
Combinatoire des polytopes
Examen du 21/02/2019

Exercice 1 (Trivalent vertices and faces).
(1) Show that for any 3-dimensional polytope with v3 vertices of degree 3 and f3 facets of degree 3

(i.e. triangles), we have the inequality v3 + f3 ≥ 8.
(2) Give examples of 3-dimensional polytopes with (v3, f3) = (8, 0), (6, 2), (4, 4), (2, 6) and (0, 8).
(3) Can the other pairs (v3, f3) with v3 + f3 = 8 be reached?

Exercice 2 (Gram formula for angles). Consider a d-dimensional polytope P , a face F of P , and a
sufficiently small ball BF centered at a point in the relative interior of F . We call the solid angle of P
at F the fraction αF of BF that is contained in P . We denote by αi the sum of the solid angles of P at
its i-dimensional faces. We want to prove the following analogue of Euler’s formula for solid angles:

d∑
i=0

(−1)iαi = 0.

(1) Show that this formula is equivalent to

d−2∑
i=0

(−1)iαi = (−1)d
(
fd−1/2− 1

)
where fd−1 is the number of (d− 1)-dimensional faces of P .

(2) Show the result for a 2-dimensional polytope P .

(3) Consider now a 3-dimensional polytope P . Choose a random direction u on the 2-dimensional sphere
and project P orthogonally to this direction u to a polygon Pu.

• What is the probability that a vertex v of P does not project to a vertex in the projected
polygon Pu in terms of the solid angle of P at v?
• Deduce the expected number of vertices of the projected polygon Pu.
• What is the expected number of edges of the projected polygon Pu?
• Using these expectations, show that α0 − α1 = −f2/2 + 1.

(4) Extend this method to any dimension d.

Exercice 3 (A 4-dimensional polytope with a non-prescribable 2-face).

(1) Consider a polytope P with vertex-facet incidence graph I. In other words, I is the bipartite graph
whose nodes are the vertices of P and the facets of P , and with an arc from a vertex v to a facet F
if and only if v belongs to F .

• Show that the faces of P are in bijection with the maximal complete bipartite subgraphs of I,
i.e. with inclusion maximal pairs (V,F) where V is a subset of vertices of P and F is a subset
of facets of P such that v ∈ F for any v ∈ V and F ∈ F .
• Deduce that the face lattice of P is completely determined by the vertex-facet incidences of P .

(2) Consider the Schlegel diagram of a 4-dimensional polytope Q on the left of Figure 1.

• What is the number of vertices and facets of Q?
• List all facets of Q (for each facet F , just list the vertices of F in alphabetical order). Label

these facets from 1 to 8 in lexicographic order.
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Figure 1: A Schlegel diagram (left) and a Gale diagram (right).

(3) Consider the planar affine Gale diagram G of a polytope R on the right of Figure 1.

• What is the dimension and the number of vertices of R?
• List all circuits C of G for which C4 6= 0 and C6 6= 0.
• List all cocircuits X of G for which X1 = 0.
• What are the facets of R?

(4) Show that the face lattices of the polytopes Q and R are opposite.

(5) Show that the polytope Q has an hexagonal 2-dimensional face whose geometry cannot be prescribed,
meaning that there are hexagons which cannot appear as a 2-face of any polytope combinatorially
equivalent to Q. For this, prove that

• any convex hexagon with alternating black and white vertices is the affine Gale diagram of a
polytope,

• for any polytope combinatorially equivalent to R, the three lines passing through the vertices 2
and 4, through the vertices 3 and 5, and through the vertices 7 and 8, of the Gale diagram G
must be concurrent,

• the iterated vertex figure (R/v1)/v2 cannot be prescribed for R,

• and conclude by polarity.

(6) We recall from TD F that a polytope is neighborly if and only if its Gale diagram is balanced,
meaning that there are at least

⌊
n−r+1

2

⌋
vectors on each side of any hyperplane spanned by r − 1

vectors (where r is the dimension of G). Show that any convex polygon with alternating black and
white vertices is the affine Gale diagram of a neighborly polytope. What are the dimension, the
number of vertices and the number of facets of this polytope?

Exercice 4 (Realization space of a polytope). Let v1, . . . , vd be d affinely independent points in Rd,
and H be the hyperplane they span.

(1) Given a point p ∈ Rd, how can you check (algebraically) whether p ∈ H, and if p /∈ H, in which of
the open halfspaces defined by H does p lie?

(2) Given p, q ∈ Rd, how can you check (algebraically) whether p and q lie in the same open halfspace
defined by H?

(3) Prove that the realization space of a polytope is a primary basic semialgebraic set.

(4) (If you did not already do it in the previous point.) Prove that the realization space of a (simplicial)
d-dimensional polytope is a primary basic semialgebraic set defined by polynomials of degree at
most d.

(Do it only for simplicial polytopes if you find it easier.)
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Exercice 5 (Beneath-beyond and realization spaces of stacked polytopes).

(1) Let F be a face of a d-dimensional polytope P ⊆ Rd. Consider the set NF of the vectors (a, b) ∈ Rd+1

such that 〈 a | x 〉 = b for all x ∈ F and 〈 a | x 〉 ≤ b for all x ∈ P . Show that NF is a polyhedral
cone. What are its generating rays?

(2) Let P be a d-dimensional polytope, let q ∈ RdrP and let Q := conv(P ∪{q}). Prove that every face
G of Q is either a face of P or the convex hull of the union of a face of P with {q}.

(3) Let P be a d-dimensional polytope, let q ∈ RdrP and let Q := conv(P ∪{q}). Let H be a supporting
hyperplane such that P ⊂ H−. We say that q is beneath / on / beyond H if q is in H− / H / H+,
respectively. If F is a facet of P , we say that q is beneath / on / beyond F if it is beneath / on / beyond
its supporting hyperplane H (oriented so that P ⊂ H−).

Prove that a facet F of P is also a facet of Q if and only if q is beneath F .

(4) Let P be a d-dimensional polytope, let q ∈ RdrP , let Q := conv(P ∪{q}), and let G be a face of P .
Prove that

• G is a face of Q if and only if there is a facet F of P , with G ⊆ F , such that q is beneath F .

• conv(G ∪ {q}) is a face of Q if and only if

(i) either q ∈ aff(G) (equivalently, q is on every facet of P containing G),
(ii) or q is beneath at least one of the facets of P containing F and beyond at least one of the

facets of P containing F .

(5) Let G be a face of P . Show that there is a point q beyond all the facets of P containing G and beneath
all the facets of P not containing G. We then say that the polytope conv(P ∪{q}) is obtained from P
by stacking a vertex over G.

(6) Let P be a d-dimensional polytope with vertex set V = {v1, . . . , vn}. Is the combinatorial type of
conv(V r {vn}) always determined by the combinatorial type of P?

(7) A stacked polytope is a polytope obtained from a simplex by iterative stacking operations over
arbitrary facets. Show that the realization spaces of stacked polytopes are trivial (stably equivalent
to a point).
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