
Combinatoire des polytopes
TD A – Basic notions

1 High dimension is counter-intuitive

Exercice 1 (Cochonnet paradox). Consider a box to store your “pétanque” blue balls with a place in
the middle for the red “cochonnet”, as illustrated in Figure 1.

Figure 1: Placing the pétanque balls and cochonnet into the box in dimension 2 and 3.

(1) Compute the radius and area of the red cochonnet.

(2) What would be the radius and volume of the red cochonnet in dimension d?
[Hint: Along the long diagonal, one can fit 2 blue balls and 2 red cochonnets. The volume Vd of the
d-dimensional unit ball is given by

V2δ =

√
π
δ

δ!
and V2δ+1 =

√
π
δ · 22δ+1 · δ!
(2δ + 1)!

.

If you never did this computation, consider the functions

Γ(x) :=

∫ ∞
0

tx−1e−tdt and B(x, y) =

∫ 1

0
tx−1(1− t)y−1dxdy,

show that Γ(x + 1) = xΓ(x), that Γ(x)Γ(y) = Γ(x + y)B(x, y), that Γ(1/2) =
√
π, and that the

volume Vd satisfies the recurrence relation Vd+1 = Vd ·B(d/2 + 1, 1/2) and conclude.]

(3) What happens in dimension 10?

2 Convexity

Exercice 2 (Three convexity theorems).

(1) (Radon’s theorem). Show that any set A of d+2 points in Rd admits two disjoint subsets A1, A2 ⊂ A
such that

conv(A1) ∩ conv(A2) 6= ∅.

(2) (Helly’s theorem). Let C1, . . . , Cn be n convex sets in Rd, with n ≥ d+1. Show that if the intersection
of every d+ 1 of these sets is non-empty, then the intersection of all the Ci is non-empty.
[Hint: Use induction on n and Radon’s theorem.]
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(3) (Centerpoint theorem). Let X ⊂ Rd be a set of n points. A point x ∈ Rd is a centerpoint of X if
each closed half-space containing x contains at least n

d+1 points of X. Prove that each finite point
set in Rd has at least one centerpoint.
[Hint: For each closed half-space H̄+ such that |H̄+∩X| > d

d+1n, consider conv(H̄+∩X), and finish
using Helly’s theorem.]

3 Fourier-Motzkin elimination

Exercice 3 (Fourier-Motzkin elimination for polyhedra). The objective of this exercise is to provide an
algorithmic proof that an affine projection of a polyhedron is a polyhedron. This enables to show that a
V-polyhedron is an H-polyhedron since a V-polyhedron

conv(V ) + cone(Y ) =
{
x ∈ Rd

∣∣ ∃ t ∈ Rn,∈ Rm such that t = 1, t ≥ 0, u ≥ 0 and x = V t+ Y u
}

can be interpreted as the projection of the H-polyhedron{
(x, t, u) ∈ Rd+n+m

∣∣ t = 1, t ≥ 0, u ≥ 0 and x = V t+ Y u
}
.

(1) Let Q = {t ∈ R | ait ≤ bi for i ∈ [m]} be a polyhedron on the real line with ai, bi ∈ R for i ∈ [m].
Give a constructive way to check if Q = ∅.

(2) Let πd : Rd → Rd−1 be the coordinate projection πd(x1, . . . , xd−1, xd) = (x1, . . . , xd−1). Let Q ={
x ∈ Rd

∣∣ 〈 ai | x 〉 ≤ bi for i ∈ [m]
}

be a polyhedron, with ai ∈ Rd and bi ∈ R for i ∈ [m]. For
y ∈ Rd−1 define Qy := {x ∈ R | (y, x) ∈ Q}. Show that for all y ∈ Rd−1, the set Qy is a polyhedron
and give an explicit inequality description in terms of the inequality description of Q.

(3) Argue (using (1)) that the image πd(Q) =
{
y ∈ Rd−1

∣∣ Qy 6= ∅
}
is a polyhedron.

(4) Conclude that the image of a polyhedron by an affine map is a polyhedron.

4 Examples of polyhedral cones

Exercice 4 (Incidence configuration of an directed graph). The incidence configuration of a directed
graph G = (V,E) is the vector configuration I(G) := {ew − ev | (v, w) ∈ E} ⊂ RV . Show that
(1) I(G) is independent if and only if G has no (not necessarily oriented) cycle, that is, if G is a forest,
(2) I(G) spans the hyperplane H :=

{
x ∈ RV

∣∣ 〈 1 | x 〉 = 0
}
if and only if G is connected,

(3) I(G) forms a basis of the hyperplane H if and only if G is a spanning tree.

Exercice 5 (Cones from directed graphs). The incidence cone of a directed graph G = (V,E) is the
polyhedral cone C(G) :=R≥0I(G) = R≥0 {ew − ev | (v, w) ∈ E} ⊂ RV .
(1) What is the polar cone of C(G)?
(2) What is the dimension of C(G)?
(3) When is C(G) is a pointed cone?
(4) When C(G) is pointed, describe the rays of C(G). When is C(G) a simplicial cone?
(5) Show that the facets of C(G) correspond to minimal directed cuts of G.
(6) More generally, show that the k-dimensional faces of C(G) correspond to subgraphsH ofG with |V | − k

connected components and such that the quotient directed graph G/H is acyclic.

Exercice 6 (Half-space containement). Let P :=
{
x ∈ Rd

∣∣ 〈 ai | x 〉 ≤ bi for i ∈ [m]
}

be a non-empty
polyhedron, where ai ∈ (Rd)∗ and bi ∈ R, for i ∈ [m]. Show that, for a ∈ (Rd)∗ and b ∈ R, the inequality
〈 a | x 〉 ≤ b holds for each x ∈ P if and only if there are reals λi ≥ 0, for i ∈ [m], such that a =

∑
i∈[m] λiai

and b ≥
∑

i∈[m] λibi.

5 Examples of polytopes

Exercice 7 (Matching polytope). The matching polytope M(G) of a graph G = (V,E) is defined as the
convex hull of the characteristic vectors χM ∈ RE of all matchings M on G.
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(1) Show that the matching polytope is contained in the polytope N(G) defined by

xe ≥ 0 for all e ∈ E, and
∑
e3v

xe ≤ 1 for all v ∈ V.

(2) If G is bipartite, show that the polytopes M(G) and N(G) coincide.
[Hint: Consider a point x ∈ N(G). If x has integer coordinates, show that it is the characteristic
vector of a matching on G. Otherwise, show that one can slightly perturb the coordinates of x that
are not integer, and conclude that x is not a vertex of N(G).]

(3) Show that the result fails when G is not bipartite.

Exercice 8 (Transportation polytope). Given a supply function µ : M → R≥0 on a source set M and
a demand function ν : N → R≥0 on a sink set N , the transportation polytope P (µ, ν) is the polytope
of RM×N defined by:

∀m ∈M, ∀n ∈ N, xm,n ≥ 0,
∑

n′∈N
xm,n′ = µ(m), and

∑
m′∈M

xm′,n = ν(n).

Call support of a point x ∈ P (µ, ν) the subgraph ofKM,N consisting of the edges (m,n) for which xm,n > 0.
Show the following properties:

(1) P (µ, ν) is non-empty if and only if
∑

m∈M µ(m) =
∑

n∈N ν(n).

(2) Provided it is non-empty, P (µ, ν) has dimension (|M | − 1)(|N | − 1).

(3) A point of P (µ, ν) is a vertex of P (µ, ν) if and only if its support is a forest (i.e. contains no cycle).
Moreover, a vertex of P (µ, ν) is determined by its support.

(4) The supports of two adjacent vertices of P (µ, ν) differ by a cycle.

The Birkhoff polytope of size m is a particular example of transportation polytope, whose supply and
demand functions are both constant to m. Its vertices are precisely the permutation matrices.
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