QUOTIENTOPES
VINCENT PILAUD AND FRANCISCO SANTOS

Abstract. For any lattice congruence of the weak order on S_n, N. Reading proved that glueing together the cones of the braid fan that belong to the same congruence class defines a complete fan. We prove that this fan is the normal fan of a polytope.

1. Introduction

Denote by S_n the set of permutations of $[n] := \{1, \ldots, n\}$. We consider the classical weak order on S_n defined by inclusion of inversion sets. That is $\sigma \leq \tau$ if and only if $\text{inv}(\sigma) \subseteq \text{inv}(\tau)$ where $\text{inv}(\sigma) := \{(i, j) \mid 1 \leq i < j \leq n \text{ and } \sigma(i) > \sigma(j)\}$. The Hasse diagram of the weak order can be seen geometrically:

1. as the dual graph of the braid fan of type A_{n-1}, i.e. the fan defined by the arrangement of the hyperplanes $H_{ij} := \{x \in \mathbb{R}^n \mid x_i = x_j\}$ for all $1 \leq i < j \leq n$, directed from the region $x_1 < \cdots < x_n$ to the opposite one,

2. or as the graph of the permutahedron $\text{Perm}(n) := \text{conv}\{(\sigma(1), \ldots, \sigma(n)) \mid \sigma \in S_n\}$, oriented in the linear direction $\alpha := (-n + 1, -n + 3, \ldots, n - 3, n - 1)$.

We aim at studying similar geometric realizations for lattice quotients of the weak order on S_n. Recall that a lattice congruence of a lattice (L, \leq, \wedge, \vee) is an equivalence relation on L that respects the meet and the join operations, i.e. such that $x \equiv x'$ and $y \equiv y'$ implies $x \wedge y \equiv x' \wedge y'$ and $x \vee y \equiv x' \vee y'$. A lattice congruence \equiv automatically defines a lattice quotient L/\equiv on the congruence classes of \equiv where the order relation is given by $X \leq Y$ iff there exists $x \in X$ and $y \in Y$ such that $x \leq y$. The meet $X \wedge Y$ (resp. the join $X \vee Y$) of two congruence classes X and Y is the congruence class of $x \wedge y$ (resp. of $x \vee y$) for arbitrary representatives $x \in X$ and $y \in Y$.

Several examples of relevant combinatorial structures arise from lattice quotients of the weak order. The fundamental example is the Tamari lattice introduced by D. Tamari in [Tam51]. It can be defined on different Catalan families (Dyck paths, binary trees, triangulations, non-crossing partitions, etc), and its cover relations correspond to local moves in these structures (exchange, rotation, flip, etc). The Tamari lattice can also be interpreted as the quotient of the weak order by the sylvester congruence on S_n defined as the transitive closure of the rewriting rule $UacVbW \equiv_{sylv} UcaVbW$ where $a < b < c$ are letters while U, V, W are words of $[n]$. This congruence has been widely studied in connection to geometry and algebra [Lod04, LR98, HNT05]. Among many other examples of relevant lattice quotients of the weak order, let us mention the (type A) Cambrian lattices [Rea06, CP17], the boolean lattice, the permutree lattices [PP16], the increasing flip lattice on acyclic twists [Pil15], the rotation lattice on diagonal rectangulations [LR12, Gir12], etc.

In his vast study of lattice congruences of the weak order, N. Reading observed that “lattice congruences of the weak order know a lot of combinatorics and geometry” [Rea16a, Sect. 10.7]. Geometrically, he showed that each lattice congruence \equiv of the weak order is realized by a complete fan \mathcal{F}_\equiv that we call quotient fan. Its maximal cones correspond to the congruence classes of \equiv and are just obtained by glueing together the cones of the braid fan corresponding to permutations that belong to the same congruence class of \equiv. Although this result was stated in a much more general context (that of lattice congruences on lattice of regions of hyperplane arrangements), we restrict our discussion to lattice quotients of the weak order on S_n.

Theorem 1 ([Rea05]). For any lattice congruence \equiv of the weak order on S_n, the cones obtained by glueing together the cones of the braid fan that belong to the same congruence class of \equiv form a complete fan \mathcal{F}_\equiv whose dual graph coincides with the Hasse diagram of the quotient of the weak order by \equiv.

VP was partially supported by the French ANR grant SC3A (15-CE40-0004-01).

FS was partially supported by the Spanish Ministry of Science through grant MTM2014-54207-P, by the Einstein Foundation Berlin, and by the NSF while he was in residence at MSRI Berkeley in the fall of 2017.
However, as observed by N. Reading in [Rea05], “this theorem gives no means of knowing when \mathcal{F}_\equiv is the normal fan of a polytope”. For the above-mentioned examples of lattice congruences, this problem was settled by specific constructions of polytopes realizing the quotient fan \mathcal{F}_\equiv: J.-L. Loday’s associahedron [Lod04] for the Tamari lattice, C. Hohlweg and C. Lange’s associahedra [HL07, LP13] for the Cambrian lattices, cubes for the boolean lattices, permutreehedra [PP16] for the permutree lattices, brick polytopes [PS12] for increasing flip lattices on acyclic twists, Minkowski sums of opposite associahedra for rotation lattices on diagonal rectangulations [LR12], etc. Although these realizations have similarities, each requires an independent construction and proof. In particular, the intersection of the half-spaces defining facets of the classical permutahedron normal to the rays of \mathcal{F}_\equiv does not realize \mathcal{F}_\equiv in general, in contrast to the specific situation of [Lod04, HL07, LP13, PP16]. Our contribution is to provide a generic method to construct a polytope P_\equiv whose normal fan is the quotient fan \mathcal{F}_\equiv. We therefore prove the following statement.

Theorem 2. For any lattice congruence \equiv of the weak order on S_n, the fan \mathcal{F}_\equiv obtained by glueing the braid fan according to the congruence classes of \equiv is the normal fan of a polytope.

We call **quotientopes** the resulting polytopes. Some examples are illustrated in Figures 1 and 2.

2. Background

2.1. Polyhedral geometry. We briefly recall basic definitions and properties of polyhedral fans and polytopes, and refer to [Zie98] for a classical textbook on this topic.

We denote by $\mathbb{R}^d_{\geq 0} := \{ \sum_{r \in R} \lambda_r r \mid \lambda_r \in \mathbb{R}_{\geq 0} \}$ the positive span of a set R of vectors of \mathbb{R}^d. A **polyhedral cone** is a subset of \mathbb{R}^d defined equivalently as the positive span of finitely many vectors or as the intersection of finitely many closed linear halfspaces. The **faces** of a cone C are the intersections of C with the supporting hyperplanes of C. The 1-dimensional (resp. codimension 1) faces of C are called **rays** (resp. **facets**) of C. A cone is **simplicial** if it is generated by a set of independent vectors.

A **polyhedral fan** is a collection \mathcal{F} of polyhedral cones such that

- if $C \in \mathcal{F}$ and F is a face of C, then $F \in \mathcal{F}$,
- the intersection of any two cones of \mathcal{F} is a face of both.

A fan is **simplicial** if all its cones are, and **complete** if the union of its cones covers the ambient space \mathbb{R}^d. For two fans \mathcal{F}, \mathcal{G} in \mathbb{R}^d, we say that \mathcal{F} **refines** \mathcal{G} (and that \mathcal{G} **coarsens** \mathcal{F}) if every cone of \mathcal{F} is contained in a cone of \mathcal{G}.

A **polytope** is a subset P of \mathbb{R}^d defined equivalently as the convex hull of finitely many points or as a bounded intersection of finitely many closed affine halfspaces. The **dimension** $\dim(P)$ is the dimension of the affine hull of P. The **faces** of P are the intersections of P with its supporting hyperplanes. The dimension 0 (resp. dimension 1, resp. codimension 1) faces are called **vertices**.
(resp. edges, resp. facets) of P. A polytope is simple if its supporting hyperplanes are in general position, meaning that each vertex is incident to $\dim(P)$ facets (or equivalently to $\dim(P)$ edges).

The (outer) normal cone of a face F of P is the cone generated by the outer normal vectors of the facets of P containing F. The (outer) normal fan F of P is the collection of the (outer) normal cones of all its faces. We say that a complete polyhedral fan is in position, meaning that each vertex is incident to $\dim(P)$ facets (resp. edges) of P. Proposition 3.

Consider two fans F, G of \mathbb{R}^d, and let $R \subset \mathbb{R}^d$ be a set of representative vectors for the rays of F. Assume that F is complete and simplicial, and that F refines G. Then the following assertions are equivalent:

1. G is the normal fan of a polytope in \mathbb{R}^d.
2. There exists a map $h : R \to \mathbb{R}_{\geq 0}$ with the property that for any $r, r' \in R$ and $S \subset R$ for which $C := \mathbb{R}_{\geq 0}(S \cup \{r\})$ and $C' := \mathbb{R}_{\geq 0}(S \cup \{r'\})$ are two adjacent maximal cones of F, if
 \[\alpha r + \alpha' r' + \sum_{s \in S} \beta_s s = 0 \]
 is the unique (up to rescaling) linear dependence with $\alpha, \alpha' > 0$ among $\{r, r'\} \cup S$, then
 \[\alpha h(r) + \alpha' h(r') + \sum_{s \in S} \beta_s h(s) \geq 0 \]
 with equality if and only the cone of G containing C and C' is the same.

Under these conditions, G is the normal fan of the polytope defined by
\[\{x \in \mathbb{R}^d \mid \langle r | x \rangle \leq h(r) \text{ for all } r \in R\} \].

2.2. Braid fan. We consider the braid arrangement $H_n := \{H_{ij} \mid 1 \leq i < j \leq n\}$ consisting of the hyperplanes of the form $H_{ij} := \{x \in \mathbb{R}^n \mid x_i = x_j\}$. The closures of the connected components of $\mathbb{R}^n \setminus \bigcup H_n$ (together with all their faces) form a fan. This fan is complete and simplicial, but not essential (all its cones contain the line \mathbb{R}^1). We thus consider its intersection F_n with the hyperplane $H := \{x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0\}$, that we call braid fan.

The fan F_n has a k-dimensional cone for each surjection from $[n]$ to $[k+1]$: namely, a surjection $\pi : [n] \to [k+1]$ corresponds to the cone $C(\pi) := \{x \in H \mid (i) \leq \pi(j) \Rightarrow x_i \leq x_j \text{ for all } i,j \in [n]\}$. In particular, the fan F_n has a maximal cone $C(\sigma)$ for each permutation $\sigma \in S_n$, and a ray for each subset of $[n]$ distinct from \emptyset and $[n]$. The fundamental chamber $C(1)$ has rays labeled by the $n - 1$ subsets of the form $[k]$ with $0 < k < n$. Any other chamber $C(\sigma)$ is obtained from $C(1)$ by permutation of coordinates and has thus rays labeled by $\sigma([k])$ with $0 < k < n$. Two permutations σ, σ' are said to be adjacent when their cones $C(\sigma)$ and $C(\sigma')$ share a facet, or equivalently when σ and σ' differ by the exchange of two consecutive values.

To understand the geometry of F_n, we need to choose convenient representative vectors in H for the rays of F_n. We denote by $\Delta := \{\alpha_1, \ldots, \alpha_{n-1}\}$ the root basis (where $\alpha_i := e_{i+1} - e_i$) and by $\nabla := \{\omega_1, \ldots, \omega_{n-1}\}$ the fundamental weight basis (i.e. the dual basis of the root basis Δ). A subset $\emptyset \neq R \subset [n]$ corresponds to the ray $r(R)$ of F_n whose kth coordinate in the fundamental weight basis is $\mathbb{1}_{k+1 \in R} - \mathbb{1}_{k \in R}$. The following immediate lemma is left to the reader.

Lemma 4. Let σ, σ' be two adjacent permutations. Let $\emptyset \neq R \subset [n]$ (resp. $\emptyset \neq R' \subset [n]$) be such that $r(R)$ (resp. $r(R')$) is the ray of $C(\sigma)$ not in $C(\sigma')$ (resp. of $C(\sigma')$ not in $C(\sigma)$). Then the linear dependence among the rays of the cones $C(\sigma)$ and $C(\sigma')$ is given by
\[r(R) + r(R') = r(R \cap R') + r(R \cup R') \]
where we set $r(\emptyset) = r([n]) = 0$ by convention.
2.3. Shards. We now briefly present shards, a powerful tool to deal with lattice quotients of the weak order with a geometric perspective. Shards were introduced by N. Reading [Rea03], see also his recent survey chapters [Rea16b, Rea16a]. For any $1 \leq i < j \leq n$, let $[i, j] := \{i, \ldots, j\}$ and $|i, j| := \{i + 1, \ldots, j - 1\}$. For any $S \subseteq |i, j|$, the shard $\Sigma(i, j, S)$ is the cone

$$
\Sigma(i, j, S) := \{ x \in \mathbb{R}^n \mid x_i = x_j, x_k \leq x_k \text{ for all } k \in S, x_i \geq x_k \text{ for all } k \in |i, j| \cap \{k\} \}.
$$

The hyperplane H_{ij} is decomposed into the 2^{n-1} shards $\Sigma(i, j, S)$ for all subsets $S \subseteq |i, j|$. The shards thus have to be thought of as pieces of the hyperplanes of the Coxeter arrangement. We denote by

$$
\Sigma_n := \{ \Sigma(i, j, S) \mid 1 \leq i < j \leq n \text{ and } S \subseteq |i, j| \}
$$

the collection of all shards of the Coxeter arrangement in \mathbb{R}^n. Before going further, we state a small technical lemma, whose proof is left to the reader.

Lemma 5. Let σ, σ' be two adjacent permutations, let $\emptyset \neq R \subseteq [n]$ (resp. $\emptyset \neq R' \subseteq [n]$) be such that $r(R)$ (resp. $r(R')$) is the ray of $C(\sigma)$ not in $C(\sigma')$ (resp. of $C(\sigma')$ not in $C(\sigma)$), and let k, k' be such that $R \setminus \{k\} = R' \setminus \{k'\}$. Assume without loss of generality that $k < k'$. Then the common facet of $C(\sigma)$ and $C(\sigma')$ belongs to the shard $\Sigma(k, k', R \cap R' \cap \{k, k'\})$.

It turns out that the shards are precisely the right pieces of the hyperplanes of H_n to delimit the cones of the quotient fan \mathcal{F}_\equiv for any lattice congruence \equiv of the weak order on \mathcal{S}_n. Conversely, to understand which sets of shards can be used to define a quotient fan, we need the forcing order between shards. A shard $\Sigma(i, j, S)$ is said to force a shard $\Sigma(k, \ell, T)$ if $k \leq i < j \leq \ell$ and $S = T \cap |i, j|$. We denote by $\Sigma(i, j, S) \succ \Sigma(k, \ell, T)$ the forcing order. The following statement uses shards to describe the lattice quotients of the weak order on \mathcal{S}_n.

Theorem 6 ([Rea16a, Sect. 10.5]). For any lattice congruence \equiv of the weak order on \mathcal{S}_n, there is a subset Σ_\equiv of the shards of Σ_n such that the interior of the maximal cones of the fan \mathcal{F}_\equiv are precisely the connected components of $H \setminus \bigcup \Sigma_\equiv$. Moreover, the map $\equiv \mapsto \Sigma_\equiv$ is a bijection between the lattice congruences of the weak order on \mathcal{S}_n and the upper ideals of the forcing order \prec.

Remark 7. It is often convenient to represent shards by arcs: the shard $\Sigma(i, j, S)$ corresponds to the arc with endpoints i and j and passing above the vertices of S and below those of $|i, j| \cap S$. Each region C of \mathcal{F}_\equiv then corresponds to a unique noncrossing arc diagram [Rea15] (given by the shards containing a down facet of C). This correspondence provides the canonical join representation of C. See [Rea15] for precise definitions and details. We also refer to N. Reading’s surveys [Rea16b, Rea16a] for further technology on the geometry of lattice quotients (see also Remark 12).

3. Quotientopes

This section is devoted to the proof of Theorem 2. We say that a function $f : \Sigma_n \to \mathbb{R}_{>0}$ is **forcing dominant** if

$$
f(\Sigma) > \sum_{\Sigma' \prec \Sigma} f(\Sigma')
$$

for any shard $\Sigma \in \Sigma_n$. Such a function clearly exists, take for example $f(\Sigma(i, j, S))$ to be $n^{-|j-i|^2}$. For the remaining of the paper, we fix a forcing dominant function f.

For a shard $\Sigma(i, j, S) \in \Sigma_n$ and a subset $\emptyset \neq R \subseteq [n]$, we define the **contribution** $\gamma(\Sigma, R)$ of Σ to R to be 1 if $|R \cap |i, j|\rangle = 1$ and $S = R \cap |i, j|\rangle$, and 0 otherwise. For a geometric interpretation of this definition, let \mathcal{H}^i_j denote the arrangement of the hyperplanes H_{ik} and H_{kj} for all $k \in |i, j|$. Then $\Sigma(i, j, S)$ contributes to R if the ray $r(R)$ lies in the (closed) region of \mathcal{H}^i_j containing $\Sigma(i, j, S)$, but not on $\Sigma(i, j, S)$.

We consider a lattice congruence \equiv of the weak order on \mathcal{S}_n. For a subset $\emptyset \neq R \subseteq [n]$, we define the **height** $h^\equiv(R) \in \mathbb{R}_+$ to be

$$
h^\equiv(R) := \sum_{\Sigma \in \Sigma_\equiv} f(\Sigma) \gamma(\Sigma, R).
$$

We set also $h^\equiv(\emptyset) = h^\equiv([n]) = 0$ by convention. This height function fulfills the following property.
Lemma 8. Let σ, σ' be two adjacent permutations. Let $\emptyset \neq R \subseteq [n]$ (resp. $\emptyset \neq R' \subseteq [n]$) be such that $\mathbf{r}(R)$ (resp. $\mathbf{r}(R')$) is the ray of $C(\sigma)$ not in $C(\sigma')$ (resp. of $C(\sigma')$ not in $C(\sigma)$). Then

$$h_\equiv^F(R) + h_\equiv^F(R') \geq h_\equiv^F(R \cap R') + h_\equiv^F(R \cup R')$$

with equality if and only if the common facet of $C(\sigma)$ and $C(\sigma')$ belongs to a shard of Σ_\equiv.

Proof. Let k, k' be such that $R \setminus \{k\} = R' \setminus \{k'\}$. Assume without loss of generality that $k < k'$. We consider a shard $\Sigma = \Sigma(i, j, S) \in \mathcal{S}_\equiv$ and evaluate its contributions to $R, R', R \cap R'$ and $R \cup R'$. We assume that $S \setminus \{k, k'\} = R \cap R' \cap [i, j]$, as otherwise $\Sigma(i, j, S)$ contributes to none of $R, R', R \cap R'$ and $R \cup R'$. Under this assumption,

- if $\{k, k'\} \cap [i, j] = \emptyset$, then $\gamma(\Sigma, R) = \gamma(\Sigma, R') = \gamma(\Sigma, R \cap R') = \gamma(\Sigma, R \cup R') = 1$;
- if $\{k, k'\} \cap [i, j] = \{k\}$, then $\gamma(\Sigma, R) = \gamma(\Sigma, R \cap R')$ and $\gamma(\Sigma, R') = \gamma(\Sigma, R \cup R')$;
- if $\{k, k'\} \cap [i, j] = \{k'\}$, then $\gamma(\Sigma, R) = \gamma(\Sigma, R \cap R')$ and $\gamma(\Sigma, R') = \gamma(\Sigma, R \cap R')$.

We conclude that

$$\gamma(\Sigma, R) + \gamma(\Sigma, R') = \gamma(\Sigma, R \cap R') + \gamma(\Sigma, R \cup R')$$

for any shard $\Sigma = \Sigma(i, j, S)$ for which $\{k, k'\} \not\subseteq [i, j]$. To deal with the remaining shards, consider the particular shard $\Sigma_* = \Sigma(k, k', R \cap R' \cap [k, k'])$. According to Lemma 5, Σ_* is a shard of Σ_\equiv if and only if the cones $C(\sigma)$ and $C(\sigma')$ do not belong to the same cone of \mathcal{F}_\equiv. Moreover, observe that Σ_* forces any shard $\Sigma(i, j, S) \in \Sigma_\equiv$ such that $S \setminus \{k, k'\} = R \cap R' \cap [i, j]$ and $\{k, k'\} \subseteq [i, j]$.

Therefore,

(i) If $\Sigma_* \not\subseteq \Sigma_\equiv$, then

$$h_\equiv^F(R) + h_\equiv^F(R') = h_\equiv^F(R \cap R') + h_\equiv^F(R \cup R').$$

(ii) If $\Sigma_* \in \Sigma_\equiv$, then

$$h_\equiv^F(R) + h_\equiv^F(R') - h_\equiv^F(R \cap R') - h_\equiv^F(R \cup R') \geq 2f(\Sigma_*) - 2 \sum_{\Sigma' \subsetneq \Sigma_*} f(\Sigma') > 0,$$

since $\gamma(\Sigma_*, R) = \gamma(\Sigma_*, R') = 1$ while $\gamma(\Sigma_*, R \cap R') = \gamma(\Sigma_*, R \cup R') = 0$ and f is forcing dominant. This concludes the proof. \qed

Combining the polytopality criterion of Proposition 3 with the observations of Lemmas 4 and 8, we obtain the polytopality of the quotient fan \mathcal{F}_\equiv.

Corollary 9. For any lattice congruence \equiv of the weak order on \mathcal{G}_n, and any forcing dominant function $f : \Sigma_n \to \mathbb{R}_{>0}$, the quotient fan \mathcal{F}_\equiv is the normal fan of the polytope

$$P_\equiv^F := \{x \in \mathbb{R}^n \mid \langle \mathbf{r}(R), x \rangle \leq h_\equiv^F(R) \text{ for all } \emptyset \neq R \subseteq [n]\}.$$

In particular, the graph of P_\equiv^F oriented in the linear direction $\alpha := (-n+1, -n+3, \ldots, n-3, n-1)$ is the Hasse diagram of the quotient of the weak order by \equiv.

We call quotientope the resulting polytope P_\equiv^F. See Figures 1 and 2 for illustrations. Note that not all quotientopes are simple since not all quotient fans are simplicial.

Remark 10 (Forcing dominance). Note that the forcing dominance condition could even be weakened to depend on the lattice congruence \equiv. More precisely, the construction and the proof still work for any function $f : \Sigma_n \to \mathbb{R}_{>0}$ such that

$$f(\Sigma) > \sum_{\Sigma' \subseteq \Sigma} f(\Sigma')$$

for any shard $\Sigma \in \Sigma_\equiv$.

Remark 11 (Insidahedra, outsidahedra and removalahedra). By definition, the quotientopes are generalized permutahedra [Pos09, PRW08] as their normal fans coarsen the braid fan. This means in particular that they are obtained by gliding inequalities of the permutahedron orthogonally to their normal vectors. Note that in our construction, the inequalities are glided inside the permutahedron. More precisely, if \mathcal{F}_\equiv refines \mathcal{F}_\equiv', then P_\equiv' contains P_\equiv^F. For example, the cube (quotientope of the coarsest congruence so that \mathcal{F}_\equiv is essential) is contained in all quotientopes,
while the permutahedron (quotientope of the finest congruence) contains all quotientopes. See Figures 1 and 2 for illustration. This construction thus contrasts with the classical construction of the associahedron [Lod04] and its generalizations [HL07, LP13, Pil13, PP16], which are all obtained by gliding inequalities outside the permutahedron. More precisely, the classical associahedron is obtained by removing certain inequalities from the facet description of the classical permutahedron. Note that the similar construction does not work in general: for example, the fan F_\equiv of the top right congruence of Figure 2 is not realized by the intersection of the half-spaces defining facets of the classical permutahedron normal to the rays of F_\equiv.

Remark 12 (Towards quotientopes for arbitrary hyperplane arrangements?). As already mentioned, Theorem 1 actually holds in much more generality (see [Rea16b] for a detailed survey). Consider a central hyperplane arrangement H defining a fan F, and let B be a distinguished chamber of F. For any chamber C of F, define its inversion set to be the set of hyperplanes of H that separate B from C. The poset of regions $\text{Pos}(H, B)$ is the poset whose elements are the chambers of F ordered by inclusion of inversion sets. A. Björner, P. Edelman and G. Ziegler discussed in [BEZ90] some conditions for this poset of regions to be a lattice: $\text{Pos}(H, B)$ is always a lattice when the fan F is simplicial, and the chamber B must be a simplicial for $\text{Pos}(H, B)$ to be a lattice. In [Rea05], N. Reading proves that when $\text{Pos}(H, B)$ is a lattice, any lattice congruence \equiv of $\text{Pos}(H, B)$ defines a complete fan F_\equiv obtained by gluing together the cones of the fan F that belong to the same congruence class of \equiv. The polytopality of this quotient fan F_\equiv however remains open in general. Although the polytopality criterion of Proposition 3 seems a promising tool to tackle this problem when F is simplicial, the general case seems much more intricate. Let us just observe that we benefited from three specific features of the Coxeter arrangement of type A:

- we used the simpliciality of the arrangement,
- we used the action of S_n to transport our understanding of the linear dependences from the initial chamber to any other chamber,
- these linear dependences are very simple in type A (only 3 or 4 terms and 0/1 coefficients).

Note that these properties hold for any finite Coxeter group (for the last property though, the linear dependences can get up to 5 terms and some coefficients 2 appear in non simply laced types). This suggests that the strategy of this paper could produce polytopal realizations when the hyperplane arrangement is the Coxeter arrangement of a finite Coxeter group.

Acknowledgements

We thank N. Reading for comments on a preliminary version of this paper.

References

