Combinatoire des polytopes TD D - Oriented Matroids and zonotopes

1 Normal fans

Consider a polytope $P \in \mathbb{R}^{d}$. The normal cone of a face F of P is the cone

$$
N(F):=\left\{\bar{c} \in\left(\mathbb{R}^{d}\right)^{*} \mid\langle\bar{c} \mid \bar{x}\rangle \geq\left\langle\bar{c} \mid \bar{x}^{\prime}\right\rangle \text { for all } \bar{x} \in F \text { and } \bar{x}^{\prime} \in P\right\}
$$

of all linear functionals that are maximized on a face containing F. The normal fan of P is the collection $\mathcal{F}(P):=\{N(F) \mid F$ face of $P\}$ of all normal cones of the faces of P.

Exercice 1 (Cartesian products and normal fans). Describe the normal fan of the Cartesian product $P \times Q:=\{(\bar{p}, \bar{q}) \mid \bar{p} \in P$ and $\bar{q} \in Q\}$ in terms of the normal fans of the polytopes P and Q.

Exercice 2 (Projections and normal fans). Consider an affine map $\pi: \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}$ defined by $\pi(\bar{x})=A \bar{x}+\bar{b}$ for some $(d \times p)$-matrix A and vector $b \in \mathbb{R}^{d}$, and denote its dual map by $\pi^{*}:\left(\mathbb{R}^{d}\right)^{*} \rightarrow\left(\mathbb{R}^{p}\right)^{*}$. Let P be a polytope in \mathbb{R}^{p} and $Q=\pi(P)$ be its image in \mathbb{R}^{d} under the map π. Show that
(1) for any face F of Q, the preimage $\pi^{-1}(F) \cap P$ is a face of P (conversely, is the image of a face of P always a face of Q ?),
(2) π^{-1} is an order preserving map from the face lattice of Q to the face lattice of P,
(3) a linear functional $\bar{c} \in\left(\mathbb{R}^{d}\right)^{*}$ defines F if and only if the linear functional $\pi^{*}(\bar{c}) \in\left(\mathbb{R}^{p}\right)^{*}$ defines $\pi^{-1}(F)$,
(4) the normal fan of Q is isomorphic via π^{*} to the section of the normal fan of P by the vector space $\pi^{*}\left(\left(\mathbb{R}^{d}\right)^{*}\right)$.

Exercice 3 (Minkowski sum and normal fans). Show that the normal fan of the Minkowski sum $P+Q:=\{\bar{p}+\bar{q} \mid \bar{p} \in P$ and $\bar{q} \in Q\}$ is the common refinement of the normal fans of the two polytopes P and Q, meaning that the cones of $\mathcal{F}(P+Q)$ are the intersections of a cones of $\mathcal{F}(P)$ by cones of $\mathcal{F}(Q)$.

2 Zonotopes

Exercice 4 (Two equivalent definitions). Let V be a $(d \times p)$-matrix with columns vectors $\bar{v}_{1}, \ldots, \bar{v}_{p} \in \mathbb{R}^{d}$. Show that the following two polytopes coincide:

- the projection of the p-dimensional cube \square_{p} by the affine map $\pi_{V}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}$ defined by $\pi_{V}(\bar{x})=V \bar{x}$,
- the Minkowski sum of the polytopes $\left[-\bar{v}_{1}, \bar{v}_{1}\right], \ldots,\left[-\bar{v}_{p}, \bar{v}_{p}\right]$.

This polytope is the zonotope $Z(V)$.
Exercice 5 (Two examples). Describe the zonotope $Z(V)$ and its faces in the following two situations:

- when $\bar{v}_{1}, \ldots, \bar{v}_{p}$ are linearly independent,
- when $\bar{v}_{1}, \ldots, \bar{v}_{p}$ leave in a plane.

Exercice 6 (Central symmetry and zonotopes). A polytope P is centrally symmetric if $P-\bar{b}=-P+\bar{b}$ where \bar{b} is the barycenter of P. Show that:
(1) a projection of a centrally symmetric polytope is centrally symmetric,
(2) any centrally symmetric polytope is the projection of a cross-polytope,
(3) the following conditions are equivalent for a polytope P :
(i) P is a zonotope (projection of a cube),
(ii) all faces of P are zonotopes,
(iii) all 2-dimensional faces of P are zonotopes,
(iv) all faces of P are centrally symmetric,
(v) all 2-dimensional faces of P are centrally symmetric,
(vi) any edge of P is a Minkowski summand of P (there exists a polytope P^{\prime} such that $P=P^{\prime}+e$).

Exercice 7 (Zonotopes and hyperplane arrangements). Show that the normal fan of the zonotope $Z(\mathrm{~V})$ is the fan defined by the arrangement $\mathcal{A}(V)$ of hyperplanes $H_{i}:=\left\{\bar{x} \in\left(\mathbb{R}^{d}\right)^{*} \mid\left\langle\bar{x} \mid \bar{v}_{i}\right\rangle=0\right\}$ for $i \in[p]$.

For the vector configuration $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{p}\right\} \subseteq \mathbb{R}^{d}$, recall that the relative positions of its vectors (called its oriented matroid) can be recorded by several combinatorial collections, in particular:

- its signed vectors are the sign vectors of its linear dependences

$$
\mathcal{V}(V):=\left\{\operatorname{sign}(\bar{d}) \mid \bar{d} \in \mathbb{R}^{p} \text { such that } V \bar{d}=\overline{0}\right\} \subseteq\{+,-, 0\}^{p}
$$

- its signed circuits are its support minimal vectors,
- its signed covectors are the sign vectors of its linear evaluations

$$
\mathcal{V}^{*}(V):=\left\{\operatorname{sign}(\bar{c} V) \mid \bar{c} \in\left(\mathbb{R}^{n}\right)^{*}\right\} \subseteq\{+,-, 0\}^{p} .
$$

- its signed cocircuits are its support minimal covectors,

Exercice 8 (Faces of the zonotope versus covectors of the matroid). Show that there following three families are in bijection:

- the non-empty faces of the zonotope $Z(V)$,
- the faces of the hyperplane arrangement $\mathcal{A}(V)$,
- the sign covectors of the vector configuration V.

Deduce that the following three families are in bijection:

- the facets of the zonotope $Z(V)$,
- the rays of the hyperplane arrangement $\mathcal{A}(V)$,
- the sign cocircuits of the vector configuration V.

3 Oriented matroids from graphs

Exercice 9 (Graphical matroid). Consider a directed graph $G=(V, E)$ and its incidence configuration $I(G):=\left\{\bar{e}_{w}-\bar{e}_{v} \mid(v, w) \in E\right\} \subset \mathbb{R}^{V}$. Describe the circuits and cocircuits of the vector configuration $I(G)$.

Exercice 10 (Graphical zonotope). Consider a graph $G=(V, E)$ and its graphical zonotope

$$
Z(G):=\sum_{(v, w) \in E}\left[\bar{e}_{u}, \bar{e}_{v}\right] .
$$

Describe its normal fan and its face structure.

