
Combinatoire des polytopes
TD E – Gale duality

1 Examples of Gale diagrams

Exercice 1 (Gale diagrams of two octahedra). From G. Ziegler, Lectures on polytopes, Chapter 6.
Consider the octahedra whose vertices are the column vectors of the matrices
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(1) Describe the circuits and cocircuits of these two point configurations.
(2) Compute and represent Gale diagrams and affine Gale diagrams of these point configurations.
(3) Can you read the circuits and cocircuits of (1) on the affine Gale diagrams of the configurations?

Exercice 2 (Dual oriented matroid and dual graph of a planar graph). Consider a planar directed
graph G = (V,E) and its dual planar directed graph G∗ = (V ∗, E∗), where each edge (f, g) ∈ E∗ dual
to an edge e ∈ E is oriented from the face f on the left of e to the face g on the right of e. Show the
oriented matroids corresponding to the incidence configurations of G and G∗ are duals.

2 Polytopes with few vertices

In this section, we use Gale diagrams to understand combinatorial properties of high dimensional poly-
topes with few vertices.

Exercice 3 (Polytopes with d+ 2 vertices).

(1) What is the Gale diagram of a d-simplex 4d?

(2) Let P ⊂ Rd be a full-dimensional d-polytope with vertices (p1, . . . , pn) ∈ Rd×n and Gale diagram
G = (g1, . . . , gn) ∈ R(n−d−1)×n. Give a Gale diagram for the pyramid pyr(P ) in terms of G.

(3) Let P ⊆ Rd and Q ⊆ Re be full-dimensional polytopes containing the origin in their interior. Let
(p1, . . . , pn) ∈ Rd×n and (q1, . . . , qm) ∈ Re×m denote their vertices, andG = (g1, . . . , gn) ∈ R(n−d−1)×n

and H = (h1, . . . , hm) ∈ R(m−e−1)×m denote their Gale diagrams. Give a Gale diagram of the direct
sum P ⊕Q in terms of G and H.

(4) For 1 ≤ s, t with s+ t = d, what is the Gale diagram of 4s ⊕4t?

(5) Prove that every simplicial d-polytope with d + 2 vertices is combinatorially equivalent to a direct
sum of simplices 4s ⊕4t for some 1 ≤ s, t with s+ t = d.

(6) Prove that the number of combinatorial types of simplicial d-polytopes with d+ 2 vertices is
⌊
d
2

⌋
.

(7) Prove that every d-polytope with d + 2 vertices is combinatorially equivalent to pyrk(4s ⊕4t) for
some 0 ≤ k, 1 ≤ s, t with s+ t+ k = d, where pyrk denotes the iteration of the operation of taking
a pyramid k times.

(8) Prove that the number of d-polytopes with d+ 2 vertices is
⌊
d2

4

⌋
.
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3 Unprescribable facets

In this section, we show that there exists combinatorial types of polytopes for which the geometry of
certain facets cannot be prescribed. This is somewhat the first manifestation of universality in polytopes.

Exercice 4 (Gale diagrams and unprescribable facets). Consider the following affine Gale diagram

1 2 3 4 6 75

(1) Show that this is the affine Gale diagram of a polytope P . What is its number of vertices and its
dimension?

(2) Is it simplicial? Is it simple?
(3) For each i ∈ [7] describe the combinatorial type of the vertex figure P/i. (Notice that this is a

3-dimensional polytope, and hence it can be drawn as a planar graph.)
(4) Show that the vertex figure P/4 cannot be arbitrarily prescribed. That is, that there exists a polytope

Q ∼= P/4 that cannot be extended to a realization of P .
This example is due to Bernd Sturmfels, Some applications of affine Gale diagrams to polytopes with few
vertices, 1988.

Exercice 5 (Schlegel diagrams and unprescribable facets).

(1) Consider a d-dimensional polytope P =
{
x ∈ Rd

∣∣ 〈 ai | x 〉 ≤ bi for all i ∈ I
}
, and let F be the facet

of P defined by the inequality 〈 a0 | x 〉 ≤ b0.

Show that there is a point yF such that 〈 a0 | yF 〉 > b0 and 〈 ai | yF 〉 ≤ bi for all i ∈ I r {0}.

(2) For this facet F and this point yF , we define the map p : Rd → Rd by

p(x) = yF +
b0 − 〈 a0 | yF 〉
〈 a0 | x− yF 〉

(x− yF ).

Describe this map geometrically for x ∈ P .

(3) Show that for each proper face G of P other than F , the projection p(G) is a polytope combinatorially
equivalent to G.

(4) A Schlegel diagram D(P, F ) of P based at the facet F , is the image under the projection map p of
all proper faces of P other than F :

D(P, F ) =
{
p(G)

∣∣ G ∈ F(P )r {P, F}
}
.

This is a polytopal subdivision of F , that is, a finite collection S of polytopes such that:

• for every Q ∈ S and every face G of Q, G ∈ S,
• for every Q1, Q2 ∈ S, their intersection Q1 ∩Q2 is a face of Q1 and Q2 and
• the union of S covers F :

⋃
Q∈S Q = F .

Draw all combinatorially different Schlegel diagrams of the cube �3, the octahedron 33 and the
triangular prism 41 ×42.

(5) Let prism
(
pyr(�2)

)
= 41 ×

(
40 ∗ (41 ×41)

)
denote the prism over the square pyramid. Draw a

Schlegel diagram of prism
(
pyr(�2)

)
with respect to its cubical facet (∼= �3).

(6) Let P be a polytope combinatorially equivalent to the triangular prism 41 ×42. Let E0, E1, E2 be
the three lines spanned by the edges e0, e1, e2 corresponding to the edges of 41 × 42 of the form
41 × v for v ∈ F0(42). Show that E0, E1, E2 either intersect at a point or are parallel (intersect at
a point at infinity).

(7) Prove that in any Schlegel diagram of a polytope combinatorially equivalent to prism
(
pyr(�2)

)
, the

cubical facet has four parallel edges.

(8) Conclude that one cannot prescribe the cubical facet of prism
(
pyr(�2)

)
. In other words, there are

polytopes Q ∼= �3 such that there is no polytope combinatorially equivalent to prism
(
pyr(�2)

)
that

has Q as a facet.
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