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Abstract. We show that the graph of a simplicial polytope of dimension d ≥ 3

has no nontrivial minimum edge cut with fewer than d(d+ 1)/2 edges, hence

the graph is min{δ, d(d+1)/2}-edge-connected where δ denotes the minimum
degree. When d = 3, this implies that every minimum edge cut in a plane tri-

angulation is trivial. When d ≥ 4, we construct a simplicial d-polytope whose

graph has a nontrivial minimum edge cut of cardinality d(d + 1)/2, proving
that the aforementioned result is best possible.

1. Introduction

A polytope is the convex hull of finitely many points, its dimension is the di-
mension of its affine hull, its faces are its intersections with its supporting hyper-
planes (and the polytope itself), and its graph is the graph whose vertices are its
0-dimensional faces and whose edges are its 1-dimensional faces. A polytope of
dimension d is referred to as a d-polytope. A polytope is simplicial (resp. cubi-
cal) when all its faces are simplices (resp. combinatorially equivalent to cubes).
See [Grü03, Zie95] for standard textbooks on polytope theory.

The vertex (resp. edge) connectivity of a connected graph G is the minimum
number of vertices (resp. edges) whose removal disconnects G. More precisely, the
edge connectivity of G is the cardinality of the smallest edge cut of G. An edge
cut is the set of edges E(V◦, V•) with a vertex in V◦ and a vertex in V• for some
partition V◦ t V• = V of the vertex set V of G with V◦ 6= ∅ 6= V•. A minimum
edge cut is an edge cut of minimal cardinality. See [BM08] for a textbook on
graph theory.

A famous result of Balinski [Bal61] ensures that the graph of a d-polytope is
d-vertex-connected, which implies that it is d-edge-connected. This is the best
possible lower bound for the edge connectivity of general polytopes (think about
the prism over a simplex). In contrast, the last two authors have investigated further
vertex and edge connectivity properties of graphs of cubical polytopes [BPVU20,
BPVU21]. In this paper, we focus on graphs of simplicial polytopes and establish
the following property.

Theorem. If V◦tV• partitions the vertices of a simplicial d-polytope and |V•|≥d≥3,
the edge cut E(V◦, V•) has at least m(2d+ 1−m)/2 edges where m = min(d, |V◦|).
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Our proof relies on the famous Lower Bound Theorem of Barnette [Bar71, Bar73]
which states (in particular) that the classical stacked polytopes have the mini-
mum number of edges among all simplicial polytopes with the same dimension and
number of vertices. We also use these stacked polytopes to construct simplicial
d-polytopes that prove that our theorem is best possible for simplicial polytopes.

This theorem implies surprising results on the edge connectivity of the graphs
of simplicial polytopes. Note that the edges incident to a given vertex always form
an edge cut that we call trivial.

Corollary. Every nontrivial minimum edge cut in the graph of a simplicial polytope
of dimension d ≥ 3 has at least d(d+ 1)/2 edges.

Corollary. The graph of a simplicial polytope of dimension d ≥ 3 and minimum
degree δ is min{δ, d(d+ 1)/2}-edge-connected.

Consider now the specific case of d = 3. By Steinitz’s theorem [Ste22], the graph
of a 3-polytope is planar and 3-connected, and a planar realization of the graph
of a simplicial 3-polytope is a plane triangulation. Therefore, abusing terminology
slightly, we will use interchangeably the terms plane triangulation and simplicial 3-
polytope. In this case, Euler’s formula [Eul58b, Eul58a] implies that the minimum
degree of the plane triangulation is at most five, from which we derive the following
statement.

Corollary. Every minimum edge cut in a plane triangulation is trivial.

As this result is the base case of the inductive proof of our theorem, we provide a
short, graph-theoretical proof of this corollary in Section 2. Surprisingly, this result
seems to be new.

We conclude this introduction with a quick historical remark on the genesis of the
current version of the paper. In a first version [PVU21], GPV and JU proved that
every nontrivial minimum edge cut in the graph of a simplicial d-polytope has at
least 4d−8 edges. The proof relied on links of vertices in a simplicial polytope, but
could not be pushed to get a quadratic bound. They also already constructed the
examples of simplicial d-polytopes with nontrivial edge cuts of cardinality d(d+1)/2.
While anonymously refereeing the paper, VP proposed the use of the Lower Bound
Theorem for simplicial polytopes [Bar71, Bar73] to establish the quadratic bound
d(d + 1)/2. In agreement with the editors, we decided to combine the results to
produce a new version of the paper. Another referee then catched an embarrassing
flaw in the proof, forcing us to seriously revise the argument, and leading to the
current version of the paper.

2. Plane triangulations

We first provide elementary proofs of the aforementioned statements in the case
of plane triangulations. Recall that if a simple plane graph G has v ≥ 3 vertices
and e edges, then Euler’s formula [Eul58b, Eul58a] and double counting the edge–
face incidences show that e ≤ 3v − 6, with equality if and only if G is a plane
triangulation. In turn, this implies that the minimum degree δ of G is at most 5,
since double counting the vertex–edge incidencies gives δv ≤ 2e ≤ 6v − 12.

Proposition 1. If V◦ t V• partitions the vertices of a plane triangulation with
|V◦| ≥ 1 and |V•|≥3, then the edge cut E(V◦, V•) has at least m(7 − m)/2 edges
where m = min(3, |V◦|).
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Proof. Denote by G the plane triangulation, and by G◦ and G• the subgraphs of G
induced by V◦ and V• respectively. As subgraphs of planar graphs, both G◦ and G•
are planar. Denote by v, v◦, v• the number of vertices and by e, e◦, e• the number
of edges of G,G◦, G•, and by e◦• := |E(V◦, V•)| the number of edges of G from V◦
to V•. Since v• ≥ 3, we have e• ≤ 3v• − 6. Since v = v◦+ v• and e = e◦+ e•+ e◦•,
we get

e◦• = e− e◦ − e• ≥ (3v − 6)− e◦ − (3v• − 6) = 3v◦ − e◦.

Hence,

• if v◦ = 1, then e◦ = 0 and e◦• ≥ 3 = 1(7− 1)/2,
• if v◦ = 2, then e◦ ≤ 1 and e◦• ≥ 5 = 2(7− 2)/2,
• if v◦ ≥ 3, then e◦ ≤ 3v◦ − 6 so that e◦• ≥ 6 = 3(7− 3)/2. �

Corollary 2. Every minimum edge cut in a plane triangulation is trivial.

Proof. Denoting by δ the minimum degree of the triangulation (hence 3 ≤ δ ≤ 5),
and using the notations from the previous proof,

• if v◦ = 1, then the cut is trivial,
• if v◦ = 2, then e◦ ≤ 1 and e◦• ≥ 2δ−1 > δ, so that the cut is not minimum,
• if v◦ ≥ 3, then e◦• ≥ 6 > δ, so that the cut is not minimum. �

3. Simplicial polytopes

We now consider a partition V◦ t V• of the vertices of a simplicial d-polytope P
with V◦ 6= ∅ 6= V•. We use the same notations as before:

• for vertices, v = v◦+v• where v◦ := |V◦| and v• := |V•|, and m := min(d, v◦),
• for edges e = e◦ + e• + e◦• where e◦ := |E(V◦, V◦)|, e• := |E(V•, V•)|, and
e◦• := |E(V◦, V•)|.

Our objective is the following statement, announced in the introduction.

Theorem 3. If v• ≥ d ≥ 3, then e◦• ≥ m(2d+ 1−m)/2.

Remark 4. Note that if v◦ = 1, then e◦• is the degree of the only vertex of V◦,
which is indeed at least d. When v◦ = 2, Theorem 3 is equivalent to the fact that
if two adjacent vertices of degree d in a d-polytope are contained only in simplex
faces, then the polytope is a polygon or a d-simplex. This is a slight refinement
of the classical exercise asserting that the polygons and the simplices are the only
simple and simplicial polytopes. We omit the elementary proof here as we do not
need it to show Theorem 3.

3.1. Basic case from the Lower Bound Theorem. We first observe that The-
orem 3 holds when both parts of the partition are small enough. The proof relies on
the classical Lower Bound Theorem for edges of simplicial polytopes by Barnette
[Bar71, Bar73], which will also be used in the inductive proof of the general case.

Theorem 5 ([Bar73]). A simplicial d-polytope with v vertices has at least dv−
(
d+1

2

)
edges.

Proposition 6. Theorem 3 holds when max(v◦, v•) ≤ d+ 1.
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Proof. Since there are at most
(
v◦
2

)
edges inside V◦ and at most

(
v•
2

)
inside V•, an

application of the Lower Bound Theorem of Theorem 5 yields that

e◦• = e− e◦ − e• ≥ d(v◦ + v•)−
(
d+1

2

)
−

(
v◦
2

)
−

(
v•
2

)
= v◦(2d+ 1− v◦)/2 + v•(2d+ 1− v•)/2− d(d+ 1)/2

= v◦(2d+ 1− v◦)/2 = m(2d+ 1−m)/2

where the penultimate equality holds since v• = d or v• = d + 1, and the last
equality holds since v◦ ≤ d+ 1. �

3.2. Three auxiliary lemmas. We now prove three auxiliary lemmas that will
be essential in our inductive proof of Theorem 3.

Consider a vertex w of V• with v̄◦ neighbors in V◦ and v̄• neighbors in V•. We
say that w is miscolored if m− v̄◦ < d− v̄•.
Lemma 7. Theorem 3 holds as soon as it holds when no vertex of V• is miscolored.

Proof. Fix a simplicial d-polytope, and for a partition V◦ t V• with v• ≥ d of
its vertices define k◦• := e◦• −m(2d+ 1−m)/2. Theorem 3 is equivalent to k◦•
being nonnegative for all possible partitions, and thus we can assume that k◦• is
minimum across all possible such partitions. By Proposition 6, Theorem 3 holds
if max(v◦, v•) ≤ d + 1. We can thus assume that v◦ > d or v• > d. We will
now prove that no vertex of V• is miscolored, so that Theorem 3 indeed holds by
assumption.

Assume first that v• > d and that w ∈ V• is miscolored. Consider the par-
tition V ′◦ t V ′• where V ′◦ :=V◦ ∪ {w} and V ′• :=V• r {w}. Let v′◦ := |V ′◦ | = v◦ + 1,
v′• := |V ′• | = v•−1, m′ := min(d, v′◦) and e′◦• := |E(V ′◦ , V

′
•)|. Note that v′• = v•−1 ≥ d

so that the partition is valid. As the only modified vertex is w, we have

e◦• = e′◦• + v̄◦ − v̄• > e′◦• +m− d,
where the last inequality holds since w is miscolored. If v◦ < d then m = v◦ and
m′ = v′◦ = v◦ + 1, hence e◦• > e′◦• + v◦ − d so that

e◦• −m(2d+ 1−m)/2 > e′◦• + v◦ − d− v◦(2d+ 1− v◦)/2
= e′◦• − (v◦ + 1)(2d− v◦)/2
= e′◦• −m′(2d+ 1−m′)/2.

If v◦ ≥ d, then m = d and m′ = d, hence e◦• > e′◦• so that

e◦• −m(2d+ 1−m)/2 > e′◦• −m′(2d+ 1−m′)/2.
In both cases, we have contradicted that V◦ t V• is the partition with minimal k◦•.

Assume now that v◦ > d while v• = d and that w ∈ V• is miscolored. Consider
the partition V ′◦tV ′• where V ′◦ :=V•r{w} and V ′• :=V◦∪{w}. Let v′◦ := |V ′◦ | = v• − 1,
v′• := |V ′• | = v◦+1, m′ := min(d, v′◦) and e′◦• := |E(V ′◦ , V

′
•)|. Note that v′• = v◦+1 ≥ d

so that the partition is valid. As before, we have

e◦• = e′◦• + v̄◦ − v̄• > e′◦• +m− d,
where the last inequality holds since w is miscolored. Moreover m = d and
m′ = d− 1 so that m(2d+ 1−m) = d(d+ 1) > (d− 1)(d+ 2) = m′(2d+ 1−m′),
and we obtain

e◦• −m(2d+ 1−m)/2 > e′◦• −m′(2d+ 1−m′)/2,
contradicting again that V◦ t V• is the partition with minimal k◦•. �
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Lemma 8. Theorem 3 holds as soon as it holds when each vertex of V◦ is adjacent
to at least one vertex of V•.

Proof. By induction on the number of vertices of V◦ with no neighbor in V•. As-
sume that there is such a vertex w. Observe that v◦ ≥ d + 1 (since all the
neighbours of w are in V◦) and that v• ≥ d (by assumption in Theorem 3).
Let V ′◦ :=V◦ r {w} and V ′• :=V•, and consider the convex hull P ′ of V ′◦ t V ′• .
Since the original polytope P is simplicial, a slight perturbation of its vertices
preserves its graph. We can thus assume that its vertices are in general position
(any d + 1 of its vertices are affinely independent), so that the resulting poly-
tope P ′ is still simplicial. As |V ′◦ | = |V◦| − 1 ≥ d and |V ′• | = |V•| = v• ≥ d, and
there is one less vertex in V ′◦ with no neighbor in V ′• , we obtain by induction that
e◦• = |E(V◦, V•)| = |E(V ′◦ , V

′
•)| ≥ d(d+ 1)/2. �

Lemma 9. For any edge w◦w• with w◦ ∈ V◦ and w• ∈ V•, the number of neighbors
of w◦ in V• plus the number of neighbors of w• in V◦ is at least d+ 1.

Proof. The edge w◦w• is contained in at least d − 1 2-faces, which are triangles
since the polytope is simplicial. For each such triangle w◦w•w, the vertex w is a
neighbor of both w◦ and w• and belongs to either V◦ or V•. Every such vertex w is
counted once when adding the number of neighbors of w◦ in V• and the number of
neighbors of w• in V◦. Adding w• and w◦ to these d− 1 vertices w, we obtain the
desired count. �

3.3. Inductive proof. We are now ready to deal with the general case.

Proof of Theorem 3. The proof works by induction on d ≥ 3. The base case d = 3
was already proved in Proposition 1.

We consider a vertex w of V• with v̄◦ neighbors in V◦ and v̄• neighbors in V•.
Moreover, we assume that w is chosen so that v̄◦ is maximal. By Lemma 8, we
may assume that each vertex w◦ in V◦ is adjacent to at least one neighbor w• in V•.
Since each w• ∈ V• has at most v̄◦ neighbors in V◦ by our maximality assumption,
we obtain that w◦ has at least d+ 1− v̄◦ neighbors in V• by Lemma 9.

We now consider the vertex figure P̄ of w in P , that is, the polytope obtained by
intersecting P with a hyperplane separating w from all other vertices of P . Since P
is a simplicial d-polytope, P̄ is a simplicial (d− 1)-polytope, with

• a vertex x̄ for each neighbor x of w in P , and
• an edge x̄ȳ for each 2-face xyw of P .

Consider the partition V̄◦tV̄• of the vertices of P̄ , where V̄◦ = {x̄ |x ∈ V◦ neighbor of w}
and V̄• = {x̄ |x ∈ V• neighbor of w}. Note that |V̄◦| = v̄◦ and |V̄•| = v̄•, and denote
by ē◦• := |E(V̄◦, V̄•)| the number of edges of P̄ between V̄◦ and V̄•.

Observe that the following subsets of the cut E(V◦, V•) are pairwise disjoint:

• edges incident to w (v̄◦ of them),
• edges not incident to w that lie in a 2-face of P containing w (these corre-

spond to the ē◦• edges of P̄ between V̄◦ and V̄•),
• edges incident to some w◦ in V◦ not adjacent to w (there are v◦ − v̄◦ such

vertices, each of which is incident to at least d + 1 − v̄◦ edges from the
cut E(V◦, V•)).

Hence, we obtain that

(1) e◦• ≥ v̄◦ + ē◦• + (v◦ − v̄◦)(d+ 1− v̄◦).
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We now distinguish two cases, depending on whether v̄• is less than or greater
than d− 1.

Case 1: v̄• ≥ d − 1. In this case, we can directly apply the induction on P̄ .
Defining m̄ := min(d− 1, v̄◦), we have

ē◦• ≥ m̄(2d− 1− m̄)/2.

If v̄◦ ≥ d, we have m̄ = d−1 and we obtain that ē◦• ≥ d(d−1)/2, which together
with (1) yields that e◦• ≥ d+ d(d− 1)/2 = d(d+ 1)/2, as desired.

If v̄◦ ≤ d− 1, we have m̄ = v̄◦, and thus (1) becomes

e◦• ≥ v̄◦ + v̄◦(2d− 1− v̄◦)/2 + (v◦ − v̄◦)(d+ 1− v̄◦)
= v̄◦(v̄◦ − 1)/2 + v◦(d+ 1− v̄◦)
≥ v̄◦(v̄◦ − 1)/2 +m(d+ 1− v̄◦)
≥ m(2d+ 1−m)/2.

To see the last inequality, define

f(t) := t(t− 1)/2 +m(d+ 1− t)−m(2d+ 1−m)/2

= t(t− 1)/2 +m(m+ 1− 2t)/2.

The last inequality amounts to proving that f(v̄◦) ≥ 0. For this, observe that
when t ≤ m, we have f ′(t) = t−1/2−m < 0 hence f(t) ≥ f(m) = 0. Since v̄◦ ≤ v◦
and v̄◦ ≤ d− 1, we have v̄◦ ≤ min(d, v◦) = m, and we conclude that f(v◦) ≥ 0.

Case 2: v̄• < d− 1. In this case, we will need one more careful analysis, since we
cannot directly apply induction on P̄ . Define

(2) v̄′◦ :=m− v̄◦ and v̄′• := d− v̄•.

By Lemma 7, we can assume that no vertex of V• is miscolored, and in particular
that w is not miscolored, that is v̄′◦ ≥ v̄′•. Moreover, since v̄• < d − 1, we obtain
that v̄′◦ ≥ v̄′• ≥ 0, which implies that

(3) v̄′◦(v̄
′
◦ − 1) ≥ v̄′•(v̄′• − 1) and v̄◦ ≤ m ≤ d.

Applying the Lower Bound Theorem stated in Theorem 5 to P̄ , we obtain that

ē◦• ≥ (d− 1)(v̄◦ + v̄•)−
(
d
2

)
−
(
v̄◦
2

)
−
(
v̄•
2

)
= (d− 1)(m− v̄′◦ + d− v̄′•)−

(
d
2

)
−

(
m−v̄′◦

2

)
−
(
d−v̄′•

2

)
(by (2))

= m(2d− 1 +m)/2− v̄′◦(2d− 2m+ v̄′◦ − 1)/2− v̄′•(v̄′• − 1)/2

≥ m(2d− 1 +m)/2− v̄′◦(d−m+ v̄′◦ − 1) (by (3))(4)

Since v̄◦ ≤ m ≤ d and m ≤ v◦, combining (1), (2), and (4), we thus obtain that

e◦• ≥ v̄◦ + ē◦• + (v◦ − v̄◦)(d+ 1− v̄◦) ≥ v̄◦ + ē◦• + (m− v̄◦)(d+ 1− v̄◦)
≥ m− v̄′◦ +m(2d− 1 +m)/2− v̄′◦(d−m+ v̄′◦ − 1) + v̄′◦(d+ 1−m+ v̄′◦)

= m(2d+ 1−m)/2 + v̄′◦ ≥ m(2d+ 1−m)/2. �
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3.4. Edge connectivity. In this section, we show that Theorem 3 gives the an-
nounced quadratic bound on the size of nontrivial minimum edge cuts in simplicial
d-polytopes. It is based on the following elementary observation.

Lemma 10. If a graph has minimum degree δ and a nontrivial minimum edge cut
E(V◦, V•), then both V◦ and V• have cardinality at least δ.

Proof. Define as before v◦ := |V◦|, v• := |V•|, and e◦• := |E(V◦, V•)|. Since the cut is
minimum, we have e◦• ≤ δ. Because each vertex of V◦ is adjacent to at least δ
vertices, of which at most v◦−1 belong to V◦, we have v◦(δ − v◦ + 1) ≤ e◦•. Hence,
we obtain that v◦(δ − v◦ + 1) ≤ δ, which implies that v◦ ≥ δ since 1 and δ are the
two roots of the quadratic polynomial x(δ − x + 1) − δ = −(x − 1)(x − δ). By
symmetry, we obtain that v◦ ≥ δ and v• ≥ δ. �

Corollary 11. Every nontrivial minimum edge cut in the graph of a simplicial
polytope of dimension d ≥ 3 has at least d(d+ 1)/2 edges.

Proof. By Lemma 10, both parts of the cut have size at least the minimum degree
of the graph, hence at least d. The result thus directly follows from Theorem 3. �

Corollary 12. The graph of a simplicial polytope of dimension d ≥ 3 and minimum
degree δ is min{δ, d(d+ 1)/2}-edge-connected.

3.5. A construction of nontrivial minimum edge cuts. To conclude, we con-
struct polytopes that show that the bounds of Theorem 3 and Corollary 11 are tight.

We need to recall the definitions of two classical families of polytopes.

(i) The cyclic d-polytope with n ≥ d+1 vertices is the convex hull of n arbitrary
points on the moment curve t 7→ (t, t2, t3, . . . , td) of Rd. Note that the cyclic
d-polytope is simplicial and achieves the maximal number of i-faces among
all d-polytopes with the same number of vertices for any i ≤ d, as described
by the Upper Bound Theorem for polytopes [McM70]. Moreover, its graph
is complete for any d ≥ 4.

(ii) A stacked d-polytope is either a d-simplex or a d-polytope with n ≥ d + 2
vertices obtained as the convex hull of a stacked d-polytope with n − 1
vertices together with a point located very close to one of its facets (so
that it is visible from this facet, but not from the other facets). Note that
all stacked d-polytopes are simplicial and achieve the minimum number of
i-faces among all simplicial d-polytopes with the same number of vertices
for any i ≤ d, as described by the Lower Bound Theorem for simplicial
polytopes [Bar71, Bar73].

We will use the following very specific family of stacked polytopes.

Lemma 13. For any m ≤ d, there is a stacked d-polytope with m + d vertices
partitioned into V◦ t V• such that V◦ forms an (m − 1)-face F◦ and V• forms a
(d−1)-face F•. Moreover, the corresponding cut E(V◦, V•) has size m(2d+1−m)/2.

Proof. Consider the family of stacked d-polytopes Sj for j = 1, . . . ,m constructed
as follows:

(i) S1 is a d-simplex, with vertices labelled w◦1 , w
•
1 , . . . , w

•
d.

(ii) For j = 2, . . . ,m, the polytope Sj is obtained by stacking a vertex w◦j on the
facet of Sj−1 with vertices w◦1 , . . . , w

◦
j−1, w

•
j , . . . , w

•
d. Note that the vertices

w◦1 , . . . , w
◦
j , w

•
j+1, . . . , w

•
d then form a facet of Sj .
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Then Sm is a stacked d-polytope with m + d vertices, where V◦ := {w◦1 , . . . , w◦m}
forms an (m− 1)-face F◦ while V• := {w•1 , . . . , w•d} forms a (d− 1)-face F•. Finally,
since stacked polytopes achieve the minimum number of edges described by the
Lower Bound Theorem for simplicial polytopes, the corresponding cut E(V◦, V•)
has size

|E(V◦, V•)|=: e◦• = d(m+ d)−
(
d+1

2

)
−

(
m
2

)
−
(
d
2

)
= m(2d+ 1−m)/2. �

We first use these stacked polytopes to show that the bound of Theorem 3 is tight.

Proposition 14. For any v◦ ≥ 1 and v• ≥ d ≥ 3, there is a partition V◦ t V•
of the vertices of a stacked d-polytope with |V◦| = v◦ and |V•| = v•, and such
that e◦• = m(2d+ 1−m)/2 where m := min(d, v◦).

Proof. Consider the family of stacked d-polytopes Sj,k for j = m, . . . , v◦ and
k = d, . . . , v• constructed as follows:

(i) Sm,d is the stacked d-polytope with m+ d vertices described in Lemma 13.
(ii) For j = m+1, . . . , v◦, the polytope Sj,k is obtained by stacking a vertex w◦j

on the facet of Sj−1,k with vertices w◦j−d, . . . , w
◦
j−1. Note that the vertices

w◦j−d+1, . . . , w
◦
j then form a facet of Sj,k.

(iii) For k = d+ 1, . . . , v•, the polytope Sj,k is obtained by stacking a vertex w•k
on the facet of Sj,k−1 with vertices w•k−d, . . . , w

•
k−1. Note that the vertices

w•k−d+1, . . . , w
•
k then form a facet of Sj,k.

Note that we do nothing in Step (ii) when v◦ ≤ d. Observe also that the order in
which these stackings are performed is not relevant. The polytope Sv◦,v• is a staked
d-polytope whose vertices are partitioned by V◦ t V• where V◦ :=

{
w◦j

∣∣ j ∈ [v◦]
}

and V• := {w•k | k ∈ [v•]}. Moreover, the edges of the cut E(V◦, V•) all belong to the
original polytope Sm+d. Hence, the cut has size e◦• = m(2d+ 1−m)/2. �

To prove that the bound of Corollary 11 is tight, we additionally need the fol-
lowing classical transformations on simplicial polytopes. Let P and P ′ be two
d-polytopes with a facet F of P projectively isomorphic to a facet F ′ of P ′. Their
connected sum P#P ′ is obtained by “gluing” P and P ′ along F and F ′. Projec-
tive transformations on the polytopes P and P ′ may be required for the connected
sum to be convex. The connected sum of two polytopes is depicted in Figure 1.
This operation was used for instance by Eckhoff to prove that f -vectors of poly-
topes are not unimodal; see [Zie95, Exm. 8.41]. Observe that stacking a vertex
on a simplex facet of a polytope amounts to performing the connected sum of the
polytope with a simplex along the facet. Our next construction is based on per-
forming connected sums of simplicial polytopes, which is always possible because
every polytope combinatorially isomorphic to a simplex is projectively isomorphic
to the simplex [McM76].

Proposition 15. For each d ≥ 4, there is a simplicial d-polytope with minimum
degree at least d(d+1)/2 and a nontrivial minimum edge cut with d(d+ 1)/2 edges.

Proof. Let S be a stacked polytope with 2d vertices and two disjoint facets F◦
and F• (whose existence is guaranteed by Lemma 13 when m = d). Let C be the
cyclic d-polytope with 1+d(d+1)/2 vertices. Consider the polytope P obtained by
the connected sum C#S#C, where the copies of C are glued along the facets F◦
and F• of S, and along arbitrary facets of the two copies of C. Since the graph of C
is complete with 1 + d(d+ 1)/2 vertices, it has minimum degree d(d+ 1)/2. Hence,
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P

# =
P ′

P#P ′

F F ′

Figure 1. Connected sum of two polytopes.

so does the graph of P . Moreover, the number of edges joining a vertex of F◦ to
a vertex of F• is precisely d(d + 1)/2 by Lemma 13. We conclude that P has a
nontrivial edge cut of size d(d+ 1)/2, which is thus minimum by Corollary 11. �
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