SIGNED TREE ASSOCIAHEDRA

Vincent PILAUD
(CNRS & LIX)
POLYTOPES FROM COMBINATORICS
polytope = convex hull of a finite set of \mathbb{R}^d

= bounded intersection of finitely many half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given a lattice, is there a polytope which realizes it?
Permutohedron $\text{Perm}(n)$

$$= \text{conv} \{(\sigma(1), \ldots, \sigma(n + 1)) \mid \sigma \in \Sigma_{n+1}\}$$

$$= \mathbb{H} \cap \bigcap_{\emptyset \neq J \subseteq [n+1]} \mathbb{H}^\geq(J)$$
Permutohedron $\text{Perm}(n)$

$$= \text{conv}\ \{\sigma(1), \ldots, \sigma(n+1)\mid \sigma \in \Sigma_{n+1}\}$$

$$= H \cap \bigcap_{\emptyset \neq J \subset [n+1]} H^\geq(J)$$

k-faces of $\text{Perm}(n)$

\equiv ordered partitions of $[n + 1]$ into $n + 1 - k$ parts

\equiv surjections from $[n + 1]$ to $[n + 1 - k]$
Permutohedron $\text{Perm}(n)$

$$\text{Perm}(n) = \text{conv} \left\{ (\sigma(1), \ldots, \sigma(n+1)) \mid \sigma \in \Sigma_{n+1} \right\} = \mathbb{H} \cap \bigcap_{\emptyset \neq J \subseteq [n+1]} \mathbb{H}^{\geq}(J)$$

k-faces of $\text{Perm}(n)$

$$\equiv$$

ordered partitions of $[n+1]$ into $n+1-k$ parts

surjections from $[n+1]$ to $[n+1-k]$

connections to

• inversion sets
• weak order
• reduced expressions
• braid moves
• cosets of the symmetric group
ASSOCIAHEDRA
Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex \((n + 3)\)-gon, ordered by reverse inclusion.
VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex \((n + 3)\)-gon, ordered by reverse inclusion

(Pictures by Ceballos-Santos-Ziegler)

Lee (’89), Gel’fand-Kapranov-Zelevinski (’94), Billera-Filliman-Sturmfels (’90), . . . , Ceballos-Santos-Ziegler (’11)
Loday (’04), Hohlweg-Lange (’07), Hohlweg-Lange-Thomas (’12), P.-Santos (’12), P.-Stump (’12+), Lange-P. (’13+)
Loday’s associahedron

\[\text{Loday’s associahedron} = \text{conv} \{ L(T) \mid T \text{ triangulation of the } (n+3)\text{-gon} \} \]

\[= \mathbb{H} \bigcap \bigcap_{\delta \text{ diagonal of the } (n+3)\text{-gon}} \mathbb{H}^\geq(\delta) \]

\[L(T) = (\ell(T, \hat{j}) \cdot r(T, \hat{j}))_{j \in [n+1]} \]

\[\mathbb{H}^\geq(\delta) = \left\{ x \in \mathbb{R}^{n+1} \right\mid \sum_{j \in B(\delta)} x_j \geq \left(|B(\delta)| + 1 \right) \right\} \]

Loday, Realization of the Stasheff polytope ('04)
Loday’s associahedron

\[
\text{Loday’s associahedron} = \text{conv} \left\{ L(T) \mid T \text{ binary tree on } n + 1 \text{ nodes} \right\}
\]

\[
= \mathbb{H} \cap \bigcap_{I \text{ interval of } [n+1]} H^\geq(I)
\]

\[
L(T') - L(T) \in \mathbb{R}_{>0}(e_i - e_j)
\]

Loday, Realization of the Stasheff polytope (’04)
Loday’s associahedron = \(\text{conv} \{ L(T) \mid T \text{ binary tree on } n+1 \text{ nodes} \} \)

\[= \bigcap \bigcap \text{ H}^\geq(I) \]

\[\bigcap \bigcap \text{ I interval of } [n+1] \]

\[\ell(T, j) \quad r(T', j) \]

\[L(T') - L(T) \in \mathbb{R}_{>0}(e_i - e_j) \]

Loday, *Realization of the Stasheff polytope* (’04)
The associahedron is obtained from the permutahedron by removing facets.
Relevant connections to combinatorial properties:

• the normal fan of $\text{Perm}(n)$ refines that of $\text{Asso}(P)$

• it defines a surjection $\kappa : \mathcal{S}_{n+1} \rightarrow \{\text{triangulations}\}$ (connection to linear extensions and insertion in binary search trees)

• κ defines a lattice homomorphism from the weak order to the Tamari lattice
LODAY’S ASSOCIAHEDRON AND PERMUTAHEDRON
Can also replace Loday’s \((n + 3) \)-gon by others...

...to obtain different realizations of the associahedron

Hohlweg-Lange, *Realizations of the associahedron and cyclohedron* (’07)
Asso\((P) = \text{conv}\{HL(T) \mid T \text{ triangulation of } P\} = H \cap \bigcap_{\delta \text{ diagonal of } P} H^{\geq}(\delta)\)

\[HL(T)_j = \begin{cases} \ell(T, j) \cdot r(T, j) & \text{if } j \text{ down} \\ n + 2 - \ell(T, j) \cdot r(T, j) & \text{if } j \text{ up} \end{cases}\]

\[H^{\geq}(\delta) = \left\{ x \middle| \sum_{j \in B(\delta)} x_j \geq \left(\frac{|B(\delta)| + 1}{2}\right) \right\}\]

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)
Spines = labeled and oriented dual binary trees
REM. 1. Spines can be defined without their triangulations…
REM. 1. Spines can be defined without their triangulations...

2. Alternative vertex description of Hohlweg-Lange’s associahedra:

$$a(S)_j = \begin{cases}
|\{\pi \text{ maximal path in } S \text{ with 2 incoming arcs at } j\}| & \text{if } j \text{ down} \\
 n + 2 - |\{\pi \text{ maximal path in } S \text{ with 2 outgoing arcs at } j\}| & \text{if } j \text{ up}
\end{cases}$$
REM. 1. Spines can be defined without their triangulations...

2. Alternative vertex description of Hohlweg-Lange’s associahedra:

\[a(S)_j = \begin{cases}
|\{ \pi \text{ path in } S \text{ not using the outgoing arc at } j \}| & \text{if } j \text{ down} \\
n + 2 - |\{ \pi \text{ path in } S \text{ not using the incomming arc at } j \}| & \text{if } j \text{ up}
\end{cases} \]
GRAPH ASSOCIAHEDRA
NESTED COMPLEX AND GRAPH ASSOCIAHEDRON

G graph on ground set V

Tube on $V = $ connected induced subgraph of G

Compatible tubes $=$ nested, or disjoint and non-adjacent

Nested complex $\mathcal{N}(G) =$ simplicial complex of sets of pairwise compatible tubes

$= $ clique complex of the compatibility relation on tubes

G-associahedron $=$ polytopal realization of the nested complex on G

Carr-Devadoss, Coxeter complexes and graph associahedra ('06)
EXM: GRAPH ASSOCIAHEDRON
TWO QUESTIONS

Qu 1. Which graph associahedra can be realized by removahedra?

Lange-P., Which nestohedra are removahedra? ('14+)

Qu 2. Can we obtain distinct realizations of graph associahedra?

Yes for trees...

P., Signed tree associahedra ('13+)
SIGNATURE TREE ASSOCIATION
T tree on the signed ground set $V = V^- \sqcup V^+$ (negative in white, positive in black)

Signed spine on $T = \text{directed and labeled tree } S$

(i) the labels of the nodes of S form a partition of the signed ground set V

(ii) at a node of S labeled by $U = U^- \sqcup U^+$, the source label sets of the different incoming arcs are subsets of distinct connected components of $T \setminus U^-$, while the sink label sets of the different outgoing arcs are subsets of distinct connected components of $T \setminus U^+$
LEM. Contracting an arc in a signed spine on T leads to a new signed spine on T.

LEM. Let S be a signed spine on T with a node labeled by a set U containing at least two elements. For any $u \in U$, there exists a signed spine on T whose nodes are labeled exactly as that of S, except that the label U is partitioned into $\{u\}$ and $U \setminus \{u\}$.

![Diagram](image-url)
CONTRACTIONS AND SPINE COMPLEX

LEM. Contracting an arc in a signed spine on T leads to a new signed spine on T

LEM. Let S be a signed spine on T with a node labeled by a set U containing at least two elements. For any $u \in U$, there exists a signed spine on T whose nodes are labeled exactly as that of S, except that the label U is partitioned into $\{u\}$ and $U \setminus \{u\}$

Signed spine complex $S(T) =$ simplicial complex whose inclusion poset is isomorphic to the poset of edge contractions on the signed spines of T

CORO. The signed spine complex $S(T)$ is a pure simplicial complex of rank $|V|$
Braid arrangement on $\mathbb{R}^V = \{x \in \mathbb{R}^V | x_u = x_v\}$ for $u \neq v \in V$.

Braid fan $BF = \text{complete simplicial fan defined by the braid arrangement on }$ $H := \left\{ x \in \mathbb{R}^V \middle| \sum_{v \in V} x_v = \binom{|V|+1}{2} \right\}$.
For S spine on T, define $C(S) := \{ x \in \mathbb{H} \mid x_u \leq x_v, \text{ for all arcs } u \to v \text{ in } S \}$

THEO. The collection of cones $\mathcal{F}(T) := \{ C(S) \mid S \in \mathcal{S}(T) \}$ defines a complete simplicial fan on \mathbb{H}, which we call the spine fan

CORO. For any signed tree T, the signed nested complex $\mathcal{N}(T)$ is a simplicial sphere
Signed tree associahedron $\text{Asso}(T) = \text{convex polytope with}$

(i) a vertex $a(S) \in \mathbb{R}^V$ for each maximal signed spine $S \in S(T)$, with coordinates

$$a(S)_v = \begin{cases}
| \{ \pi \in \Pi(S) \mid v \in \pi \text{ and } r_v \notin \pi \} | & \text{if } v \in V^- \\
|V| + 1 - | \{ \pi \in \Pi(S) \mid v \in \pi \text{ and } r_v \notin \pi \} | & \text{if } v \in V^+
\end{cases}$$

where $r_v = \text{unique incoming (resp. outgoing) arc when } v \in V^- \ (\text{resp. when } v \in V^+)$

$\Pi(S) = \text{set of all (undirected) paths in } S, \text{ including the trivial paths}$

(ii) a facet defined by the half-space

$$H^\geq(B) := \left\{ x \in \mathbb{R}^V \mid \sum_{v \in B} x_v \geq \binom{|B|+1}{2} \right\}$$

for each signed building block $B \in B(T)$
EXM: FACET DESCRIPTION
MAIN RESULT

THM. The spine fan $\mathcal{F}(T)$ is the normal fan of the signed tree associahedron $\text{Asso}(T)$, defined equivalently as

(i) the convex hull of the points

$$a(S)_v = \begin{cases} | \{ \pi \in \Pi(S) \mid v \in \pi \text{ and } r_v \notin \pi \} | & \text{if } v \in V^- \\ |V| + 1 - | \{ \pi \in \Pi(S) \mid v \in \pi \text{ and } r_v \notin \pi \} | & \text{if } v \in V^+ \end{cases}$$

for all maximal signed spines $S \in \mathcal{S}(T)$

(ii) the intersection of the hyperplane \mathbb{H} with the half-spaces

$$H^\geq(B) := \left\{ x \in \mathbb{R}^V \mid \sum_{v \in B} x_v \geq \binom{|B|+1}{2} \right\}$$

for all signed building blocks $B \in \mathcal{B}(T)$

CORO. The signed tree associahedron $\text{Asso}(T)$ realizes the signed nested complex $\mathcal{N}(T)$
STEP 1. We have
\[\sum_{v \in V} a(S)_v = \left(\frac{|V| + 1}{2} \right) \quad \text{and} \quad \sum_{v \in sc(r)} a(S)_v = \left(\frac{|sc(r)| + 1}{2} \right) \]
for any arc \(r \) of \(S \). In other words, “each vertex \(a(S) \) belongs to the hyperplanes \(H^=(B) \) it is supposed to”. Proof by double counting.
SKETCH OF THE PROOF

STEP 1. We have
\[
\sum_{v \in V} a(S)_v = \left(|V| + 1 \right) \quad \text{and} \quad \sum_{v \in \text{sc}(r)} a(S)_v = \left(|\text{sc}(r)| + 1 \right)
\]
for any arc \(r \) of \(S \). In other words, “each vertex \(a(S) \) belongs to the hyperplanes \(H^\mp(B) \) it is supposed to”. Proof by double counting.

STEP 2. If \(S \) and \(S' \) are two adjacent maximal spines on \(T \), such that \(S' \) is obtained from \(S \) by flipping an arc joining node \(u \) to node \(v \), then
\[
a(S') - a(S) \in \mathbb{R}_{>0} \cdot (e_u - e_v)
\]

\[
a(S') - a(S) = (|U| + 1) \cdot (|V| + 1) \cdot (e_u - e_v)
\]
SKETCH OF THE PROOF

STEP 1. We have

$$\sum_{v \in V} a(S)_v = \left(\frac{|V| + 1}{2} \right)$$
and

$$\sum_{v \in \text{sc}(r)} a(S)_v = \left(\frac{|\text{sc}(r)| + 1}{2} \right)$$

for any arc r of S. In other words, “each vertex $a(S)$ belongs to the hyperplanes $H^\mp(B)$ it is supposed to”. Proof by double counting.

STEP 2. If S and S' are two adjacent maximal spines on T, such that S' is obtained from S by flipping an arc joining node u to node v, then

$$a(S') - a(S) \in \mathbb{R}_{>0} \cdot (e_u - e_v)$$

STEP 3. A general theorem concerning realizations of simplicial fan by polytopes
In other words, a characterization of when is a simplicial fan regular

Hohlweg-Lange-Thomas, Permutahedra and generalized associahedra (’11)
De Loera-Rambau-Santos, Triangulations: Structures for Algorithms and Applications (’10)
PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahedron Perm(V) and the parallelepiped Para(T)

\[
\sum_{u \neq v \in V} [e_u, e_v] = \text{Perm}(T) \subset \text{Asso}(T) \subset \text{Para}(T) = \sum_{u \sim v \in T} \pi(u - v) \cdot [e_u, e_v]
\]
FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron $\text{Asso}(T)$ is sandwiched between the permutahedron $\text{Perm}(V)$ and the parallelepiped $\text{Para}(T)$

$$\sum_{u \neq v \in V} [e_u, e_v] = \text{Perm}(T) \subset \text{Asso}(T) \subset \text{Para}(T) = \sum_{u \rightarrow v \in T} \pi(u - v) \cdot [e_u, e_v]$$

Common vertices of $\text{Asso}(T)$ and $\text{Para}(T)$ \equiv orientations of T which are spines on T

Common vertices of $\text{Asso}(T)$ and $\text{Perm}(T)$ \equiv linear orders on V which are spines on T

\Rightarrow no common vertex of the three polytopes except if T is a signed path
FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron $\text{Asso}(T)$ is sandwiched between the permutahedron $\text{Perm}(V)$ and the parallelepiped $\text{Para}(T)$

$$\sum_{u \neq v \in V} [e_u, e_v] = \text{Perm}(T) \subset \text{Asso}(T) \subset \text{Para}(T) = \sum_{u-v \in T} \pi(u-v) \cdot [e_u, e_v]$$

Common vertices of $\text{Asso}(T)$ and $\text{Para}(T) \equiv$ orientations of T which are spines on T

Common vertices of $\text{Asso}(T)$ and $\text{Perm}(T) \equiv$ linear orders on V which are spines on T

\Rightarrow no common vertex of the three polytopes except if T is a signed path

PROP. $\text{Asso}(T)$ and $\text{Asso}(T')$ isometric \iff T and T' isomorphic or anti-isomorphic, up to the sign of their leaves, ie. \exists bijection $\theta : V \to V'$ st. $\forall u, v \in V$

- $u-v$ edge in T \iff $\theta(u)-\theta(v)$ edge in T'
- if u is not a leaf of T, the signs of u and $\theta(u)$ coincide (resp. are opposite)
FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron $\text{Asso}(T)$ is sandwiched between the permutahedron $\text{Perm}(V)$ and the parallelepiped $\text{Para}(T)$

$$
\sum_{u \neq v \in V} [e_u, e_v] = \text{Perm}(T) \subset \text{Asso}(T) \subset \text{Para}(T) = \sum_{u-v \in T} \pi(u - v) \cdot [e_u, e_v]
$$

Common vertices of $\text{Asso}(T)$ and $\text{Para}(T)$ \equiv orientations of T which are spines on T

Common vertices of $\text{Asso}(T)$ and $\text{Perm}(T)$ \equiv linear orders on V which are spines on T

\Rightarrow no common vertex of the three polytopes except if T is a signed path

PROP. $\text{Asso}(T)$ and $\text{Asso}(T')$ isometric $\iff T$ and T' isomorphic or anti-isomorphic, up to the sign of their leaves, ie. \exists bijection $\theta : V \rightarrow V'$ st. $\forall u, v \in V$

- $u - v$ edge in T $\iff \theta(u) - \theta(v)$ edge in T'
- if u is not a leaf of T, the signs of u and $\theta(u)$ coincide (resp. are opposite)

REM. The vertex barycenter of $\text{Asso}(T)$ does not necessarily coincide with that of the permutahedron (but it lies on the linear span of the characteristic vectors of the orbits of V under the automorphism group of T)
THANK YOU