Combinatoire des polytopes
 Examen du 21/02/2019

Exercice 1 (Trivalent vertices and faces).
(1) Show that for any 3 -dimensional polytope with v_{3} vertices of degree 3 and f_{3} facets of degree 3 (i.e. triangles), we have the inequality $v_{3}+f_{3} \geq 8$.
(2) Give examples of 3 -dimensional polytopes with $\left(v_{3}, f_{3}\right)=(8,0),(6,2),(4,4),(2,6)$ and $(0,8)$.
(3) Can the other pairs $\left(v_{3}, f_{3}\right)$ with $v_{3}+f_{3}=8$ be reached?

Exercice 2 (Gram formula for angles). Consider a d-dimensional polytope P, a face F of P, and a sufficiently small ball B_{F} centered at a point in the relative interior of F. We call the solid angle of P at F the fraction α_{F} of B_{F} that is contained in P. We denote by α_{i} the sum of the solid angles of P at its i-dimensional faces. We want to prove the following analogue of Euler's formula for solid angles:

$$
\sum_{i=0}^{d}(-1)^{i} \alpha_{i}=0
$$

(1) Show that this formula is equivalent to

$$
\sum_{i=0}^{d-2}(-1)^{i} \alpha_{i}=(-1)^{d}\left(f_{d-1} / 2-1\right)
$$

where f_{d-1} is the number of $(d-1)$-dimensional faces of P.
(2) Show the result for a 2-dimensional polytope P.
(3) Consider now a 3-dimensional polytope P. Choose a random direction \bar{u} on the 2-dimensional sphere and project P orthogonally to this direction \bar{u} to a polygon $P_{\bar{u}}$.

- What is the probability that a vertex v of P does not project to a vertex in the projected polygon $P_{\bar{u}}$ in terms of the solid angle of P at v ?
- Deduce the expected number of vertices of the projected polygon $P_{\bar{u}}$.
- What is the expected number of edges of the projected polygon $P_{\bar{u}}$?
- Using these expectations, show that $\alpha_{0}-\alpha_{1}=-f_{2} / 2+1$.
(4) Extend this method to any dimension d.

Exercice 3 (A 4-dimensional polytope with a non-prescribable 2-face).
(1) Consider a polytope P with vertex-facet incidence graph \mathcal{I}. In other words, \mathcal{I} is the bipartite graph whose nodes are the vertices of P and the facets of P, and with an arc from a vertex v to a facet F if and only if v belongs to F.

- Show that the faces of P are in bijection with the maximal complete bipartite subgraphs of \mathcal{I}, i.e. with inclusion maximal pairs $(\mathcal{V}, \mathcal{F})$ where \mathcal{V} is a subset of vertices of P and \mathcal{F} is a subset of facets of P such that $v \in F$ for any $v \in \mathcal{V}$ and $F \in \mathcal{F}$.
- Deduce that the face lattice of P is completely determined by the vertex-facet incidences of P.
(2) Consider the Schlegel diagram of a 4-dimensional polytope Q on the left of Figure 1.
- What is the number of vertices and facets of Q ?
- List all facets of Q (for each facet F, just list the vertices of F in alphabetical order). Label these facets from 1 to 8 in lexicographic order.

Figure 1: A Schlegel diagram (left) and a Gale diagram (right).
(3) Consider the planar affine Gale diagram G of a polytope R on the right of Figure 1.

- What is the dimension and the number of vertices of R ?
- List all circuits C of G for which $C_{4} \neq 0$ and $C_{6} \neq 0$.
- List all cocircuits X of G for which $X_{1}=0$.
- What are the facets of R ?
(4) Show that the face lattices of the polytopes Q and R are opposite.
(5) Show that the polytope Q has an hexagonal 2-dimensional face whose geometry cannot be prescribed, meaning that there are hexagons which cannot appear as a 2-face of any polytope combinatorially equivalent to Q. For this, prove that
- any convex hexagon with alternating black and white vertices is the affine Gale diagram of a polytope,
- for any polytope combinatorially equivalent to R, the three lines passing through the vertices 2 and 4 , through the vertices 3 and 5 , and through the vertices 7 and 8 , of the Gale diagram G must be concurrent,
- the iterated vertex figure $\left(R / v_{1}\right) / v_{2}$ cannot be prescribed for R,
- and conclude by polarity.
(6) We recall from TD F that a polytope is neighborly if and only if its Gale diagram is balanced, meaning that there are at least $\left\lfloor\frac{n-r+1}{2}\right\rfloor$ vectors on each side of any hyperplane spanned by $r-1$ vectors (where r is the dimension of G). Show that any convex polygon with alternating black and white vertices is the affine Gale diagram of a neighborly polytope. What are the dimension, the number of vertices and the number of facets of this polytope?

Exercice 4 (Realization space of a polytope). Let $\bar{v}_{1}, \ldots, \bar{v}_{d}$ be d affinely independent points in \mathbb{R}^{d}, and H be the hyperplane they span.
(1) Given a point $\bar{p} \in \mathbb{R}^{d}$, how can you check (algebraically) whether $\bar{p} \in H$, and if $\bar{p} \notin H$, in which of the open halfspaces defined by H does \bar{p} lie?
(2) Given $\bar{p}, \bar{q} \in \mathbb{R}^{d}$, how can you check (algebraically) whether \bar{p} and \bar{q} lie in the same open halfspace defined by H ?
(3) Prove that the realization space of a polytope is a primary basic semialgebraic set.
(4) (If you did not already do it in the previous point.) Prove that the realization space of a (simplicial) d-dimensional polytope is a primary basic semialgebraic set defined by polynomials of degree at most d.
(Do it only for simplicial polytopes if you find it easier.)

Exercice 5 (Beneath-beyond and realization spaces of stacked polytopes).
(1) Let F be a face of a d-dimensional polytope $P \subseteq \mathbb{R}^{d}$. Consider the set \mathcal{N}_{F} of the vectors $(\bar{a}, b) \in \mathbb{R}^{d+1}$ such that $\langle\bar{a} \mid \bar{x}\rangle=b$ for all $\bar{x} \in F$ and $\langle\bar{a} \mid \bar{x}\rangle \leq b$ for all $\bar{x} \in P$. Show that \mathcal{N}_{F} is a polyhedral cone. What are its generating rays?
(2) Let P be a d-dimensional polytope, let $\bar{q} \in \mathbb{R}^{d} \backslash P$ and let $Q:=\operatorname{conv}(P \cup\{\bar{q}\})$. Prove that every face G of Q is either a face of P or the convex hull of the union of a face of P with $\{\bar{q}\}$.
(3) Let P be a d-dimensional polytope, let $\bar{q} \in \mathbb{R}^{d} \backslash P$ and let $Q:=\operatorname{conv}(P \cup\{\bar{q}\})$. Let H be a supporting hyperplane such that $P \subset \bar{H}^{-}$. We say that \bar{q} is beneath / on / beyond H if \bar{q} is in $H^{-} / H / H^{+}$, respectively. If F is a facet of P, we say that \bar{q} is beneath / on / beyond F if it is beneath / on / beyond its supporting hyperplane H (oriented so that $P \subset \bar{H}^{-}$).
Prove that a facet F of P is also a facet of Q if and only if \bar{q} is beneath F.
(4) Let P be a d-dimensional polytope, let $\bar{q} \in \mathbb{R}^{d} \backslash P$, let $Q:=\operatorname{conv}(P \cup\{\bar{q}\})$, and let G be a face of P. Prove that

- G is a face of Q if and only if there is a facet F of P, with $G \subseteq F$, such that \bar{q} is beneath F.
- $\operatorname{conv}(G \cup\{\bar{q}\})$ is a face of Q if and only if
(i) either $\bar{q} \in \operatorname{aff}(G)$ (equivalently, \bar{q} is on every facet of P containing G),
(ii) or \bar{q} is beneath at least one of the facets of P containing F and beyond at least one of the facets of P containing F.
(5) Let G be a face of P. Show that there is a point \bar{q} beyond all the facets of P containing G and beneath all the facets of P not containing G. We then say that the polytope $\operatorname{conv}(P \cup\{\bar{q}\})$ is obtained from P by stacking a vertex over G.
(6) Let P be a d-dimensional polytope with vertex set $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\}$. Is the combinatorial type of $\operatorname{conv}\left(V \backslash\left\{\bar{v}_{n}\right\}\right)$ always determined by the combinatorial type of P ?
(7) A stacked polytope is a polytope obtained from a simplex by iterative stacking operations over arbitrary facets. Show that the realization spaces of stacked polytopes are trivial (stably equivalent to a point).

