Signed tree associahedra

Vincent Pilaud
CNRS & LIX, École Polytechnique

Spines

T a tree on a signed ground set \(V = V^- \sqcup V^+ \).

Spine on \(T \) = directed and labeled tree \(S \) such that

- the labels of the nodes of \(S \) form a partition of the signed ground set \(V \),
- at a node labeled by \(U = U^- \sqcup U^+ \), the source label sets of the incoming arcs are subsets of distinct connected components of \(T \setminus U^- \), and the sink label sets of the outgoing arcs are subsets of distinct connected components of \(T \setminus U^+ \).

Spine poset \(S(T) \) = poset of arc contractions on signed spines of \(T \).

Prop. The spine poset \(S(T) \) is a pure graded poset of rank \(|V| \).

Signed nested complex = simplicial complex \(\mathcal{N}(T) = \{ N(S) \mid S \in S(T) \} \), where \(N(S) \) = collection of source sets of \(S \).

Spine fan

Ambiant space \(\mathbb{V} = \{ x \in \mathbb{R}^V \mid \sum_{v \in V} x_v = |V| + 1 \} \).

Cone \(C(S) \) of a spine \(S \) = \{ \(x \in \mathbb{H} \mid x_u \leq x_v \) for all \(u \rightarrow v \) in \(S \) \}.

Theo. The collection of cones \(\mathcal{F}(T) = \{ C(S) \mid S \in S(T) \} \) defines a complete simplicial fan on \(\mathbb{H} \), called the spine fan of \(T \).

The spine fan \(\mathcal{F}(T) \) coarsens the braid fan on \(\mathbb{H} \). It defines a map \(\kappa \) from linear orders on \(V \) to maximal spines on \(T \).

Prop. The fibers of \(\kappa \) are the classes of \(T \)-congruence defined by \(XuvY \equiv_T XvuY \) iff there is \(w \in V \) in between \(u \) and \(v \) in \(T \) and such that \(w \in X \cap V^+ \) or \(w \in Y \cap V^- \).

Signed tree associahedron

Theo. The spine fan \(\mathcal{F}(T) \) is the normal fan of the signed tree associahedron \(\text{Asso}(T) \) with

- a vertex \(a(S) = \{ \pi \in \Pi(S) \mid v \in \pi \) and \(r_v \notin \pi \} \) if \(v \in V^- \)
 \[= \{ \pi \in \Pi(S) \mid v \in \pi \) and \(r_v \notin \pi \} \] if \(v \in V^+ \)
 where \(\pi \) = unique incoming (outgoing) arc at \(v \in V^- \) (\(v \in V^+ \)),
 \(\Pi(S) = \) (undirected) paths in \(S \),
- a facet for each \(B \in S \setminus S(T) \) \(N(S) \) defined by the half-space
 \[\{ x \in \mathbb{R}^V \mid \sum_{v \in B} x_v = \frac{|B| + 1}{2} \} \].

Exm. For the tripod

\[V^- = \{ 1, 3, 4 \} \]
\[V^+ = \{ 2 \} \]

half-spaces:
\[x_1 \geq 1 \]
\[x_2 \geq 1 \]
\[x_3 \geq 1 \]
\[x_1 + x_4 \geq 3 \]
\[x_1 + x_4 \geq 3 \]
\[x_1 + x_4 \geq 3 \]
\[x_1 + x_4 + x_4 \geq 6 \]
\[x_1 + x_4 + x_4 \geq 6 \]
\[x_1 + x_4 + x_4 \geq 6 \]
\[x_1 + x_2 + x_3 + x_4 = 10 \]

Some properties

Prop. The signed tree associahedron \(\text{Asso}(T) \) is sandwiched between the permutahedron \(\text{Perm}(V) \) and the parallelepiped \(\text{Para}(T) \):

\[\bigcap \limits_{u \neq v \in V} [e_u, e_v] \supseteq \text{Perm}(T) \subseteq \text{Asso}(T) \subseteq \text{Para}(T) \]

Common vertices of

- \(\text{Asso}(T) \) and \(\text{Para}(T) \) = orientations of \(T \) which are spines on \(T \),
- \(\text{Asso}(T) \) and \(\text{Perm}(T) \) = linear orders on \(V \) which are spines on \(T \),
- \(\text{Asso}(T) \) and \(\text{Para}(T) \) do not have common vertex of the three polytopes except if \(T = \) signed path.

Prop. \(\text{Asso}(T) \) and \(\text{Asso}(T') \) isometric \(\iff \) \(T \) and \(T' \) isomorphic or anti-isomorphic up to the signs of their leaves, i.e. there is a bijection \(\theta : V \rightarrow V' \) s.t. \(\forall u, v \in V \)
- \(u - v \) edge in \(T \) \(\iff \) \(\theta(u) - \theta(v) \) edge in \(T' \),
- \(u - v \) is not a leaf of \(T \), the signs of \(u \) and \(\theta(u) \) coincide (resp. differ).

Examples

For a signed path \(P \), \(\text{Asso}(P) \) is the classical associahedron

faces \(\leftrightarrow \) dissections \(\leftrightarrow \) Schröder trees,
vertices \(\leftrightarrow \) triangulations \(\leftrightarrow \) binary trees.

Loday, Realization of the Stasheff polytope. 2004
Hohlweg & Lange, Realizations of the associahedron and cyclohedron, 2007

For an unsigned tree \(T \), \(\text{Asso}(T) \) is the \(T \)-associahedron

faces \(\leftrightarrow \) tubes = connected induced subgraphs of \(T \),
faces \(\leftrightarrow \) tubings = collections of tubes which are pairwise nested, or disjoint and non-adjacent.

Carr & Devadoss, Coxeter complexes and graph associahedra, 2006