A 7-TILTING APPROACH TO DISSECTIONS OF POLYGONS

VINCENT PILAUD, PIERRE-GUY PLAMONDON, AND SALVATORE STELLA

ABSTRACT. We show that any accordion complex associated to a dissection of a convex polygon
is isomorphic to the support 7-tilting simplicial complex of an explicit finite dimensional algebra.
To this end, we prove a property of some induced subcomplexes of support 7-tilting simplicial
complexes of finite dimensional algebras.

1. INTRODUCTION

The theory of cluster algebras gave rise to several interpretations of associahedra [Tam51, Sta63].
Figure 1 shows two such interpretations for the rank 3 associahedron: as the exchange graph of
triangulations of a hexagon and as the exchange graph of support 7-tilting modules over the cluster
tilted algebra whose quiver with relations is as depicted. This follows from results in the setting
of the “additive categorification of cluster algebras” that was initiated in [CCS06, BMR*06].

F. Chapoton observed a similar isomorphism between the exchange graph of certain dissec-
tions of a heptagon and that of support 7-tilting modules over the path algebra of the quiver
122235 3 subject to the relation Sa = 0. Figure 2 shows these two exchange graphs, which
can be found in [Chal6, Fig. 7] and in [AIR14, Exm. 6.4].

The purpose of this note is to explain this isomorphism. Any reference dissection of a polygon
gives rise to an exchange graph on certain dissections. This exchange graph is the dual graph of the
accordion complex studied in [Chal6, GM16, MP17] (see Section 4). On the other hand, any finite
dimensional algebra gives rise to an exchange graph on support 7-tilting modules. This exchange
graph is the dual graph of the support 7-tilting simplicial complex [AIR14] (see Section 2). Our
main result is the following statement.

Theorem 1. Any accordion complex is isomorphic to the support T-tilting simplicial complex of
an explicit finite dimensional algebra. Thus, the corresponding exchange graphs are isomorphic.

AR, =3 teged

FIGURE 1. The exchange graph on triangulations of a hexagon (left) and the exchange graph on
support 7-tilting modules of the quiver with relations Q (right).
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FIGURE 2. The Ds-accordion complex of the dissection D, of Figure 3 (left) and the 2-term silting
complex of the quiver Q(D,) (right).

We will deduce this result from the known case of triangulations together with a general alge-
braic observation on support 7-tilting modules and their g-vectors (see Section 2 for definitions).
Consider a basic finite dimensional algebra A with a complete set {ey, ..., e,} of primitive pairwise
orthogonal idempotents. Let J be a non-empty subset of [n] and e;:= 3>, ;e;.

Theorem 2. The support T-tilting complex of e yAe; is isomorphic to the subcomplex of the support
T-tilting complex of A induced by the support T-tilting modules whose g-vectors’ coordinates vanish
outside of J.

2. RECOLLECTIONS ON T-TILTING THEORY

The theory of 7-tilting modules was introduced in [AIR14], and we mainly follow this source. Let
k be an algebraically closed field, let A be a basic finite-dimensional k-algebra, and let {e1,...,e,}
be a complete set of pairwise orthogonal idempotents in A. Denote by mod A the category of
finite-dimensional right A-modules, and by proj A its full subcategory of projective modules. We
denote by 7 the Auslander-Reiten translation of mod A (see, for instance, [ASS06, Chapter IV]).
For any A-module M, we denote by |M| the number of pairwise non-isomorphic direct summands
appearing in any decomposition of M into indecomposable modules.

2.1. Support 7-tilting pairs. Following [AIR14, Def. 0.1], we say that a A-module M is
o 7-rigid if Homp (M, 7M) = 0;
o 7-tilting if it is 7-rigid and |M| = |A][;
o support T-tilting if there exists an idempotent e of A such that e is in the annihilator of
M and M is a 7-tilting A/(e)-module.
Support 7-tilting modules always exist: A itself and the zero module are two examples.

It is useful to keep track of the idempotents in the annihilator of a support 7-tilting module.
For this reason, we will follow [AIR14, Def. 0.3] and call a pair (M, P), with M € mod A and
P € projA, a

o 7-rigid pair if M is 7-rigid and Homy (P, M) = 0;

© support T-tilting pair if it is a 7-rigid pair and |M| + |P| = |A[;

© almost complete support T-tilting pair if it is a 7-rigid pair and |M| + |P| = |A| — 1.
We will say that the pair (M, P) is basic if both M and P are basic A-modules. We define direct
sums of pairs componentwise.
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One of the main theorems of [AIR14] is the following.

Theorem 3 ([AIR14, Thm. 0.4]). A basic almost complete support T-tilting pair is a direct sum-
mand of exactly two basic support T-tilting pairs.

Definition 4. The support 7-tilting complex of A is the simplicial complex s7C(A) whose vertices
are the isomorphism classes of indecomposable 7-rigid pairs and whose faces are sets of 7-rigid pairs
whose direct sum is rigid. The exchange graph s7-tilt(A) is the dual graph of sTC(A), i.e. the graph
whose vertices are isomorphism classes of basic support 7-tilting pairs, and where two vertices are
joined by an edge whenever the corresponding support 7-tilting pairs differ by exactly one direct
summand.

2.2. 2-term silting objects. The study of support 7-tilting pairs turns out to be equivalent
to that of another class of objects: 2-term silting objects [AIR14, Sect. 3]. Let K°(projA) be
the homotopy category of bounded complexes of projective A-modules. Let 2-cpx(A) be the full
subcategory of K?(projA) consisting of 2-term objects, that is, complexes
P=--+—=Pu1—>Pn— Py —---
such that P, is zero unless m € {0,1}. We will write P, — P, to denote the complex
o= 0—>P —-F—->0—-.--

A 2-term object P is rigid if Homgs (P, P[1]) = 0. It is silting if

¢ it is rigid, and

o |P] = Al
This is a special case of a more general definition of silting objects, see [KV88]. Examples of 2-term
silting objects include 0 — A and A — 0.

Definition 5. The 2-term silting complex of A is the simplicial complex SC(A) whose vertices are
isomorphism classes of indecomposable rigid 2-term objects in K®(proj A) and whose faces are sets
of such objects whose direct sum is rigid. The exchange graph 2-silt(A) is the dual graph of SC(A),
i.e. the graph whose vertices are isomorphism classes of basic 2-term silting objects in K°(proj A),
and where two vertices are joined by an edge whenever the corresponding objects differ by exactly
one direct summand.

For any A-module M, denote by PM — PM a minimal projective presentation of M.

Theorem 6 ([AIR14, Thm. 3.2]). The map (M, P) — (PM — PM)@ (P — 0) induces an isomor-
phism of simplicial complexzes stTC(A) = SC(A), and thus of exchange graphs sT-tilt(A) = 2-silt(A).
2.3. The g-vector of a 2-term object. The results of this note rely on the following definition.

Definition 7. Let P be a 2-term object in 2-cpx(A). The g-vector of P, denoted by g(P), is the
class of P in the Grothendieck group Kj (K b(proj A))

We will usually denote g-vectors as integer vectors by using the basis of the abelian group
Ky (K b(proj A)) given by the classes of the indecomposable projective modules Aeq, ..., Ae, con-
centrated in degree 0. Thus, if P is the 2-term object

@ (Aei)éBbi — @ (Aei)éBCw,’
i€[n] i€[n]

then its g-vector is g(P) = (a; — bi)ig[n]-
In contrast to arbitrary 2-term objects, rigid 2-term objects are determined by their g-vector
in the following sense.

Theorem 8 ([DKO08, Sec. 2.3 & 2.4]). Let P and Q be two rigid 2-term objects.
(1) If g(P) = g(Q), then P and Q are isomorphic.
(i) The object P is isomorphic to an object of the form (Py — Py) & (Q e Q), where Py and

Py do not have non-zero direct summands in common.

id
Note that (Q s Q) is isomorphic to zero in K®(proj A).
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3. ALGEBRAIC RESULT

We use the same notations as in the previous section. In particular, A is a basic finite-
dimensional k-algebra with complete set of pairwise orthogonal idempotents {ej, ..., e,}.

Let J be a subset of [n]. We will study 2-term objects that only involve the indecomposable
projective modules Ae; with j € J.

Definition 9. Let 2-cpx;(A) be the full subcategory of 2-cpx(A) whose objects are the 2-term
objects P; — P, such that all the indecomposable direct summands of P; and Py have the form
Ae; with j € J.

Our main interest will lie in the rigid objects in 2-cpx ;(A).

Definition 10. Let SC;(A) be the subcomplex of SC(A) induced by J, that is, the subcomplex
whose vertices are rigid objects in 2-cpx;(A). Let 2-silt ;(A) be the dual graph of SC;(A). Its
vertices are isomorphism classes of basic objects P in 2-cpx ;(A) satisfying

o P is rigid;

o if P’ € 2-cpx;(A) and P @ P’ is rigid, then P’ is a direct sum of direct summands of P.
Two vertices are joined by an edge whenever the corresponding objects differ by exactly one
indecomposable direct summand.

In other words, the faces of SC;(A) correspond to basic rigid objects whose g-vectors have zero
coefficients in entries corresponding to elements not in J. In this sense, SC ;(A) is a representation-
theoretic analogue of the accordion complex [Chal6, GM16, MP17] (see Theorem 16). This is the
main motivation for the introduction of this object.

Let ej:=3" et € and consider the algebra ejAe;. Observe that ejAe; is isomorphic to
Enda (Aey). This has the following consequence. Let proj;(A) be the full subcategory of proj(A)
whose objects are isomorphic to direct sums of the indecomposable modules Ae;, with j € J.

Lemma 11. The k-linear categories proj;(A) and proj(esAey) are equivalent. In particular, the
categories K®(proj;(A)) and K®(proj(esAeys)) are equivalent.

This lemma immediately implies the following statement.

Theorem 12. The simplicial complezes SC;(A) and SC(ejAey) are isomorphic. In particular,
their dual graphs 2-silt ;(A) and 2-silt(ejAey) are isomorphic.

Corollary 13. The simplicial complex SCj(A) is a pseudomanifold of dimension |J| — 1. In
particular, its dual graph 2-silt ;(A) is |J|-regqular.

4. APPLICATION: ACCORDION COMPLEXES OF DISSECTIONS

Let P be a convex polygon. We call diagonals of P the segments connecting two non-consecutive
vertices of P. A dissection of P is a set D of non-crossing diagonals. It dissects the polygon into
cells. We denote by Q(D) the quiver with relations whose vertices are the diagonals of D, whose
arrows connect any two counterclockwise consecutive edges of a cell of D, and whose relations are
given by triples of counterclockwise consecutive edges of a cell of D. See Figure 3 for an example.

We now consider 2m points on the unit circle alternately colored black and white, and let P,
(resp. P,) denote the convex hull of the white (resp. black) points. We fix an arbitrary reference
dissection D, of P,. A diagonal d, of P, is a D,-accordion diagonal if it crosses either none or two
consecutive edges of any cell of D,. In other words, the diagonals of D, crossed by d, together
with the two boundary edges of P, crossed by d, form an accordion. A D,-accordion dissection is
a set of non-crossing D,-accordion diagonals. See Figure 3 for an example. We call D,-accordion
complex the simplicial complex AC(D,) of Do-accordion dissections. This complex was studied in
recent works of F. Chapoton [Chal6], A. Garver and T. McConville [GM16], and T. Manneville
and V. Pilaud [MP17].

For a diagonal d, of D, and a Dy-accordion diagonal J, intersecting d,, we consider the three
edges (including d,) crossed by de in the two cells of D, containing §,. We define 5(60 €D, | 6.)
to be 1, —1, or 0 depending on whether these three edges form a Z, a X, or a V. The g-vector of
with respect to D, is the vector g(Ds | ds) € RP° whose d,-coordinate is 5(50 €D, | 5.).
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FIGURE 3. A dissection D, with its quiver Q(D,) (left), a D,-accordion diagonal (middle) and a
D,-accordion dissection (right).

Example 14. When the reference dissection D, is a triangulation of P,, any diagonal of P, is
a Do-accordion diagonal. The D,-accordion complex is thus an n-dimensional associahedron (of
type A), where n = m — 3. As explained in [CCS06], the D,-accordion complex is isomorphic to
the 2-term silting complex of the quiver Q(D,) of the triangulation D,. The isomorphism sends a
diagonal of P4 to the 2-term silting object with the same g-vector. See Figure 1 for an illustration.

With the notations we introduced, we can now restate Theorem 1 more precisely.

Theorem 15. For any reference dissection Do, the Do-accordion complex is isomorphic to the
2-term silting complez of the quiver Q(D,).

One possible approach to Theorem 15 would be to provide an explicit bijective map between
D,-accordion diagonals and 2-term silting objects for Q(D,). Such a map is easy to guess using
g-vectors, but the proof that it is actually a bijection and that it preserves compatibility is intricate.
This approach was developed in the more general context of non-kissing complexes of gentle quivers
with relations in [PPP17]. In this note, we use an alternative simpler strategy to obtain Theorem 15
understanding accordion complexes as certain subcomplexes of the associahedron.

For that, consider two nested dissections D, C D.. Observe that any D,-accordion diagonal
is a D/ -accordion diagonal. Conversely a D’-accordion diagonal d, is a D.-accordion diagonal if
and only if it does not cross any diagonal 8, of DL \ D, as a Z or a X, that is if and only if
the 0.-coordinate of its g-vector g(D. | ds) vanishes for any ¢, € D/ \ D,. This observation shows
the following statement.

Theorem 16 ([MP17]). For any two nested dissections Do, C D, the accordion complex AC(D)
is isomorphic to the subcomplex of AC(D.) induced by D, -accordion diagonals §¢ whose g-vectors
g(DL | ds) lie in the coordinate subspace spanned by elements in D,.

In order to prove Theorem 15 we now turn to associative algebras. Let Q = (Q,I) be any gentle
quiver with relations [BR87] and J be any subset of vertices of Q. We call shortcut quiver the
quiver with relations Q; = (Qy,1;) whose vertices are the elements of .J, whose arrows are the
paths in Q with endpoints in J but no internal vertex in J, and whose relations are inherited from
those of Q. Then the quotient £Q;/I; of the path algebra kQ is gentle and is isomorphic to the
algebra e;(kQ/I) e;.

Example 17. Quivers of dissections are shortcut quivers: if D, C D, then Q(D,) = Q(D.)p,. In

particular, for any dissection Do, the quiver Q(D,) is a shortcut quiver of the quiver with relations
of a cluster tilted algebra of type A.

The following statement is an application of Theorem 2 to gentle algebras.

Theorem 18. For any gentle quiver with relations Qﬁ(md any subset J of vertices of Q, the 2-
term silting complex SC(QJ) for the shortcut quiver Q; is isomorphic to the subcomplex of the

2-term silting complex SC(Q) induced by 2-term silting objects whose g-vectors lie in the coordinate
subspace spanned by vertices in J.

Combining Theorems 16 and 18 together with Example 14, we obtain Theorem 15.
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5. CONCLUDING REMARKS

Remark 19. There is a geometric interpretation of the common phenomenon described in The-
orems 16 and 18. For a Ds-accordion dissection D,, denote by Rx>qg(Ds | Do) the polyhedral
cone generated by the set of g-vectors g(Do | Ds) := {g(Do | ds) | de € De}. The collection F&(D,)
of cones R>og(Ds|D,) for all Dy-accordion dissections D, is a complete simplicial fan called
g-vector fan of D, [MP17]. The crucial feature of this fan is that no coordinate hyperplane meets
the interior of any of its maximal cones. This is often referred to as the sign-coherence property of
g-vectors. It implies that for any two nested dissections D, C DY, the section of F&(D.) with the
coordinate subspace RP¢ is a subfan of 78(D’). The content of Theorem 16 is that this subfan is
the g-vector fan F8(D,). A similar statement holds for Theorem 18.

Remark 20. In the theory of cluster algebras, a standard operation consists of freezing a subset
of the initial cluster. This corresponds to taking a section of the d-vector fan by a coordinate
subspace. To the best of our knowledge, the same operation on the g-vector fan studied in this
note was not considered before in the literature.

Remark 21. The connection between representation theory and accordion complexes was already
considered by A. Garver and T. McConville in [GM16, Sect. 8]. However, their approach deals
with c-vectors and simple-minded collections while our approach deals with g-vectors and silting
objects.
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