Combinatoire des polytopes
 TD A - Basic notions

1 High dimension is counter-intuitive

Exercice 1 (Cochonnet paradox). Consider a box to store your "pétanque" blue balls with a place in the middle for the red "cochonnet", as illustrated in Figure 1.

Figure 1: Placing the pétanque balls and cochonnet into the box in dimension 2 and 3.
(1) Compute the radius and area of the red cochonnet.
(2) What would be the radius and volume of the red cochonnet in dimension d ?
[Hint: Along the long diagonal, one can fit 2 blue balls and 2 red cochonnets. The volume V_{d} of the d-dimensional unit ball is given by

$$
V_{2 \delta}=\frac{\sqrt{\pi}^{\delta}}{\delta!} \quad \text { and } \quad V_{2 \delta+1}=\frac{\sqrt{\pi}^{\delta} \cdot 2^{2 \delta+1} \cdot \delta!}{(2 \delta+1)!}
$$

If you never did this computation, consider the functions

$$
\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t \quad \text { and } \quad B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d x d y
$$

show that $\Gamma(x+1)=x \Gamma(x)$, that $\Gamma(x) \Gamma(y)=\Gamma(x+y) B(x, y)$, that $\Gamma(1 / 2)=\sqrt{\pi}$, and that the volume V_{d} satisfies the recurrence relation $V_{d+1}=V_{d} \cdot B(d / 2+1,1 / 2)$ and conclude.]
(3) What happens in dimension 10 ?

2 Convexity

Exercice 2 (Three convexity theorems).
(1) (Radon's theorem). Show that any set A of $d+2$ points in \mathbb{R}^{d} admits two disjoint subsets $A_{1}, A_{2} \subset A$ such that

$$
\operatorname{conv}\left(A_{1}\right) \cap \operatorname{conv}\left(A_{2}\right) \neq \varnothing
$$

(2) (Helly's theorem). Let C_{1}, \ldots, C_{n} be n convex sets in \mathbb{R}^{d}, with $n \geq d+1$. Show that if the intersection of every $d+1$ of these sets is non-empty, then the intersection of all the C_{i} is non-empty.
[Hint: Use induction on n and Radon's theorem.]
(3) (Centerpoint theorem). Let $X \subset \mathbb{R}^{d}$ be a set of n points. A point $\bar{x} \in \mathbb{R}^{d}$ is a centerpoint of X if each closed half-space containing \bar{x} contains at least $\frac{n}{d+1}$ points of X. Prove that each finite point set in \mathbb{R}^{d} has at least one centerpoint.
[Hint: For each closed half-space \bar{H}^{+}such that $\left|\bar{H}^{+} \cap X\right|>\frac{d}{d+1} n$, consider $\operatorname{conv}\left(\bar{H}^{+} \cap X\right)$, and finish using Helly's theorem.]

3 Fourier-Motzkin elimination

Exercice 3 (Fourier-Motzkin elimination for polyhedra). The objective of this exercise is to provide an algorithmic proof that an affine projection of a polyhedron is a polyhedron. This enables to show that a V-polyhedron is an H-polyhedron since a V-polyhedron

$$
\operatorname{conv}(V)+\operatorname{cone}(Y)=\left\{\bar{x} \in \mathbb{R}^{d} \mid \exists \bar{t} \in \mathbb{R}^{n}, \in \mathbb{R}^{m} \text { such that } \bar{t}=1, \bar{t} \geq \overline{0}, \bar{u} \geq \overline{0} \text { and } \bar{x}=V \bar{t}+Y \bar{u}\right\}
$$

can be interpreted as the projection of the H-polyhedron

$$
\left\{(\bar{x}, \bar{t}, \bar{u}) \in \mathbb{R}^{d+n+m} \mid \bar{t}=1, \bar{t} \geq \overline{0}, \bar{u} \geq \overline{0} \text { and } \bar{x}=V \bar{t}+Y \bar{u}\right\}
$$

(1) Let $Q=\left\{t \in \mathbb{R} \mid a_{i} t \leq b_{i}\right.$ for $\left.i \in[m]\right\}$ be a polyhedron on the real line with $a_{i}, b_{i} \in \mathbb{R}$ for $i \in[m]$. Give a constructive way to check if $Q=\varnothing$.
(2) Let $\pi_{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1}$ be the coordinate projection $\pi_{d}\left(x_{1}, \ldots, x_{d-1}, x_{d}\right)=\left(x_{1}, \ldots, x_{d-1}\right)$. Let $Q=$ $\left\{\bar{x} \in \mathbb{R}^{d} \mid\left\langle\bar{a}_{i} \mid \bar{x}\right\rangle \leq b_{i}\right.$ for $\left.i \in[m]\right\}$ be a polyhedron, with $\bar{a}_{i} \in \mathbb{R}^{d}$ and $b_{i} \in \mathbb{R}$ for $i \in[m]$. For $\bar{y} \in \mathbb{R}^{d-1}$ define $Q_{\bar{y}}:=\{\bar{x} \in \mathbb{R} \mid(\bar{y}, x) \in Q\}$. Show that for all $\bar{y} \in \mathbb{R}^{d-1}$, the set $Q_{\bar{y}}$ is a polyhedron and give an explicit inequality description in terms of the inequality description of Q.
(3) Argue (using (1)) that the image $\pi_{d}(Q)=\left\{\bar{y} \in \mathbb{R}^{d-1} \mid Q_{\bar{y}} \neq \varnothing\right\}$ is a polyhedron.
(4) Conclude that the image of a polyhedron by an affine map is a polyhedron.

4 Examples of polyhedral cones

Exercice 4 (Incidence configuration of an directed graph). The incidence configuration of a directed graph $G=(V, E)$ is the vector configuration $I(G):=\left\{\bar{e}_{w}-\bar{e}_{v} \mid(v, w) \in E\right\} \subset \mathbb{R}^{V}$. Show that
(1) $I(G)$ is independent if and only if G has no (not necessarily oriented) cycle, that is, if G is a forest,
(2) $I(G)$ spans the hyperplane $\mathbb{H}:=\left\{\bar{x} \in \mathbb{R}^{V} \mid\langle\overline{1} \mid \bar{x}\rangle=0\right\}$ if and only if G is connected,
(3) $I(G)$ forms a basis of the hyperplane \mathbb{H} if and only if G is a spanning tree.

Exercice 5 (Cones from directed graphs). The incidence cone of a directed graph $G=(V, E)$ is the polyhedral cone $C(G):=\mathbb{R}_{\geq 0} I(G)=\mathbb{R}_{\geq 0}\left\{\bar{e}_{w}-\bar{e}_{v} \mid(v, w) \in E\right\} \subset \mathbb{R}^{V}$.
(1) What is the polar cone of $C(G)$?
(2) What is the dimension of $C(G)$?
(3) When is $C(G)$ is a pointed cone?
(4) When $C(G)$ is pointed, describe the rays of $C(G)$. When is $C(G)$ a simplicial cone?
(5) Show that the facets of $C(G)$ correspond to minimal directed cuts of G.
(6) More generally, show that the k-dimensional faces of $C(G)$ correspond to subgraphs H of G with $|V|-k$ connected components and such that the quotient directed graph G / H is acyclic.

Exercice 6 (Half-space containement). Let $P:=\left\{\bar{x} \in \mathbb{R}^{d} \mid\left\langle\bar{a}_{i} \mid \bar{x}\right\rangle \leq b_{i}\right.$ for $\left.i \in[m]\right\}$ be a non-empty polyhedron, where $\bar{a}_{i} \in\left(\mathbb{R}^{d}\right)^{*}$ and $b_{i} \in \mathbb{R}$, for $i \in[m]$. Show that, for $\bar{a} \in\left(\mathbb{R}^{d}\right)^{*}$ and $b \in \mathbb{R}$, the inequality $\langle\bar{a} \mid \bar{x}\rangle \leq b$ holds for each $\bar{x} \in P$ if and only if there are reals $\lambda_{i} \geq 0$, for $i \in[m]$, such that $\bar{a}=\sum_{i \in[m]} \lambda_{i} \bar{a}_{i}$ and $b \geq \sum_{i \in[m]} \lambda_{i} b_{i}$.

5 Examples of polytopes

Exercice 7 (Matching polytope). The matching polytope $M(G)$ of a graph $G=(V, E)$ is defined as the convex hull of the characteristic vectors $\chi_{M} \in \mathbb{R}^{E}$ of all matchings M on G.
(1) Show that the matching polytope is contained in the polytope $N(G)$ defined by

$$
x_{e} \geq 0 \quad \text { for all } e \in E, \quad \text { and } \quad \sum_{e \ni v} x_{e} \leq 1 \quad \text { for all } v \in V \text {. }
$$

(2) If G is bipartite, show that the polytopes $M(G)$ and $N(G)$ coincide.
[Hint: Consider a point $\bar{x} \in N(G)$. If \bar{x} has integer coordinates, show that it is the characteristic vector of a matching on G. Otherwise, show that one can slightly perturb the coordinates of \bar{x} that are not integer, and conclude that \bar{x} is not a vertex of $N(G)$.]
(3) Show that the result fails when G is not bipartite.

Exercice 8 (Transportation polytope). Given a supply function $\mu: M \rightarrow \mathbb{R} \geq 0$ on a source set M and a demand function $\nu: N \rightarrow \mathbb{R} \geq 0$ on a sink set N, the transportation polytope $P(\mu, \nu)$ is the polytope of $\mathbb{R}^{M \times N}$ defined by:

$$
\forall m \in M, \forall n \in N, \quad x_{m, n} \geq 0, \quad \sum_{n^{\prime} \in N} x_{m, n^{\prime}}=\mu(m), \quad \text { and } \quad \sum_{m^{\prime} \in M} x_{m^{\prime}, n}=\nu(n) .
$$

Call support of a point $\bar{x} \in P(\mu, \nu)$ the subgraph of $K_{M, N}$ consisting of the edges (m, n) for which $x_{m, n}>0$. Show the following properties:
(1) $P(\mu, \nu)$ is non-empty if and only if $\sum_{m \in M} \mu(m)=\sum_{n \in N} \nu(n)$.
(2) Provided it is non-empty, $P(\mu, \nu)$ has dimension $(|M|-1)(|N|-1)$.
(3) A point of $P(\mu, \nu)$ is a vertex of $P(\mu, \nu)$ if and only if its support is a forest (i.e. contains no cycle). Moreover, a vertex of $P(\mu, \nu)$ is determined by its support.
(4) The supports of two adjacent vertices of $P(\mu, \nu)$ differ by a cycle.

The Birkhoff polytope of size m is a particular example of transportation polytope, whose supply and demand functions are both constant to m. Its vertices are precisely the permutation matrices.

