Signed tree associahedra

Vincent Pilaud
CNRS & LIX, École Polytechnique

Spines

T a tree on a signed ground set \(V = V^- \cup V^+ \).

Spine on \(T \) = directed and labeled tree \(S \) such that
- the labels of the nodes of \(S \) form a partition of the signed ground set \(V \),
- at a node labeled by \(U = U^- \cup U^+ \), the source label sets of the incoming arcs are subsets of distinct connected components of \(T \setminus U^- \), and the sink label sets of the outgoing arcs are subsets of distinct connected components of \(T \setminus U^+ \).

Spine poset \(S(T) = \) poset of arc contractions on signed spines of \(T \).

Prop. The spine poset \(S(T) \) is a pure graded poset of rank \(|V| \).

Signed nested complex = simplicial complex \(\mathcal{N}(S) = \{ NS | S \in S(T) \} \), where \(N(S) = \) collection of source sets of \(S \).

Spine fan

Ambient space \(H = \{ x \in \mathbb{R}^V | \sum_{v \in V} x_v = (|V|+1) \} \).

Cone \(C(S) \) of a spine \(S = \{ x \in H | x_u \leq x_v \} \) for all \(u \rightarrow v \) in \(S \).

Theo. The collection of cones \(\mathcal{F}(T) = \{ C(S) | S \in S(T) \} \) defines a complete simplicial fan on \(H \), called the spine fan of \(T \).

The spine fan \(\mathcal{F}(T) \) coarsens the braid fan on \(\mathbb{R}^2 \). It defines a map \(\kappa \) from linear orders on \(V \) to maximal spines on \(T \).

Prop. The fibers of \(\kappa \) are the classes of \(T \)-congruence defined by \(X_uY \equiv_T X_vY \) iff there is \(w \in V \) in between \(u \) and \(v \) in \(T \) and such that \(w \in X \cap V^+ \) or \(w \in Y \cap V^- \).

Signed tree associahedron

Theo. The spine fan \(\mathcal{F}(T) \) is the normal fan of the signed tree associahedron \(Asso(T) \) with
- a vertex \(a(S) \in \mathbb{R}^V \) for each maximal \(S \in S(T) \), with coordinates \(a(S)_v = \left\{ \begin{array}{ll}
\{ \pi \in \Pi(S) | v \in \pi \; \text{and} \; r_v \notin \pi \} & \text{if } v \in V^- \\
\{ \pi \in \Pi(S) | v \in \pi \; \text{and} \; r_v \notin \pi \} & \text{if } v \in V^+
\end{array} \right.
\)
where \(r_v \) = unique incoming (outgoing) arc at \(v \in V^- \) \((v \in V^+) \), \(\Pi(S) = \{ \text{(undirected) paths in } S \} \),
- a facet for each \(B \in \bigcup_{S \in \mathcal{S}(T)} N(S) \) defined by the half-space \(\left\{ x \in \mathbb{R}^V | \sum_{v \in B} x_v \geq \left(|B| + 1 \right) / 2 \right\} \).

Exm. For the tripod

- \(V^- = \{ 1, 3, 4 \} \)
- \(V^+ = \{ 2 \} \)

- half-spaces:
 - \(x_1 \geq 1 \)
 - \(x_2 \geq 1 \)
 - \(x_3 \geq 1 \)
 - \(x_1 + x_3 \geq 3 \)
 - \(x_1 + x_3 \geq 3 \)
 - \(x_3 + x_3 \geq 3 \)
 - \(x_1 + x_3 + x_3 \geq 6 \)
 - \(x_1 + x_3 + x_3 \geq 6 \)
 - \(x_2 + x_3 + x_3 \geq 6 \)
 - \(x_1 + x_2 + x_3 + x_4 = 10 \)

Some properties

Prop. The signed tree associahedron \(Asso(T) \) is sandwiched between the permutahedron \(\text{Perm}(V) \) and the parallel piped \(\text{Para}(T) \):

\[
\sum_{u,v \in T} \gamma_{uv} = \text{Perm}(T) \subset Asso(T) \subset \text{Para}(T) = \sum_{u,v \in T} \pi_{uv} \gamma_{uv}
\]

- Common vertices of \(Asso(T) \) and \(Para(T) \) \(\equiv \) orientations of \(T \) which are spines on \(T \), \(Asso(T) \) and \(\text{Perm}(V) \) \(\equiv \) linear orders on \(V \) which are spines on \(T \),
 \(\Rightarrow \) no common vertex of the three polytopes except if \(T \) = signed path.

Prop. \(Asso(T) \) and \(Asso(T') \) isometric \(\iff \) \(T \) and \(T' \) isomorphic or anti-isomorphic up to the signs of their leaves, i.e. there is a bijection \(\theta : V \to V' \) st. \(\forall u,v \in V \)
- \(u \to v \) edge in \(T \) \(\iff \theta(u) \to \theta(v) \) edge in \(T' \),
- if \(u \) is not a leaf of \(T \), the signs of \(u \) and \(\theta(u) \) coincide (resp. differ).

Examples

For a signed path \(P \), \(Asso(P) \) is the classical associahedron faces \(\iff \) dissections \(\iff \) Schröder trees, vertices \(\iff \) triangulations \(\iff \) binary trees.

Hohlweg & Lange, Realizations of the associahedron and cyclohedron, 2007

Loday, Realization of the Stasheff polytope, 2004

For an unsigned tree \(T \), \(Asso(T) \) is the \(T \)-associahedron faces \(\iff \) tubes = connected induced subgraphs of \(T \), faces \(\iff \) tubings = collections of tubes which are pairwise nested, or disjoint and non-adjacent.

Carr & Devadoss, Coxeter complexes and graph associahedra, 2006