Combinatoire des polytopes TD D – Oriented Matroids and zonotopes

1 Normal fans

Consider a polytope $P \in \mathbb{R}^d$. The normal cone of a face F of P is the cone

$$N(F) := \left\{ \overline{c} \in (\mathbb{R}^d)^* \mid \langle \overline{c} \mid \overline{x} \rangle \ge \langle \overline{c} \mid \overline{x}' \rangle \text{ for all } \overline{x} \in F \text{ and } \overline{x}' \in P \right\}$$

of all linear functionals that are maximized on a face containing F. The normal fan of P is the collection $\mathcal{F}(P) := \{N(F) \mid F \text{ face of } P\}$ of all normal cones of the faces of P.

Exercice 1 (Cartesian products and normal fans). Describe the normal fan of the Cartesian product $P \times Q := \{(\overline{p}, \overline{q}) \mid \overline{p} \in P \text{ and } \overline{q} \in Q\}$ in terms of the normal fans of the polytopes P and Q.

Exercice 2 (Projections and normal fans). Consider an affine map $\pi : \mathbb{R}^p \to \mathbb{R}^d$ defined by $\pi(\overline{x}) = A\overline{x} + \overline{b}$ for some $(d \times p)$ -matrix A and vector $b \in \mathbb{R}^d$, and denote its dual map by $\pi^* : (\mathbb{R}^d)^* \to (\mathbb{R}^p)^*$. Let P be a polytope in \mathbb{R}^p and $Q = \pi(P)$ be its image in \mathbb{R}^d under the map π . Show that

- (1) for any face F of Q, the preimage $\pi^{-1}(F) \cap P$ is a face of P (conversely, is the image of a face of P always a face of Q?),
- (2) π^{-1} is an order preserving map from the face lattice of Q to the face lattice of P,
- (3) a linear functional $\overline{c} \in (\mathbb{R}^d)^*$ defines F if and only if the linear functional $\pi^*(\overline{c}) \in (\mathbb{R}^p)^*$ defines $\pi^{-1}(F)$,
- (4) the normal fan of Q is isomorphic via π^* to the section of the normal fan of P by the vector space $\pi^*((\mathbb{R}^d)^*)$.

Exercice 3 (Minkowski sum and normal fans). Show that the normal fan of the *Minkowski sum* $P + Q := \{\overline{p} + \overline{q} \mid \overline{p} \in P \text{ and } \overline{q} \in Q\}$ is the common refinement of the normal fans of the two polytopes P and Q, meaning that the cones of $\mathcal{F}(P + Q)$ are the intersections of a cones of $\mathcal{F}(P)$ by cones of $\mathcal{F}(Q)$.

2 Zonotopes

Exercice 4 (Two equivalent definitions). Let V be a $(d \times p)$ -matrix with columns vectors $\overline{v}_1, \ldots, \overline{v}_p \in \mathbb{R}^d$. Show that the following two polytopes coincide:

• the projection of the *p*-dimensional cube \Box_p by the affine map $\pi_V : \mathbb{R}^p \to \mathbb{R}^d$ defined by $\pi_V(\overline{x}) = V\overline{x}$,

• the Minkowski sum of the polytopes $[-\overline{v}_1, \overline{v}_1], \ldots, [-\overline{v}_p, \overline{v}_p].$

This polytope is the zonotope Z(V).

Exercice 5 (Two examples). Describe the zonotope Z(V) and its faces in the following two situations:

- when $\overline{v}_1, \ldots, \overline{v}_p$ are linearly independent,
- when $\overline{v}_1, \ldots, \overline{v}_p$ leave in a plane.

Exercice 6 (Central symmetry and zonotopes). A polytope P is centrally symmetric if $P - \overline{b} = -P + \overline{b}$ where \overline{b} is the barycenter of P. Show that:

- (1) a projection of a centrally symmetric polytope is centrally symmetric,
- (2) any centrally symmetric polytope is the projection of a cross-polytope,
- (3) the following conditions are equivalent for a polytope P:
 - (i) P is a zonotope (projection of a cube),
 - (ii) all faces of P are zonotopes,
 - (iii) all 2-dimensional faces of P are zonotopes,
 - (iv) all faces of ${\cal P}$ are centrally symmetric,
 - (v) all 2-dimensional faces of ${\cal P}$ are centrally symmetric,
 - (vi) any edge of P is a Minkowski summand of P (there exists a polytope P' such that P = P' + e).

Exercice 7 (Zonotopes and hyperplane arrangements). Show that the normal fan of the zonotope Z(V) is the fan defined by the arrangement $\mathcal{A}(V)$ of hyperplanes $H_i := \{\overline{x} \in (\mathbb{R}^d)^* \mid \langle \overline{x} \mid \overline{v}_i \rangle = 0\}$ for $i \in [p]$.

For the vector configuration $V = \{\overline{v}_1, \ldots, \overline{v}_p\} \subseteq \mathbb{R}^d$, recall that the relative positions of its vectors (called its *oriented matroid*) can be recorded by several combinatorial collections, in particular:

• its *signed vectors* are the sign vectors of its linear dependences

 $\mathcal{V}(V) := \left\{ \operatorname{sign}(\overline{d}) \mid \overline{d} \in \mathbb{R}^p \text{ such that } V\overline{d} = \overline{0} \right\} \subseteq \{+, -, 0\}^p$

- its signed circuits are its support minimal vectors,
- its signed covectors are the sign vectors of its linear evaluations

 $\mathcal{V}^*(V) := \{ \operatorname{sign}(\overline{c}V) \mid \overline{c} \in (\mathbb{R}^n)^* \} \subseteq \{+, -, 0\}^p.$

• its signed cocircuits are its support minimal covectors,

Exercice 8 (Faces of the zonotope versus covectors of the matroid). Show that there following three families are in bijection:

- the non-empty faces of the zonotope Z(V),
- the faces of the hyperplane arrangement $\mathcal{A}(V)$,
- the sign covectors of the vector configuration V.

Deduce that the following three families are in bijection:

- the facets of the zonotope Z(V),
- the rays of the hyperplane arrangement $\mathcal{A}(V)$,
- the sign cocircuits of the vector configuration V.

3 Oriented matroids from graphs

Exercice 9 (Graphical matroid). Consider a directed graph G = (V, E) and its *incidence configura*tion $I(G) := \{\overline{e}_w - \overline{e}_v \mid (v, w) \in E\} \subset \mathbb{R}^V$. Describe the circuits and cocircuits of the vector configuration I(G).

Exercice 10 (Graphical zonotope). Consider a graph G = (V, E) and its graphical zonotope

$$Z(G) := \sum_{(v,w)\in E} [\overline{e}_u, \overline{e}_v].$$

Describe its normal fan and its face structure.