Combinatoire des polytopes
 TD B - Faces and operations

1 Faces and f-vectors

Consider a d-dimensional polytope P. Its f-vector is the vector $\left(f_{0}(P), f_{1}(P), \ldots, f_{d}(P)\right)$ where $f_{i}(P)$ is the number of i-dimensional faces of P. Its f-polynomial is the polynomial $f(P, x):=\sum_{i=0}^{d} f_{i}(P) x^{i}$.

Exercice 1 (f-vectors of the simplex, the cube, and the cross-polytope). What are the f-vectors and f-polynomials of the d-dimensional simplex, cube, and cross-polytope?

Exercice 2 (f-vectors and polarity). Let P be a d-dimensional polytope and P^{\triangle} denote the polar polytope of P. Show that $f\left(P^{\Delta}, x\right)=x^{d}-1 / x+x^{d-1} f(P, 1 / x)$.

Exercice 3 (f-vectors of 3-polytopes). Prove that the f-vectors of 3-dimensional polytopes are precisely the integer vectors $\left(f_{0}, f_{1}, f_{2}, 1\right)$ such that

$$
f_{0}-f_{1}+f_{2}=2 \quad f_{0} \leq 2 f_{2}-4 \quad \text { and } \quad f_{2} \leq 2 f_{0}-4 .
$$

[Hint: For the difficult direction, compute the f-vector of a pyramid over a p-gon, and study the effect on the f-vector of the two polar operations of simple vertex truncation and simplicial facet stacking, see Exercice 5.]
Which polytopes satisfy the first (resp. second) inequality?
Exercice 4 (Non-unimodality of f-vector). A sequence x_{0}, \ldots, x_{d} is unimodal if there exists $0 \leq i \leq d$ such that $x_{0} \leq x_{1} \leq \cdots \leq x_{i-1} \leq x_{i} \geq x_{i+1} \geq \cdots \geq x_{d-1} \geq x_{d}$ or the opposite. We say that i is the unimodality peak.
(1) Show that the f-vectors of d-polytopes are unimodal for $d \leq 5$.
(2) Using Exercice 1, show that the f-vectors of simplices, cubes and cross-polytopes are unimodal and study their unimodality peak.
(3) Show that there exist simplicial polytopes whose f-vector is not unimodal.
[Hint: use iterative stackings on facets of the cross-polytope, see Exercice 5.]
(4) * Are the f-vectors of d-polytopes all unimodal for $d=6, d=7, d=8, \ldots$?

2 Operations on polytopes

Exercice 5 (Truncating and stacking). Let P be a d-dimensional polytope, v be a simple vertex of P (contained in precisely d facets) and f be a simplicial facet of P (containing precisely d vertices). We consider the polytopes obtained by

- truncating the vertex v of P by a hyperplane separating v from all other vertices of P,
- stacking a vertex w on the facet f of P, where the vertex w is separated from P by f, but close enough to f so that it sees the vertices of f and no other vertex of P.
These operations are illustrated on Figure 4
Observe that truncating and stacking are dual operations: the polytope obtained by stacking a vertex on the facet v^{\diamond} of P^{Δ} is the polar of the polytope obtained by truncating vertex v of P. Describe the f-vector of the resulting polytopes in terms of the f-vector of P. What can you say in the case v is not simple or f is not simplicial?

Exercice 6 (Cartesian product of polygons). (1) Describe the i-dimensional faces of the Cartesian product $P \times Q$ in terms of the faces of the two polytopes P and Q.

Figure 1: Truncating a vertex v (middle) and stacking over a facet f (right).
(2) Describe the f-vector of the product $P \times Q$ in terms of f-vector of the two polytopes P and Q.
(3) What is the f-vector of a product of q copies of a p-gon? Do you recognize something when $p=4$?

Exercice 7 (Normal fans and polytope operations). Describe the normal fans of the Cartesian product $P \times Q$ and the Minkowski sum $P+Q$ in terms of the normal fans of the polytopes P and Q.

Exercice 8 (Hanner polytopes). A Hanner polytope is either the interval $I:=[-1,1]$ or a product or a direct sum of two Hanner polytopes.
(1) What are the Hanner polytopes of dimension $1,2,3,4$?
(2) Show that each Hanner polytope has $3^{d}+1$ faces.
(3) Is it true that each Hanner polytope is a prism or a bipyramid?

