
Combinatoire des polytopes
TD F – Universality

The exercices in this sheet are interdependent. They should be done in the given order and use previous
answers for the proofs. Most of the statements in these exercices are also valid for non-realizable oriented
matroids, but we have not seen the necessary tools to prove them, so we restrict to the realizable case.

Exercice 1 (Duals of neighborly polytopes). Let P be a d-polytope with n vertices {p1, . . . , pn}, and let
G = {g1, . . . , gn} be its Gale dual, of dimension r = n− d− 1.

(1) Prove that P is k-neighborly if and only if there are at least k + 1 vectors of G in every open linear
halfspace of Rr: |G ∩H+| > k for every linear hyperplane H ⊂ Rr.

(2) State this property in terms of the cocircuits of G, and give a direct primal proof in terms of the
circuits of P .

An r-dimensional vector configuration on n vectors is balanced if for every hyperplane spanned by
r − 1 vectors there are at least

⌊
n−(r−1)

2

⌋
vectors on either open side of the hyperplane.

(3) What are the balanced configurations of rank r = 2?

(4) Prove that the Gale dual of a neighborly polytope is balanced.

(5) Deduce that, if d is even, the vertices of every neighborly d-polytope are in general position, and
hence the polytope is simplicial. Show that this is not true for odd d.

Exercice 2 (Inseparability graph). Consider a realizable oriented matroid M :=M(V ), and a sign
α ∈ {+,−}. We say that two elements i and j of M are α-inseparable if Ci = αCj for each circuit
C ∈ C(M) such that Ci, Cj 6= 0. The α-inseparability graph of M is the graph whose vertices are the
elements of M and whose edges are pairs of α-inseparable elements. For a sign vector C ∈ {+,−, 0}n,
we set Cs = {i | Ci = s} for s ∈ {+,−, 0}, and C = C+ ∪ C−.

(1) Show that, for any cocircuit X ∈ C∗(M) and i, j ∈ X there is a circuit C ∈ C(M) such that
C ∩X = {i, j}. State the dual property.

(2) Show that i and j are α-inseparable inM if and only if they are (−α)-inseparable inM∗.

(3) What are the +-inseparability graphs of the following three affine Gale diagrams?

(4) LetM be a uniform matroid (V in general position), and i, j be α-inseparable inM. Show that for
any circuit C ∈ C(M) with Ci = 0 and Cj 6= 0, there exists a circuit C ′ ∈ C(M) with C ′i = −αCj ,
C ′j = 0 and C ′k = Ck for all k 6= i, j. State the dual property.
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(5) Show that ifM is balanced and n− r − 1 > 0 is even, thenM does not have −-inseparable pairs.

(6) Show that when n is odd, there is a unique balanced oriented matroid of rank 2 up to isomorphism.

(7) Show that if M is balanced and n − r − 1 > 0 is even, then {i, j} form an inseparable pair if and
only ifMr {i, j} is balanced.

(8) Show that the three affine Gale diagrams of Question (3) correspond to three non-isomorphic neigh-
borly polytopes.

Exercice 3 (Missing faces and rigidity). Let P be a simplicial d-polytope with vertex set {p1, . . . , pn}
labelled by [n]. For any I ⊆ [n], define PI := conv {pi | i ∈ I}. A missing face of P is an inclusion minimal
subset I ⊆ [n] such that PI is not a face of P .

(1) Show that PI is not a proper face of P if and only if PI ∩ relint(P ) 6= ∅.

(2) Show that PI is not a proper face of P if and only if aff(PI) ∩ PI 6= ∅.

(3) Show that the latter condition cannot be replaced by PI ∩ PI 6= ∅.

(4) Prove that, if I is a missing face, then relint(PI) ∩ PI 6= ∅. Conclude that there is a circuit X such
that X+ = I

(5) Show that the set of missing faces determines the face lattice of P , and vice-versa.

(6) Prove that a simplicial 2k-polytope is neighborly if and only if all its missing faces are of cardinal-
ity k + 1.

(7) Show that if P is neighborly then PI is neighborly for each I ⊆ [n].

(8) If P is a neighborly 2k-polytope, show that I = {i1, . . . , ik+1} ⊆ [n− 1] is a missing face of P[n−1] if
and only if there is an j ∈ [k + 1] such that both I and I r {ij} ∪ {n} are missing faces of P .

(9) Deduce that neighborly 2k-polytopes are rigid: the face lattice determines the oriented matroid.

Exercice 4 (Single element extensions of oriented matroids). LetM = M(V ) be a realizable oriented
matroid with ground set [n]. The oriented matroidM′ with ground set [n+1] is a single element extension
ofM ifM =M′ r (n+ 1).

(1) Prove that there is a function σ : C∗(M) → {0,+,−} such that (C, σ(C)) is a cocircuit of C∗(M′)
for all C ∈ C∗(M). This function is called the signature of the extension.

(2) Prove thatM and σ completely determineM′.

(3) Let Rom(M) denote the realization space of an oriented matroid, and let π : Rom(M′)→ Rom(M)
the natural projection that removes the (n + 1)-th vector. Prove that all non-empty fibers of π are
polynomially defined relatively open polyhedra. Deduce that Rom(M) ≈ Rom(M′) whenever each
realization ofM can be extended to a realization ofM′.

(4) Let (a1, . . . , ak) be an ordered subset of [n] and let (ε1, . . . , εk) ∈ {+,−}k. The lexicographic extension
M[aε11 , . . . , a

εk
k ] of M by p = [aε11 , . . . , a

εk
k ] is the single element extension of M with signature

σ : C∗(M)→ {+,−, 0} given by

σ(C) 7→

{
εiCai if i is minimal with Cai 6= 0

0 if Cai = 0 for 1 ≤ i ≤ k.

Show that every single element extension of a (realizable) rank 2 oriented matroid is lexicographic.

(5) Show that ifM is uniform of rank r (all bases of cardinal r, all circuits of cardinal r+1, all cocircuits
of cardinal n− r − 1) and k ≥ r, thenM[aε11 , . . . , a

εk
k ] is uniform.
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(6) Let M′ be a lexicographic extension of M by p = [aε11 , . . . , a
εk
k ]. Show that p and a1 are (−ε1)-

inseparable inM′.

(7) Show that ifM =M(V ) is realizable then every lexicographic extension ofM is realizable. Deduce
that Rom(M) ≈ Rom(M′) for every lexicographic extensionM′ ofM.

(8) Let M = M(V ) be a realizable uniform oriented matroid of rank 3 with n elements {v1, . . . , vn}.
Define κ(M) =M(n) as follows.

LetM(1) be the lexicographic extension ofM by wi = [v+1 , v
+
2 , v

+
3 ]; and for 2 ≤ i ≤ n, letM(i) the

lexicographic extension ofM(i−1) by wi = [v−i , v
−
1 , w

−
1 ].

Draw an affine diagram of the construction when n = 3.

(9) Prove that κ(M) is balanced.

(10) Prove that every simplicial d-polytope with d + 4 vertices appears as an iterated vertex figure of a
neighborly d-polytope with d+ 4 vertices.

Exercice 5 (Universality). Assuming the Universality Theorem for Uniform Oriented Matroids, that
states that every open primary basic semi-algebraic set is stably equivalent to the realization space of a
uniform oriented matroid of rank 3, prove the Universality Theorem for Simplicial Polytopes: every open
primary basic semi-algebraic set is stably equivalent to the realization space of a simplicial polytope.
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