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On a Dispersion Problem in Grid Labeling

Minghui Jiang ∗ Vincent Pilaud ‡ Pedro J. Tejada ∗

Abstract

Given k labelings of a finite d-dimensional grid, define
the combined distance between two labels to be the sum
of the ℓ1-distance between the two labels in each label-
ing. We present asymptotically optimal constructions of
k labelings of cubical d-dimensional grids which maxi-
mize the minimum combined distance.

1 Introduction

Let L1 and L2 be two bijections from the cells of an
n × n grid to a label set S of n2 symbols. Then each
symbol in S labels two cells, one in L1 and one in L2.
Define the combined distance between two symbols x
and y in S as the distance between the two cells in
L1 plus the distance between the two cells in L2 that
are labeled by x and y. How to arrange the symbols
of the two labelings such that the minimum combined
distance between any two symbols is maximized? We
refer to Figure 1 for an example.

Figure 1: Two labelings of a 3 × 3 grid. With the first
labeling fixed, the second labeling is one of 840 solutions for
which the minimum combined distance is 3.

This problem was posed at the open problems ses-
sion of CCCG 2009 [4] by Belén Palop, who formulated
the problem from her research with Zhenghao Zhang in
wireless communication. This problem has many appli-
cations to wireless communication, in particular, per-
mutation code generation [7, Chapter 9]. A permuta-
tion code uses a grid of symbols for each channel when
transmitting data over multiple channels; transmission
errors are more easily detected if the combined distance
between any pair of symbols in the grids is large.
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The problem is also related to Latin hypercube de-
signs [2, 3]. A Latin hypercube design (LHD) is an ar-
rangement of n points in a k-dimensional grid with n
distinct coordinates in each dimension, such that no two
points share a coordinate in any dimension. In other
words, it is a set of n non-attacking rooks in a k-dimen-
sional chessboard; for the sake of understanding, we will
prefer the term rook placement rather than LHD in this
article. LHDs are useful in obtaining approximation
models for black-box functions that may have too many
combinations of input parameters and need to be tested
on only a reduced subset of the combinations.
See [5] for a survey on related topics in graph labeling.

The grid labeling problem illustrated above was de-
fined for two labelings of a square grid, and can be natu-
rally generalized. We now introduce some formal defini-
tions. Throughout the article, we denote by 〈n 〉 the set
{0, 1, 2, . . . , n− 1}. We consider the d-dimensional grid
〈n 〉d, with n distinct coordinates in each dimension. A
labeling of 〈n 〉d is a bijection L : 〈n 〉d → 〈nd 〉 which
assigns a label of 〈nd 〉 to each grid cell of 〈n 〉d. For any
two labels x, y ∈ 〈nd 〉, we denote by dist(L, x, y) the
ℓ1-distance

∥

∥L−1(x) − L−1(y)
∥

∥

1
between the grid cells

of 〈n 〉d respectively labeled by x and y in the labeling
L. Given k labelings L1, . . . , Lk of 〈n 〉d, we define the
combined distance between the labels x, y ∈ 〈nd 〉 as

cd(L1, . . . , Lk, x, y) :=

k
∑

i=1

dist(Li, x, y),

and the minimum combined distance of L1, . . . , Lk as

mcd(L1, . . . , Lk) := min
x,y∈〈nd 〉

cd(L1, . . . , Lk, x, y).

We study the maximal value of this minimum:

γ(k, n, d) := max
L1,...,Lk

mcd(L1, . . . , Lk),

where L1, . . . , Lk range over all combinations of k label-
ings of 〈n 〉d.
The number γ(k, n, 1) has been studied in the context

of Latin hypercube designs [2, 3]. The following bounds
were previously known:

Theorem 1 (van Dam et al. [2, 3]) For k, n ≥ 2,

γ(k, n, 1) ≤
⌊

k

3
(n+ 1)

⌋

.

Moreover, γ(2, n, 1) =
⌊√

2n+ 2
⌋

for any n ≥ 2.
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We obtain asymptotically tight bounds on the num-
ber γ(k, n, 1) in the following theorem:

Theorem 2 For any integers k ≥ 2 and n ≥ 2,

k

⌊

(n

k

)1/k
⌋k−1

≤ γ(k, n, 1) ≤ n− 1

(n/k!)1/k − 1
.

Our next theorem generalizes Theorem 2:

Theorem 3 For any integers k ≥ 2, n ≥ 2, and d ≥ 1,

k

⌊

(n

k

)1/k
⌋k−1

≤ γ(k, n, d) ≤ n− 1

(nd/(dk)!)1/(dk) − 1
.

The following corollary is immediate:

Corollary 4 γ(k, n, d) = Θ(n1−1/k) for fixed k and d.

Let us briefly comment on the method we use to prove
the lower bound of Theorem 2. Instead of providing ex-
plicit but complicated formulas for the k labelings maxi-
mizing the combined distances, we use a more geometric
approach. We first provide simple and explicit formulas
for the k labelings only for certain values of n, and we
then use the geometric interpretation in terms of rook
placements to generate good labelings for arbitrary val-
ues of n. This approach enables us to restrict the proof
to friendly values of n, and thus to avoid unnecessary
technical calculations for general values of n. Let us un-
derline that even if we do not provide explicit formulas,
the proof is completely constructive: it provides a sim-
ple way to construct k-tuples of labelings of 〈n 〉k whose
minimum combined distance is at least the lower bound
of Theorem 2.
Observe that our lower bounds, in conjunction with

the upper bounds, yield a very simple O(knd)-time
constant-factor approximation algorithm for the opti-
mization problem of maximizing the combined distance
of k labelings of a d-dimensional grid, for fixed k and d.

2 Labelings with large minimum combined distance

We first construct k labelings of a 1-dimensional array
of length n with large minimum combined distance for
certain specific values of n: namely, we present this con-
struction only for n = kmk and m ≥ 2. For a fixed
integer m we construct k labelings B0, . . . , Bk−1 of the
array 〈 kmk 〉. To construct the labeling Bi, we first
assign a color αi(x) to each cell x of 〈 kmk 〉 such that

αi(x) :=
⌊ x

mi−1

⌋

mod m.

Intuitively, for 1 ≤ i ≤ k − 1, the cell x is colored by
αi(x) according to its ith least significant digit in its
m-ary decomposition. Observe that the color α0(x) is
always equal to 0. The labeling Bi is then defined for
all cells x ∈ 〈 kmk 〉 by

Bi(x) :=
(

x− kmk−1αi(x)
)

mod kmk.

Note that B0 is the identity permutation.

In other words, for all 0 ≤ p ≤ m − 1, the labeling
Bi cyclically permutes the set of all cells x with color
αi(x) = p, and the amplitude of this permutation is pro-
portional to p. In particular, we have αi(x) = αi(Bi(x))
and it is easy to describe the inverse permutation of Bi

for all labels x ∈ 〈 kmk 〉 as
B−1

i (x) =
(

x+ kmk−1αi(x)
)

mod kmk.

Proposition 5 The minimum combined distance of the
k labelings B0, . . . , Bk−1 of 〈 kmk 〉 is at least kmk−1.

Proof. Let x and y be two distinct labels of 〈 kmk 〉,
and for 0 ≤ i ≤ k − 1, write

B−1
i (x) = x+ kmk−1αi(x) + rikm

k

and B−1
i (y) = y + kmk−1αi(y) + sikm

k

for some integers ri and si. We consider two cases:
(1) If αi(x) = αi(y) for all i, then x − y is a non-

zero multiple of mk−1. Thus, for all i, the difference
B−1

i (x)−B−1
i (y) = x− y + (ri − si)km

k is also a non-
zero multiple of mk−1, and cd(B0, . . . , Bk−1, x, y) =
∑k−1

i=0

∣

∣B−1
i (x)−B−1

i (y)
∣

∣ ≥ kmk−1.
(2) Otherwise, αj(x) 6= αj(y) for some j. Then

cd(B0, . . . , Bk−1, x, y) ≥ |B−1
j (x)−B−1

j (y)|+ |x− y| ≥
|B−1

j (x) − B−1
j (y) − x + y| = kmk−1|αj(x) − αj(y) +

(rj − sj)m| ≥ kmk−1. The last inequality holds since
1 ≤ |αj(x)− αj(y)| ≤ m− 1. �

Example 6 For k = 2 and m = 3, this construction
yields the two labelings of 〈 18 〉 in Figure 2, with mini-
mum combined distance 6. The numbers on top are the
ternary decompositions of the array cell indices.

17

1,2,1 1,2,20,1,1 0,1,2 0,2,10,0,1 0,0,2 0,1,0 0,2,0 1,1,0 1,1,1 1,2,00,2,2 1,0,0 1,0,1 1,0,2 1,1,20,0,0

3 4 5 60 21 7 11 12 13 148 109 15 16 B0

9 15 57 1013 16

1,2,1 1,2,20,1,1 0,1,2 0,2,10,0,1 0,0,2 0,1,0 0,2,0 1,1,0 1,1,1 1,2,00,2,2 1,0,0 1,0,1 1,0,2 1,1,20,0,0

3 11 60 8 1 17 12 214 4 B1

Figure 2: The labelings B0 and B1 for k = 2 and m = 3.

3 Rook placements

We now interpret the minimum combined distance of
k labelings of a 1-dimensional array 〈n 〉 as the mini-
mum distance in a rook placement in the k-dimensional
hypercube 〈n 〉k. Let us first state a precise definition:

Definition 7 A (k, n)-rook placement is a subset R of
the k-dimensional hypercube 〈n 〉k with precisely one el-
ement in the subspace 〈n 〉p−1 × {q} × 〈n 〉k−p for each
1 ≤ p ≤ k and 0 ≤ q ≤ n− 1.

In other words, a (k, n)-rook placement is a maxi-
mal set of non-attacking rooks in 〈n 〉k, where a rook
positioned in (x1, . . . , xk) can attack the subspaces
〈n 〉p−1 × {xp} × 〈n 〉k−p for 1 ≤ p ≤ k (see Figure 3).
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Figure 3: The affine spaces a rook can attack.

There is a correspondence between k-tuples of la-
belings of the 1-dimensional array 〈n 〉 and (k, n)-rook
placements:

• given k labelings L1, . . . , Lk of 〈n 〉, the subset

R(L1, . . . , Lk) :=
{

(L−1
1 (x), . . . , L−1

k (x)) | x ∈ 〈n 〉
}

of 〈n 〉k is a (k, n)-rook placement;

• reciprocally, a (k, n)-rook placement R has n rooks,
whose pth coordinates are all distinct (for each
1 ≤ p ≤ k). If we arbitrarily label the rooks from 0
to n− 1, the order of the rooks according to their
pth coordinate defines a labeling Lp(R) of 〈n 〉.

This correspondence preserves metric properties: the
combined distance between two labels x and y in k label-
ings L1, . . . , Lk of 〈n 〉 is the ℓ1-distance between the two
rooks (L−1

1 (x), . . . , L−1
k (x)) and (L−1

1 (y), . . . , L−1
k (y)) in

the (k, n)-rook placement R(L1, . . . , Lk). We call mini-
mum distance of a finite point set S the minimum pair-
wise ℓ1-distance between two points of S.

To illustrate the interest of this geometric point of
view, let us first prove the upper bound of Theorem 2:

Lemma 8 For any integers k ≥ 2 and n ≥ 2,

γ(k, n, 1) ≤ n− 1

(n/k!)1/k − 1
.

Proof. We prove the result in the setting of rook
placements by a simple volume argument. Consider
a (k, n)-rook placement R with minimum distance δ.
Then the ℓ1-balls of radius δ/2 centered at the rooks
of R are disjoint and contained in [−δ/2, n− 1 + δ/2]k.
Since each ball has volume δk/k!, this yields the inequal-
ity nδk/k! ≤ (n− 1 + δ)k, and thus the upper bound of
the lemma. �

To prove the lower bound of Theorem 2, we will use
more general configurations of integer points in R

k to
obtain (k, n)-rook placements with large minimum dis-
tance, for all values of n. The principal ingredient of
our constructions is the following proposition:

Proposition 9 If there exists a set of n integer points
in Z

k with minimum distance δ such that the projection
of these points on each axis is an interval of consecutive
integers (with possible repetitions), then there exists a
(k, n)-rook placement with minimum distance δ.

Proof. Let S be such a set of n integers. We label
the points of S arbitrarily from 0 to n − 1. For each
direction i, we then construct a labeling Li of 〈n 〉 which
respects the order of the ith coordinate of the points
of S, and where points with equal ith coordinate are
ordered arbitrarily. Since the projection of S in each
direction covered an interval of integers, the distance
between two points in each direction can only increase
during this construction, and the minimum distance of
the (k, n)-rook placement R(L1, . . . , Lk) is at least that
of S. �

A simple way to obtain such point sets S on which
we can easily control the minimum distance is to use
lattices of Rk. Remember that a lattice of Rk is the set
of integer linear combinations of k linearly independent
vectors of Rk; see [6, Chapter 1]. We call a (k, n)-rook
lattice any sublattice L of the integer lattice Z

k whose
trace L ∩ 〈n 〉k on the hypercube 〈n 〉k is a (k, n)-rook
placement, and which contains ne1 (e1 is the first vector
of the canonical basis of Rk). Applying Proposition 9, a
good (k, ν)-rook lattice provides good (k, n)-rook place-
ments not only for n = ν, but for any larger value of n:

Proposition 10 If there exists a (k, ν)-rook lattice with
minimum distance δ, then there exists a (k, n)-rook
placement with minimum distance δ for all n ≥ ν − 1.

Proof. Let L be a (k, ν)-rook lattice of minimum dis-
tance δ. For n = ν− 1, consider the point configuration
L ∩ {1, . . . , ν − 1}k: it has minimum distance δ and
projects bijectively on {1, . . . , ν − 1} in each direction.
For n ≥ ν, consider the trace of L on 〈n 〉 × 〈 ν 〉k−1. It
projects bijectively on 〈n 〉 in the first direction and sur-
jectively on 〈 ν 〉 in all the other directions. The result
thus follows from Proposition 9. �

Example 11 (Rook placements in the square)
We consider two families of lattices of R2 (see Figure 4):

(a) The lattice generated by (m,m) and (1, 2m+ 1) is
a (2, 2m2)-rook lattice with minimum distance 2m.

(b) The lattice generated by (m+1,m) and (1, 2m+1)
is a (2, 2m2 + 2m + 1)-rook lattice with minimum
distance 2m+ 1.

From these two families and using Proposition 10, we
derive the following lower bound in Theorem 1:

Proposition 12 For any n, γ(2, n, 1) ≥
⌊√

2n+ 2
⌋

.

Proof. Let m be an integer. Since there exists
a (2, 2m2)-rook lattice with minimum distance 2m,
Proposition 10 implies

⌊√
2n+ 2

⌋

= 2m ≤ γ(2, n, 1)
for any integer n with 2m2 − 1 ≤ n ≤ 2m2 + 2m − 1.
Similarly, since there exists a (2, 2m2 + 2m + 1)-rook
lattice with minimum distance 2m + 1, Proposition 10
implies

⌊√
2n+ 2

⌋

= 2m+1 ≤ γ(2, n, 1) for any integer
n with 2m2 + 2m ≤ n ≤ 2m2 + 4m. �
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Figure 4: Examples of two optimal families of rook lattices in the square. (a) Lattice generated by the vectors (m,m) and
(1, 2m + 1), for m = 3. (b) Lattice generated by the vectors (m+ 1,m) and (1, 2m+ 1), for m = 3.

We have seen in Lemma 8 that γ(2, n, 1) is bounded
by (n− 1)/(

√

n/2 − 1). Together with Proposition 12,

this implies that γ(2, n, 1) ∼
√
2n. In fact, using a simi-

lar but slightly refined packing argument as in our proof
of Lemma 8, van Dam et al. [2] proved that the bound
in Proposition 12 is in fact the exact value of γ(2, n, 1):

γ(2, n, 1) =
⌊√

2n+ 2
⌋

.

The (k, kmk)-rook placement R(B0, . . . , Bk−1) is not
the trace of a lattice on 〈 kmk 〉 when k ≥ 3. However,
it is still sufficiently regular to apply Proposition 9:

Lemma 13 For any integers k ≥ 2 and n ≥ 2,

γ(k, n, 1) ≥ k

⌊

(n

k

)1/k
⌋k−1

.

Proof. Let m :=
⌊

(

n
k

)1/k
⌋

. Let S denote the set ob-

tained by translations of the (k, kmk)-rook placement
R(B0, . . . , Bk−1) by any integer multiple of kmke1. In
other words, S =

{

(x,B−1
1 (x), . . . , B−1

k−1(x)) | x ∈ Z
}

.

The trace of S on 〈n 〉 × 〈 kmk 〉k−1 projects bijec-
tively on 〈n 〉 on the first coordinate and surjectively
on 〈 kmk 〉 on all other coordinates. A similar analy-
sis as in the proof of Proposition 5 ensures that the
minimum distance of S, like the minimum distance of
R(B0, . . . , Bk−1), is at least km

k−1 too. Propositions 5
and 9 thus provide a (k, n)-rook placement whose min-
imum distance is at least kmk−1. �
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In this Appendix, we present three further results on
combined distances in labelings which we had to skip in
our extended abstract due to space limitations:

(a) We first provide another construction of labelings
of the 1-dimensional array. Although its minimum
combined distance is smaller than that of the con-
struction presented in Section 2, this new construc-
tion is particularly simple and the corresponding
rook placement can be interpreted as the trace of a
rook lattice in any dimension.

(b) We then extend our constructions to labelings of
d-dimensional grids to obtain a proof of Theorem 3.

(c) We finally discuss an extension of the problem to
labelings of arbitrary graphs (not only grid graphs).
We show that the problem of deciding whether a
graph has two labelings with combined distance at
least 3 is already as hard as graph isomorphism.

A An alternative simple construction

As the construction in Section 2, we present this new
construction only for special values of n, namely for
n = mk and m ≥ 2. Let φ : 〈m 〉k → 〈mk 〉 be the

bijection defined as φ(xk−1, . . . , x0) :=
∑k−1

j=0 xjm
j . Its

reciprocal bijection φ−1 is the decomposition of an inte-
ger in the m-ary number system, using k digits. Ob-
serve that we write the least significant digit to the
right to be consistent with the usual conventions. Let
σ : 〈m 〉k → 〈m 〉k be the cyclic permutation defined as

σ(xk−1, . . . , x1, x0) := (x0, xk−1, . . . , x1).

For 0 ≤ i ≤ k − 1, we define a labeling Ai of 〈mk 〉 as

Ai := φ ◦ σi ◦ φ−1.

In other words, the m-ary decompositions of a label
and of its position in the labeling Ai are just cyclically
permuted by σi. Observe that the inverse permutation
of Ai is

A−1
i = φ ◦ σk−i ◦ φ−1.

Proposition 14 The minimum combined distance of
the k labelings A0, . . . , Ak−1 of 〈mk 〉 is bounded by

mcd(A0, . . . , Ak−1) ≥ mk−1 − mk−1 − 1

m− 1
.

Proof. Observe first that for any two elements
(xk−1, . . . , x0) and (yk−1, . . . , y0) of 〈m 〉k, the distance
between the cells φ(xk−1, . . . , x0) and φ(yk−1, . . . , y0) in
the array 〈mk 〉 is at least

|φ(xk−1, . . . , x0)− φ(yk−1, . . . , y0)|

≥ mk−1|xk−1 − yk−1| −
k−2
∑

j=0

mj |xj − yj|.

Consequently, for any two distinct elements
(xk−1, . . . , x0) and (yk−1, . . . , y0) of 〈m 〉k, the
combined distance cd(A0, . . . , Ak−1, x, y) between the
labels x := φ(xk−1, . . . , x0) and y := φ(yk−1, . . . , y0) in
the k labelings A0, . . . , Ak−1 is at least

cd(A0, . . . , Ak−1, x, y)

=

k−1
∑

i=0

∣

∣A−1
i (x)−A−1

i (y)
∣

∣

=
k−1
∑

i=0

|φ(xk−i−1, . . . , x0, xk−1, . . . , xk−i)

− φ(yk−i−1, . . . , y0, yk−1, . . . , yk−i)|

≥
k−1
∑

i=0

(

mk−1|xk−i−1 − yk−i−1|

−
k−2
∑

j=0

mj |x(j−i) mod k − y(j−i) mod k|
)

=

(

k−1
∑

i=0

|xi − yi|
)



mk−1 −
k−2
∑

j=0

mj





≥ mk−1 − mk−1 − 1

m− 1
.

�

Example 15 For k = 2 and m = 4, this construction
yields the two labelings of 〈 16 〉 with minimum com-
bined distance 5 shown in Figure 5. The numbers on
top are the m-ary decompositions of the numbers in the
array cells.

1,0 2,2 2,3 3,2

4 5 6 73 8 12 13 14 159 11101 20

2,0 3,33,13,01,20,30,20,10,0 1,31,1 2,1

A0

2,00,0 3,11,1

1 5 9 1312 2 3 7 11 1514104

2,2 3,2 2,3

80 6

1,20,2 3,31,30,1 0,32,13,01,0

A1

Figure 5: The two labelings A0 and A1 when n = 16, k = 2
and m = 4.

We can now revisit this new construction in terms
of rook lattices. Denote by (e0, . . . , ek−1) the canon-
ical basis of R

k. Consider the lattice U(k,m) of R
k

generated by the vectors uj :=
∑k−1

i=0 m(j+i) mod kei, for
0 ≤ j ≤ k − 1. In other words, the matrix whose column
vectors are u0, . . . , uk−1 is a circulant matrix M(k, n)
whose first row is (1,m, . . . ,mk−1). See Figure 6 for an
example.

Lemma 16 The (k,mk)-rook placement
R(A0, . . . , Ak−1) is formed by the points of U(k,m)
located in the hypercube 〈mk − 1 〉k together with the

point (mk − 1)
∑k−1

i=0 ei.
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Figure 6: The lattice corresponding to the example in Fig-
ure 5 of construction A.

Proof. For any x := φ(xk−1, . . . , x0) ∈ 〈mk 〉, the rook
labeled by x in R(A0, . . . , Ak−1) is positioned at

k−1
∑

i=0

A−1
i (x)ei =

k−1
∑

i=0

(

k−1
∑

ℓ=0

x(ℓ−i) mod k m
ℓ

)

ei

=
k−1
∑

i=0





k−1
∑

j=0

xj m
(j+i) mod k



 ei

=

k−1
∑

j=0

xj

(

k−1
∑

i=0

m(j+i) mod kei

)

=

k−1
∑

j=0

xjuj ,

and thus is an element of the lattice U(k,m). In par-

ticular, since mk − 1 =
∑k−1

j=0 m
j = φ(1, . . . , 1), we have

A−1
i (mk − 1) = mk − 1 for all i = 0, . . . , k − 1. So

the last rook is positioned at (mk − 1)
∑k−1

i=0 ei. Thus,
R(A0, . . . , Ak−1) is a subset of

(

U(k,m) ∩ 〈mk − 1 〉k
)

∪
{

(mk − 1)
k−1
∑

i=0

ei

}

.

To prove the reciprocal inclusion, we show that
U(k,m) ∩ 〈mk − 1 〉k is a set of non-attacking rooks
of 〈mk − 1 〉k. Since U(k,m) is a lattice, it is sufficient
to prove that the rook at the origin is not attacked by
any other rook of U(k,m)∩〈mk−1 〉k. Assume for con-
tradiction that the rook at the origin is attacked by an-
other rook of U(k,m)∩〈mk−1 〉k. Let x be the label of

this attacking rook. Then we can write x :=
∑k−1

i=0 xiei
with 0 ≤ xi ≤ mk − 2. By inversion of the circulant
matrix M(k, n) whose coefficients are the coordinates
of the vectors of the base (u0, . . . , uk−1) in the base

(e0, . . . , ek−1), we obtain that for all 0 ≤ i ≤ k − 1,

mu(i−1) mod k − ui

= m

k−1
∑

j=0

m((i−1)+j) mod kej −
k−1
∑

j=0

m(i+j) mod kej

=

k−1
∑

j=0

(

m((i+j−1) mod k)+1 −m(i+j) mod k
)

ej

= (mk − 1)ei.

Thus

x =

k−1
∑

i=0

xiei =

k−1
∑

i=0

xi

mu(i−1) mod k − ui

mk − 1

=
k−1
∑

j=0

mx(j+1) mod k − xj

mk − 1
uj.

For the rook labeled by x to attack the rook at the
origin, at least one of xi must be zero. On the other
hand, for the rook labeled by x to be different from the
rook at the origin, at least one of xi must be non-zero.
Assume without loss of generality that x(j+1) mod k = 0

and 1 ≤ xj ≤ mk − 2. Then the jth coordinate of x in

the basis u0, . . . , uk−1 is between − 1
mk−1

and −mk−2
mk−1

,
which is strictly contained between 0 and −1. Thus the
rook labeled by x is not in U(k,m), which is a contra-
dition. �

In other words, U(k,m) is a (k,mk)-rook lattice

whose minimum distance is at least mk−1 − mk−1−1
m−1 .

Applying Proposition 10, we obtain that for any n ∈ N,

γ(k, n, 1) ≥
⌊

n1/k
⌋k−1

−
⌊

n1/k
⌋k−1 − 1

⌊

n1/k
⌋

− 1
.

B Labelings of d-dimensional Grids

In this section we prove Theorem 3. To generalize
the lower bound from a one-dimensional array to a
d-dimensional grid, we simply treat the d dimensions
independently. The movement of a symbol in the k − 1
labelings L1, . . . , Lk−1 in each direction depends only on
the location of the symbol in the labeling L0 in that par-
ticular direction, as described in the previous Sections.
Thus we obtain a lower bound for the d-dimensional
grid that is exactly the same as the lower bound for the
one-dimensional array.

Example 17 For k = 2, n = 8, and d = 2, construc-
tion B yields the two labelings with minimum combined
distance 4 shown in Figure 7.

In turn, the upper bound for general d is obtained by
an adapted packing argument. As in the case when
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Figure 7: Two labelings L0 and L1 of a square grid, ob-
tained by construction B. For convenience, in this example
we label each direction independently by using 〈n 〉d labels,
instead of 〈nd 〉 labels.

d = 1, we can represent k labelings L1, . . . , Lk of
a d-dimensional grid 〈n 〉d by the point configuration
R(L1, . . . , Lk) :=

{

(L−1
1 (x), . . . , L−1

k (x)) | x ∈ 〈n 〉d
}

of
(〈n 〉d)k ≃ 〈n 〉dk. The combined distance between
two labels x, y ∈ 〈nd 〉 is given by the ℓ1-distance
of the corresponding rooks (L−1

1 (x), . . . , L−1
k (x)) and

(L−1
1 (y), . . . , L−1

k (y)) of R(L1, . . . , Lk). Consequently, if
L1, . . . , Lk are k labelings of 〈n 〉d with minimum com-
bined distance δ, then the ℓ1-balls of radius δ/2 centered
at the rooks of R(L1, . . . , Lk) are disjoint and contained
in the hypercube [−δ/2, n − 1 + δ/2]dk. Since each of
these balls has volume δdk/(dk)!, this yields the inequal-
ity ndδdk/(dk)! ≤ (n − 1 + δ)dk, and thus the upper
bound of Theorem 3.

C Connection to Graph Isomorphism

In this section, we discuss the extension of our problem
to labelings of general graphs. Let G be a graph of
n vertices, and let S be a set of n symbols. Define a
labeling of the graph G as a bijection that assigns a
distinct symbol in S to each vertex in G, and define
the distance between two vertices u and v in G as the
number of edges in a shortest path between them. Then

define the combined distance of multiple labelings of a
graph in a similar way as that for a grid. We have the
following theorem:

Theorem 18 Deciding whether a graph has two label-
ings with combined distance at least 3 is at least as hard
as graph isomorphism.

To show this theorem, we first prove the following
lemma:

Lemma 19 A graph has two labelings with combined
distance at least 3 if and only if the graph is a subgraph
of its complement.

Proof. We first prove the direct implication. Suppose
that a graph G has two labelings L1 and L2 with com-
bined distance at least 3. Then any two symbols as-
signed by one labeling to two adjacent vertices inGmust
be assigned by the other labeling to two non-adjacent
vertices in G. That is, any two symbols assigned by
one labeling to two adjacent vertices in G must be as-
signed by the other labeling to two adjacent vertices in
the complement G′ of G. Thus the two labelings L1

and L2 specify a bijection f from the vertices of G to
the vertices of G′ such that two vertices u and v are ad-
jacent in G only if the corresponding two vertices f(u)
and f(v) are adjacent in G′. Therefore G is a subgraph
of its complement G′.
We next prove the reverse implication. Suppose G

is a subgraph of its complement G′. Let f be a bijec-
tion from the vertices of G to the vertices of G′ such
that two vertices u and v are adjacent in G only if the
corresponding two vertices f(u) and f(v) are adjacent
in G′. Then in the graph G, two vertices u and v are
adjacent only if the two vertices f(u) and f(v) are non-
adjacent. Let L1 and L2 be two labelings of G such that
the symbol assigned to a vertex v by L1 is the same as
the symbol assigned to the corresponding vertex f(v)
by L2. Then the combined distance of the two labelings
L1 and L2 is at least 3. �

The graph isomorphism problem is that of deciding
whether two graphs are isomorphic. Remember that
two graphs G1 := (V1, E1) and G2 := (V2, E2) are iso-
morphic if there is a bijection f from V1 to V2 such
that any two vertices u and v are adjacent in G1 if and
only if the corresponding two vertices f(u) and f(v) are
adjacent in G2. A graph is self-complementary if it is
isomorphic to its complement. It is known that self-
complementary graph recognition is polynomial-time
equivalent to graph isomorphism [1]. Observe that a
graph is isomorphic to its complement if and only if

(1) the graph is a subgraph of its complement, and

(2) the graph and its complement have the same
number of edges.
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Condition (2) can be easily checked in linear time. It
then follows from Lemma 19 that deciding whether a
graph has two labelings of combined distance at least 3
is at least as hard as graph isomorphism. This completes
the proof of Theorem 18.


