality of degree d. We thus need a way to determine for each facet F of P an affine basis B for F
and the sign sB(p) for some point p /∈ F .
Assume first that P is simplicial and that v1, . . . , vd, vd+1 are an affine basis of P arising from a
flag of faces. In particular, since P is simplicial, B = (v1, . . . , vd) is the vertex set and an affine
basis of a facet F of P . The condition of fixing the coordinates of the affine basis of P implies∣∣∣∣v1 · · · vd vd+1

1 · · · 1 1

∣∣∣∣ > 0, and hence we impose sB(p) > 0 for every vertex p /∈ F . Now, let F ′ be a

facet sharing a (d− 1)-face with F . This means that there is i ∈ [d] such that vi /∈ F ′ and a vertex
w ∈ F ′rF . Hence B′ = (v1, . . . , vi−1, w, vi+1, . . . , vd) is the vertex set and an affine basis of P ′. We
know that

0 < sB(w) =

∣∣∣∣v1 · · · vi−1 vi vi+1 . . . vd w
1 · · · 1 1 1 . . . 1 1

∣∣∣∣
= −

∣∣∣∣v1 · · · vi−1 w vi+1 . . . vd vi
1 · · · 1 1 1 . . . 1 1

∣∣∣∣ = −sB′(vi),

and we impose hence that sB′(p) < 0 for every vertex p /∈ F ′. We can keep propagating the sign to
every facet that shares a (d− 1)-face with one of the facets whose orientation is already fixed. Note
that we can reach every facet of P this way, since we are just walking on the graph of P4, which is
connected by Balinski’s theorem. Hence, we know the sign of the determinants associated to all the
inequalities describing the realization space, and hence we can express them by degree d polynomials
of the form 0 < ±sB(w).

If the polytope is not simplicial, it suffices to triangulate the boundary into (d−1)-simplices. To this
end, perturb the vertices of any realization of P . This gives a simplicial polytope P̃ with triangulated
boundary. We walk through the graph of P̃4. This provides an affine basis and an orientation for
each facet of P . For those facets that are not a simplex, we get several basis, but this does not pose
any problem as the corresponding orientations are compatible. For an oriented base B of a facet
of P , we set sB(p) = 0 for p ∈ F and sB(p) > 0 or sB(p) < 0 for p /∈ F , according to its orientation.

Exercice 5 (Beneath-beyond and realization spaces of stacked polytopes).

(1) Let F be a face of a d-dimensional polytope P ⊆ Rd. Consider the set NF of the vectors (a, b) ∈ Rd+1

such that 〈 a | x 〉 = b for all x ∈ F and 〈 a | x 〉 ≤ b for all x ∈ P . Show that NF is a polyhedral
cone. What are its generating rays?

(2) Let P be a d-dimensional polytope, let q ∈ RdrP and let Q := conv(P ∪{q}). Prove that every face
G of Q is either a face of P or the convex hull of the union of a face of P with {q}.

(3) Let P be a d-dimensional polytope, let q ∈ RdrP and let Q := conv(P ∪{q}). Let H be a supporting
hyperplane such that P ⊂ H−. We say that q is beneath / on / beyond H if q is in H− / H / H+,
respectively. If F is a facet of P , we say that q is beneath / on / beyond F if it is beneath / on / beyond
its supporting hyperplane H (oriented so that P ⊂ H−).
Prove that a facet F of P is also a facet of Q if and only if q is beneath F .
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(4) Let P be a d-dimensional polytope, let q ∈ RdrP , let Q := conv(P ∪{q}), and let G be a face of P .
Prove that

• G is a face of Q if and only if there is a facet F of P , with G ⊆ F , such that q is beneath F .

• conv(G ∪ {q}) is a face of Q if and only if

(i) either q ∈ aff(G) (equivalently, q is on every facet of P containing G),
(ii) or q is beneath at least one of the facets of P containing F and beyond at least one of the

facets of P containing F .

(5) Let G be a face of P . Show that there is a point q beyond all the facets of P containing G and beneath
all the facets of P not containing G. We then say that the polytope conv(P ∪{q}) is obtained from P
by stacking a vertex over G.

(6) Let P be a d-dimensional polytope with vertex set V = {v1, . . . , vn}. Is the combinatorial type of
conv(V r {vn}) always determined by the combinatorial type of P?

(7) A stacked polytope is a polytope obtained from a simplex by iterative stacking operations over
arbitrary facets. Show that the realization spaces of stacked polytopes are trivial (stably equivalent
to a point).

Solution.
(1) It is the polyhedral cone defined by the linear inequalities 〈 a | v 〉 ≤ b for each vertex v of P , and the

equations 〈 a | v 〉 = b for each vertex v of F . Its rays are the supporting hyperplanes of the facets
of P containing F .

(2) Let V be the vertex set of P . Then Q := conv(V ∪ {q}). Let G be a face of Q with supporting
hyperplane H. Note that H is also supporting for P . Hence, V ∩H must be the vertex set of a face
F of P . If q is in H, then G = conv(F ∪ {q}), otherwise G = F .

(3) Follows because all the vertices of a polytope that do not belong to a facet lie beneath its supporting
hyperplane.

(4) • If q is beneath a facet F , then F is a facet of Q. Since G is a face of F , it is also a face of Q.
For the converse, if G is still a face of Q, then G ⊆ F for some facet of Q that does not contain q.
Therefore q is beneath F , who was also a facet of P .

• We first prove one direction

(i) Let H a supporting hyperplane for G in P . Then q ∈ H and H is a supporting hyperplane
for conv(G ∪ {q}) in Q.

(ii) Let H be a supporting hyperplane for G, H1 be a supporting hyperplane for a facet con-
taining G that has q beneath, and H2 a supporting hyperplane for a facet containing G
that has q beyond. Then for ε > 0 sufficiently small, H̃1 = H1 + εH and H̃2 = H2 + εH
are supporting hyperplanes for G with q beneath and beyond, respectively. In the convex
segment between H̃1 and H̃2 there must be a supporting hyperplane for G containing q,
showing that conv(G ∪ {q}) is a face of Q.

For the converse, assume that q /∈ aff(G) but that conv(G ∪ {q}) is a face of Q. Then G
must be a face of conv(G ∪ {q}). Let H be a supporting hyperplane for conv(G ∪ {q}) in Q
and H ′ a supporting hyperplane for G in conv(G ∪ {q}). By pivoting H ± εH ′, we obtain
supporting hyperplanes for G in P with q beneath and beyond. This means that there are
vectors (a, b) ∈ NG with 〈 a | q 〉 < b and also vectors (a, b) ∈ NG with 〈 a | q 〉 > b. Hence there
must be rays of NG in each open halfspace defined by 〈 a | q 〉 = b. These are facets containing
G with q beneath and beyond them.

(5) Let pG ∈ relintG and pP ∈ relintP . Then for ε > 0 small enough, pG + ε(pG − pP ) is the point we
are looking for.
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(6) Not always. For example, if P is an octahedron, the convex hull of 7 of its vertices can be a triangular
bipyramid or a square pyramid.

(7) We will prove this by induction on the number of vertices. First, the realization space of a simplex is
trivial. Let now P be a stacked polytope, and let P ′ be the stacked polytope obtained by stacking a
vertex q beyond a facet F of P . Observe that, in contrast with the previous question, removing q in
a realization of P ′ always gives rise to a realization of P , because the d neighbors of q always span a
hyperplane. We have therefore a natural projection π : R(P ′, B) → R(P,B), where B is any affine
basis of P . This projection is surjective by Question (5), and the fiber is a relatively open polyhedron
depending polynomially on the coordinates of the vertices of P by Question (4) (it is the intersection
of the open halfspace beyond F and the open halfspaces beneath the remaining facets). We deduce
that π is a stable projection and that R(P ′, B) ≈ R(P,B).
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