Shard polytopes

A. PADROL
(Sorbonne Université)

V. PILAUD
(CNRS & École Polytechnique)

J. RITTER
(École Polytechnique)

ANR CHARMS kickoff meeting
Friday July 3rd, 2020

TWO CLASSICAL LATTICES AND POLYTOPES
lattice = partially ordered set \(L \) where any \(X \subseteq L \) admits a meet \(\bigwedge X \) and a join \(\bigvee X \)
lattice congruence = equivalence relation on \(L \) compatible with meets and joins
lattice = partially ordered set \(L \) where any \(X \subseteq L \) admits a meet \(\bigwedge X \) and a join \(\bigvee X \)
lattice congruence = equivalence relation on \(L \) compatible with meets and joins

\[
\begin{align*}
4321 \\
3421 & \quad 4231 \quad 4312 \\
3241 & \quad 2431 \quad 3412 \quad 4213 \quad 4132 \\
3214 & \quad 2341 \quad 3142 \quad 2413 \quad 4123 \quad 4132 \\
2314 & \quad 1324 \quad 2143 \quad 1342 \quad 1423\end{align*}
\]

weak order = permutations of \(\mathcal{S}_n \) ordered by inclusion of inversion sets

Tamari lattice = binary trees on \([n]\) ordered by paths of right rotations
LATTICES: WEAK ORDER AND TAMARI LATTICE

A lattice is a partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$.

A lattice congruence is an equivalence relation on L compatible with meets and joins.

Weak order is permutations of \mathfrak{S}_n ordered by inclusion of inversion sets.

Tamari lattice is binary trees on $[n]$ ordered by paths of right rotations.
lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

lattice congruence = equivalence relation on L compatible with meets and joins

weak order = permutations of S_n

ordered by inclusion of inversion sets

Tamari lattice = binary trees on $[n]$

ordered by paths of right rotations

sylvester congruence = equivalence classes are fibers of BST insertion

= rewriting rule $UacVbW \equiv_{\text{sylv}} UcaVbW$ with $a < b < c$
lattice = partially ordered set \(L \) where any \(X \subseteq L \) admits a meet \(\bigwedge X \) and a join \(\bigvee X \).

lattice congruence = equivalence relation on \(L \) compatible with meets and joins.

weak order = permutations of \(S_n \)
ordered by inclusion of inversion sets

Tamari lattice = binary trees on \([n]\)
ordered by paths of right rotations

sylvester congruence = equivalence classes are fibers of BST insertion
= rewriting rule \(UacVbW \equiv_{\text{sylv}} UcaVbW \) with \(a < b < c \)
fan = collection of polyhedral cones closed by faces and intersecting along faces
polytope = convex hull of a finite set = intersection of finitely many affine half-space
polyhedral cone = positive span of a finite set of \(\mathbb{R}^n \)
= intersection of finitely many linear half-spaces

fan = collection of polyhedral cones closed by faces
and where any two cones intersect along a face
polytope = convex hull of a finite set of \mathbb{R}^n
= bounded intersection of finitely many affine half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations
face \(F \) of polytope \(P \)

normal cone of \(F \) = positive span of the outer normal vectors of the facets containing \(F \)

normal fan of \(P \) = \{ normal cone of \(F \) | \(F \) face of \(P \) \}
fan $=$ collection of polyhedral cones closed by faces and intersecting along faces
polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space
POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

\[\text{fan} = \text{collection of polyhedral cones closed by faces and intersecting along faces} \]
\[\text{polytope} = \text{convex hull of a finite set} = \text{intersection of finitely many affine half-space} \]

\[
\begin{align*}
\text{braid fan} &= \mathcal{C}(\sigma) = \left\{ \mathbf{x} \in \mathbb{R}^n \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)} \right\} \\
\text{svester fan} &= \mathcal{C}(T) = \left\{ \mathbf{x} \in \mathbb{R}^n \mid x_i \leq x_j \text{ if } i \to j \text{ in } T \right\}
\end{align*}
\]
fan = collection of polyhedral cones closed by faces and intersecting along faces
polytope = convex hull of a finite set = intersection of finitely many affine half-space

braid fan = \(\mathcal{C}(\sigma) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)} \} \)

sylvester fan = \(\mathcal{C}(T) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \leq x_j \text{ if } i \rightarrow j \text{ in } T \} \)
POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

\[\text{fan} = \text{collection of polyhedral cones closed by faces and intersecting along faces} \]

\[\text{polytope} = \text{convex hull of a finite set} = \text{intersection of finitely many affine half-space} \]

\[
\begin{align*}
C(\sigma) &= \{ \mathbf{x} \in \mathbb{R}^n \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)} \} \\
C(T) &= \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \leq x_j \text{ if } i \rightarrow j \text{ in } T \}
\end{align*}
\]

\[\text{braid fan} = C(\sigma) \]

\[\text{sylvester fan} = C(T) \]

\[\text{quotient fan} = C(T) \text{ obtained by glueing } C(\sigma) \text{ for all } \sigma \text{ in the same BST insertion fiber} \]
fan = collection of polyhedral cones closed by faces and intersecting along faces
polytope = convex hull of a finite set = intersection of finitely many affine half-space
POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces

polytope = convex hull of a finite set = intersection of finitely many affine half-space

\[
x_1 < x_2 \quad x_3 < x_4
\]

\[
x_2 < x_3
\]

\[
4231
\]

\[
4321
\]

\[
x_1 < x_2 \quad x_3 < x_4
\]

\[
3421
\]

\[
4132
\]

\[
4213
\]

\[
2431
\]

\[
3241
\]

\[
x_1 > x_3 \quad x_2 > x_4
\]

\[
3412
\]

\[
24314213
\]

\[
12434132
\]

\[
4321
\]

\[
\text{braid fan} = \mathbb{C}(\sigma) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)} \}\]

\[
\text{sylvester fan} = \mathbb{C}(T) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \leq x_j \text{ if } i \rightarrow j \text{ in } T \}\]

\[
\text{quotient fan} = \mathbb{C}(T) \text{ obtained by glueing } \mathbb{C}(\sigma) \text{ for all } \sigma \text{ in the same BST insertion fiber}\]
POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

\[\text{fan} = \text{collection of polyhedral cones closed by faces and intersecting along faces} \]

\[\text{polytope} = \text{convex hull of a finite set} = \text{intersection of finitely many affine half-space} \]

permahedron \(\text{Perm}(n) \)

\[= \text{conv} \left\{ \left[\sigma^{-1}(i) \right]_{i \in [n]} \right\} \sigma \in \mathfrak{S}_n \]

\[= \mathbb{H} \cap \bigcap_{\emptyset \neq J \subseteq [n]} H_J \]

where \(H_J = \left\{ x \in \mathbb{R}^n \mid \sum_{j \in J} x_j \geq \binom{|J|+1}{2} \right\} \)

associahedron \(\text{Asso}(n) \)

\[= \text{conv} \left\{ \left[\ell(T, i) \cdot r(T, i) \right]_{i \in [n]} \right\} T \text{ binary tree} \]

\[= \mathbb{H} \cap \bigcap_{1 \leq i < j \leq n} H_{i,j} \]

Stasheff ('63)
Shnider–Sternberg ('93)
Loday ('04)
POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces
polytope = convex hull of a finite set = intersection of finitely many affine half-space

<table>
<thead>
<tr>
<th>3412</th>
<th>4312</th>
<th>4321</th>
<th>3421</th>
</tr>
</thead>
<tbody>
<tr>
<td>3142</td>
<td>3241</td>
<td>3214</td>
<td>1342</td>
</tr>
<tr>
<td>1432</td>
<td>1324</td>
<td>4132</td>
<td>4123</td>
</tr>
<tr>
<td>1243</td>
<td>1234</td>
<td>2143</td>
<td>2134</td>
</tr>
<tr>
<td>2413</td>
<td>2314</td>
<td>2341</td>
<td>13</td>
</tr>
</tbody>
</table>

permutahedron $\text{Perm}(n)$

$$= \text{conv} \left\{ [\sigma^{-1}(i)]_{i \in [n]} \mid \sigma \in S_n \right\}$$

$$= H \cap \bigcap_{\varnothing \neq J \subseteq [n]} H_J$$

where $H_J = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{j \in J} x_j \geq \left(\frac{|J|+1}{2} \right) \right\}$

associahedron $\text{Asso}(n)$

$$= \text{conv} \left\{ [\ell(T, i) \cdot r(T, i)]_{i \in [n]} \mid T \text{ binary tree} \right\}$$

$$= H \cap \bigcap_{1 \leq i < j \leq n} H_{[i,j]}$$

Stasheff ('63)
Shnider–Sternberg ('93)
Loday ('04)
Polytopes: Permutahedron and Associahedron

fan = collection of polyhedral cones closed by faces and intersecting along faces

polytope = convex hull of a finite set = intersection of finitely many affine half-space

Permutahedron $\mathbf{Perm}(n)$

$$= \text{conv} \left\{ [\sigma^{-1}(i)]_{i \in [n]} \mid \sigma \in \mathcal{S}_n \right\}$$

$$= \mathbb{H} \cap \bigcap_{\emptyset \neq J \subseteq [n]} \mathbb{H}_J$$

where $\mathbb{H}_J = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{j \in J} x_j \geq \frac{|J|+1}{2} \right\}$

Associahedron $\mathbf{Asso}(n)$

$$= \text{conv} \left\{ [\ell(T,i) \cdot r(T,i)]_{i \in [n]} \mid T \text{ binary tree} \right\}$$

$$= \mathbb{H} \cap \bigcap_{1 \leq i < j \leq n} \mathbb{H}_{[i,j]}$$

Stasheff ('63)
Shnider–Sternberg ('93)
Loday ('04)
fan = collection of polyhedral cones closed by faces and intersecting along faces
polytope = convex hull of a finite set = intersection of finitely many affine half-space

\[\begin{align*}
&\text{permutahedron } \text{Perm}(n) \\
&\implies \text{weak order on permutations} \\
&\text{Hasse diagram of weak order } = \text{graph of Tamari lattice}
\end{align*}\]

\[\begin{align*}
&\text{associahedron } \text{Asso}(n) \\
&\implies \text{Tamari lattice on binary trees} \\
&\text{permutahedron oriented associahedron } \text{oriented left } \rightarrow \text{ right comb}
\end{align*}\]
QUOTIENT FANS AND QUOTIENTOPES
QUOTIENT FAN

lattice congruence \equiv equivalence relation on L compatible with meets and joins:

$x \equiv x'$ and $y \equiv y'$ implies $x \land y \equiv x' \land y'$ and $x \lor y \equiv x' \lor y'$

quotient fan $\mathcal{F}_\equiv = \text{chambers are obtained by glueing the chambers } C(\sigma) \text{ of the permutations } \sigma \text{ in the same congruence class of } \equiv$

Reading ('05)
lattice congruence = equivalence relation on L compatible with meets and joins:

\[x \equiv x' \text{ and } y \equiv y' \text{ implies } x \land y \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' \]

quotient fan \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers $C(\sigma)$ of the permutations σ in the same congruence class of \equiv

W_{\equiv} = walls of the quotient fan \mathcal{F}_{\equiv}

Describe the possible sets of walls W_{\equiv}
lattice congruence = equivalence relation on L compatible with meets and joins:

$x \equiv x'$ and $y \equiv y'$ implies $x \land y \equiv x' \land y'$ and $x \lor y \equiv x' \lor y'$

quotient fan $F_\equiv =$ chambers are obtained by glueing the chambers $C(\sigma)$ of the permutations σ in the same congruence class of \equiv

$W_\equiv =$ walls of the quotient fan F_\equiv
Describe the possible sets of walls W_\equiv
\textbf{ARCS AND SHARDS}

\texttt{arc} \ (a, b, A, B) \ with \ 1 \leq a < b \leq n \ and \ A \sqcup B =]a, b[

\texttt{shard} \ \Sigma(a, b, A, B) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_{a'} \leq x_a = x_b \leq x_{b'} \ \text{for all} \ a' \in A \ \text{and} \ b' \in B \}
\textbf{ARCS AND SHARDS}

\textbf{arc} \((a, b, A, B)\) with \(1 \leq a < b \leq n\) and \(A \sqcup B =]a, b]\)

\textbf{shard} \(\Sigma(a, b, A, B) = \{x \in \mathbb{R}^n \mid x_a' \leq x_a = x_b \leq x_b' \text{ for all } a' \in A \text{ and } b' \in B\}\)
\textbf{ARCS AND SHARDS}

\textit{arc} \((a, b, A, B)\) with \(1 \leq a < b \leq n\) and \(A \sqcup B =]a, b[\)

\textit{shard} \(\Sigma(a, b, A, B) = \{x \in \mathbb{R}^n \mid x_{a'} \leq x_a = x_b \leq x_{b'} \text{ for all } a' \in A \text{ and } b' \in B\}\)

The set of walls \(\mathcal{W}_\pi\) of the quotient fan \(\mathcal{F}_\pi\) is a union of shards \(\Sigma_\pi\)\hfill\text{Reading (‘05)}
\[\Sigma(a, b, A, B) \text{ forces } \Sigma(c, d, C, D) = \]
\[c \leq a < b \leq d \text{ and } A \subseteq C \text{ and } B \subseteq D \]
\[\Sigma(a, b, A, B) \text{ forces } \Sigma(c, d, C, D) = \]
c \leq a < b \leq d \text{ and } A \subseteq C \text{ and } B \subseteq D

Reading ('15)

TFAE for a set of shards \(\Sigma \):
- there is a congruence \(\equiv \) with \(\Sigma = \Sigma_{\equiv} \)
- \(\Sigma \) is an upper ideal in forcing order
shard ideal = upper ideal in forcing order

essential congruences:
1, 1, 4, 47, 3322, ...
OEIS A330039

all congruences
1, 2, 7, 60, 3444, ...
OEIS A091687
shard ideal = upper ideal in forcing order

essential congruences:
1, 1, 4, 47, 3322, ...
OEIS A330039

all congruences
1, 2, 7, 60, 3444, ...
OEIS A091687
quotientope = polytope whose normal fan is \mathcal{F}_\equiv
quotientope = polytope whose normal fan is \mathcal{F}

P.–Santos ('19)
quotientope = polytope whose normal fan is \mathcal{F}_\equiv
MINKOWSKI SUMS OF ASSOCIAHEDRA
If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_\equiv is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$.
If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_\equiv is the common refinement of the quotient fans $\mathcal{F}_\equiv_1, \ldots, \mathcal{F}_\equiv_k$.

Minkowski sum $P + Q = \{ p + q \mid p \in P, \ q \in Q \}$
If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_\equiv is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$.

Minkowski sum $\mathbb{P} + \mathbb{Q} = \{ p + q | p \in \mathbb{P}, q \in \mathbb{Q} \}$
If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_\equiv is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$.

Minkowski sum $\mathbb{P} + \mathbb{Q} = \{p + q | p \in \mathbb{P}, q \in \mathbb{Q}\}$.
If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_\equiv is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$.

Minkowski sum $P + Q = \{ p + q \mid p \in P, q \in Q \}$
If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_\equiv is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$.

Minkowski sum $\mathbb{P} + \mathbb{Q} = \{p + q \mid p \in \mathbb{P}, q \in \mathbb{Q}\}$

Normal fan of $\mathbb{P} + \mathbb{Q}$ = common refinement of normal fans of \mathbb{P} and \mathbb{Q}
If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_\equiv is the common refinement of the quotient fans $\mathcal{F}_\equiv_1, \ldots, \mathcal{F}_\equiv_k$, and a Minkowski sum of quotientopes for $\mathcal{F}_\equiv_1, \ldots, \mathcal{F}_\equiv_k$ is a quotientope for \mathcal{F}_\equiv.

\[\bigcup \quad = \quad = \]
MINKOWSKI SUMS OF ASSOCIAHEDRA

If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_\equiv is the common refinement of the quotient fans $\mathcal{F}_\equiv_1, \ldots, \mathcal{F}_\equiv_k$, and a Minkowski sum of quotientopes for $\mathcal{F}_\equiv_1, \ldots, \mathcal{F}_\equiv_k$ is a quotientope for \mathcal{F}_\equiv.

Principal arc ideals are Cambrian congruences.

Any quotient fan is realized by a Minkowski sum of (low dim.) associahedra.

Padrol-P.-Ritter (‘20+).
quotientope = polytope whose normal fan is $\mathcal{F}_{≡}$
TROU NORMAND — QUESTIONS?
SHARD POLYTOPES
for a shard $\Sigma = \Sigma(a, b, A, B)$, define

- Σ-matching = sequence $a \leq a_1 < b_1 < \cdots < a_k < b_k \leq b$ where $\{a_i \in \{a\} \cup A$

 \[b_i \in B \cup \{b\}\] for all i

- Characteristic vector $\chi(M) = \sum_{i \in [k]} e_{a_i} - e_{b_i}$

Shard polytope $\text{SP}(\Sigma) = \text{conv} \\{ \chi(M) \mid M \Sigma$-matching $\}$

\[
\begin{align*}
\text{SP}(\Sigma) = \text{conv} \{ & x \in \mathbb{R}^n \mid \\
& x_j = 0 \quad \text{for all } j \in [n] \setminus [a, b] \\
& 0 \leq x_{a'} \leq 1 \quad \text{for all } a' \in \{a\} \cup A \\
& -1 \leq x_{b'} \leq 0 \quad \text{for all } b' \in B \cup \{b\} \\
& 0 \leq \sum_{i \leq j} x_i \leq 1 \quad \text{for all } j \in [n]
\end{align*}
\]

exm: for an up shard $(a, b,]a, b[, \emptyset)$, we get the standard simplex $\Delta_{[a,b]} - e_b$
The normal fan of the shard polytope $\mathcal{SP}(\Sigma)$
- contains the shard Σ,
- is contained in the union of the shards forcing Σ
The normal fan of the shard polytope $\mathcal{SP}(\Sigma)$

- contains the shard Σ,
- is contained in the union of the shards forcing Σ

For any lattice congruence \equiv, the quotient fan \mathcal{F}_\equiv is the normal fan of the Minkowski sum of the shard polytopes $\mathcal{SP}(\Sigma)$ for $\Sigma \in \Sigma_\equiv$

Padrol-P.-Ritter (20+)}
The normal fan of the shard polytope $\mathcal{SP}(\Sigma)$

- contains the shard Σ,
- is contained in the union of the shards forcing Σ

For any lattice congruence \equiv, the quotient fan \mathcal{F}_\equiv is the normal fan of the Minkowski sum of the shard polytopes $\mathcal{SP}(\Sigma)$ for $\Sigma \in \Sigma_\equiv$

Padrol-P.-Ritter (20+)}
SHARD POLYTOPES AND TYPE CONES
CHOOSING RIGHT-HAND-SIDES

\(\mathcal{F} = \) complete simplicial fan in \(\mathbb{R}^n \) with \(N \) rays

\(G = (N \times n) \)-matrix whose rows are representatives of the rays of \(\mathcal{F} \)

for a height vector \(h \in \mathbb{R}_>^N \), consider the polytope

\[\mathbb{P}_h = \{ x \in \mathbb{R}^n \mid Gx \leq h \} \]
CHOOSING RIGHT-HAND-SIDES

\(\mathcal{F} = \) complete simplicial fan in \(\mathbb{R}^n \) with \(N \) rays

\(\mathbf{G} = (N \times n) \)-matrix whose rows are representatives of the rays of \(\mathcal{F} \)

for a height vector \(\mathbf{h} \in \mathbb{R}_0^N \), consider the polytope \(P_h = \{ x \in \mathbb{R}^n \mid \mathbf{G}x \leq h \} \)
\mathcal{F} = complete simplicial fan in \mathbb{R}^n with N rays
$G = (N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F}
for a height vector $h \in \mathbb{R}_+^N$, consider the polytope $P_h = \{x \in \mathbb{R}^n \mid Gx \leq h\}$

When is \mathcal{F} the normal fan of P_h?
\(\mathcal{F} = \) complete simplicial fan in \(\mathbb{R}^n \) with \(N \) rays

\(\mathbf{G} = (N \times n) \)-matrix whose rows are representatives of the rays of \(\mathcal{F} \)

for a height vector \(\mathbf{h} \in \mathbb{R}_>^N \), consider the polytope \(\mathbb{P}_h = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{Gx} \leq \mathbf{h} \} \)
\(\mathcal{F} = \) complete simplicial fan in \(\mathbb{R}^n \) with \(N \) rays

\(G = (N \times n) \)-matrix whose rows are representatives of the rays of \(\mathcal{F} \)

for a height vector \(h \in \mathbb{R}^N \), consider the polytope \(P_h = \{ x \in \mathbb{R}^n \mid Gx \leq h \} \)
$\mathcal{F} = \text{complete simplicial fan in } \mathbb{R}^n \text{ with } N \text{ rays}$

$G = (N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F}

for a height vector $h \in \mathbb{R}^N_{>0}$, consider the polytope $P_h = \{ x \in \mathbb{R}^n \mid Gx \leq h \}$

wall-crossing inequality for a wall $R = \sum_{s \in R \cup \{r, r'\}} \alpha_{R,s} h_s > 0$ where

- $r, r' = \text{rays such that } R \cup \{r\} \text{ and } R \cup \{r'\} \text{ are chambers of } \mathcal{F}$
- $\alpha_{R,s} = \text{coeff. of unique linear dependence } \sum_{s \in R \cup \{r, r'\}} \alpha_{R,s} s = 0 \text{ with } \alpha_{R,r} + \alpha_{R,r'} = 2$
\mathcal{F} = complete simplicial fan in \mathbb{R}^n with N rays

$G = (N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F}

for a height vector $h \in \mathbb{R}_{>0}^N$, consider the polytope $\mathbb{P}_h = \{x \in \mathbb{R}^n \mid Gx \leq h\}$

wall-crossing inequality for a wall $R = \sum_{s \in R \cup \{r, r'\}} \alpha_{R,s} h_s > 0$ where

- $r, r' =$ rays such that $R \cup \{r\}$ and $R \cup \{r'\}$ are chambers of \mathcal{F}
- $\alpha_{R,s} =$ coeff. of unique linear dependence $\sum_{s \in R \cup \{r, r'\}} \alpha_{R,s} s = 0$ with $\alpha_{R,r} + \alpha_{R,r'} = 2$

\mathcal{F} is the normal fan of $\mathbb{P}_h \iff h$ satisfies all wall-crossing inequalities of \mathcal{F}
\mathcal{F} = complete simplicial fan in \mathbb{R}^n with N rays
$G = (N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F}
for a height vector $h \in \mathbb{R}_>^N$, consider the polytope $P_h = \{x \in \mathbb{R}^n \mid Gx \leq h\}$

wall-crossing inequalities:

wall 1: $h_2 + h_5 > 0$
wall 2: $h_1 + h_3 > h_2$
wall 3: $h_2 + h_4 > h_3$
wall 4: $h_3 + h_5 > h_4$
wall 5: $h_1 + h_4 > 0$
TYPE CONE

\(\mathcal{F} = \) complete simplicial fan in \(\mathbb{R}^n \) with \(N \) rays
\(G = (N \times n) \)-matrix whose rows are representatives of the rays of \(\mathcal{F} \)
for a height vector \(\mathbf{h} \in \mathbb{R}_0^N \), consider the polytope
\(P_{\mathbf{h}} = \{ \mathbf{x} \in \mathbb{R}^n \mid G\mathbf{x} \leq \mathbf{h} \} \)

- **type cone** \(\text{TC}(\mathcal{F}) \) = realization space of \(\mathcal{F} \)
 = \(\{ \mathbf{h} \in \mathbb{R}^N \mid \mathcal{F} \text{ is the normal fan of } P_{\mathbf{h}} \} \)
 = \(\{ \mathbf{h} \in \mathbb{R}^N \mid \mathbf{h} \text{ satisfies all wall-crossing inequalities of } \mathcal{F} \} \)

McMullen ('73)
\(\mathcal{F} = \) complete simplicial fan in \(\mathbb{R}^n \) with \(N \) rays

\(\mathbf{G} = (N \times n) \)-matrix whose rows are representatives of the rays of \(\mathcal{F} \)

for a height vector \(\mathbf{h} \in \mathbb{R}^N_{>0} \), consider the polytope \(\mathbb{P}_h = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{G}\mathbf{x} \leq \mathbf{h} \} \)

\[\text{type cone } \mathbb{T}_C(\mathcal{F}) = \text{realization space of } \mathcal{F} \]
\[= \{ \mathbf{h} \in \mathbb{R}^N \mid \mathcal{F} \text{ is the normal fan of } \mathbb{P}_h \} \]
\[= \{ \mathbf{h} \in \mathbb{R}^N \mid \mathbf{h} \text{ satisfies all wall-crossing inequalities of } \mathcal{F} \} \]

some properties of \(\mathbb{T}_C(\mathcal{F}) \):

- \(\mathbb{T}_C(\mathcal{F}) \) is an open cone (dilations preserve normal fans)
- \(\mathbb{T}_C(\mathcal{F}) \) has lineality space \(\mathbf{G}\mathbb{R}^n \) (translations preserve normal fans)
- dimension of \(\mathbb{T}_C(\mathcal{F})/\mathbf{G}\mathbb{R}^n = \mathbb{R}^N = N - n \)
TYPE CONE

\(\mathcal{F} = \) complete simplicial fan in \(\mathbb{R}^n \) with \(N \) rays

\(\mathbf{G} = (N \times n) \)-matrix whose rows are representatives of the rays of \(\mathcal{F} \)

for a height vector \(\mathbf{h} \in \mathbb{R}^N_\geq 0 \), consider the polytope \(\mathbb{P}_h = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{Gx} \leq \mathbf{h} \} \)

\[
\text{type cone } \mathcal{T} \mathcal{C}(\mathcal{F}) = \text{realization space of } \mathcal{F} \\
= \{ \mathbf{h} \in \mathbb{R}^N \mid \mathcal{F} \text{ is the normal fan of } \mathbb{P}_h \} \\
= \{ \mathbf{h} \in \mathbb{R}^N \mid \mathbf{h} \text{ satisfies all wall-crossing inequalities of } \mathcal{F} \}
\]

some properties of \(\mathcal{T} \mathcal{C}(\mathcal{F}) \):

- closure of \(\mathcal{T} \mathcal{C}(\mathcal{F}) = \) polytopes whose normal fan coarsens \(\mathcal{F} = \) deformation cone
- Minkowski sums \(\leftarrow \rightarrow \) positive linear combinations

McMullen (’73)
Assume that the type cone $\mathcal{T}C(\mathcal{F})$ is simplicial

$K = (N-n) \times N$-matrix whose rows are inner normal vectors of the facets of $\mathcal{T}C(\mathcal{F}(\delta))$

All polytopal realizations of \mathcal{F} are affinely equivalent to

$$\mathbb{R}_\ell = \left\{ z \in \mathbb{R}^N \mid Kz = \ell \text{ and } z \geq 0 \right\}$$

for any positive vector $\ell \in \mathbb{R}^{N-n}_{>0}$

Padrol–Palu–P.–Plamondon ('19+)

Fundamental exms: g-vector fans of cluster-like complexes

sylvester fans
genette fans wrt any seed (acyclic or not)

finite gentle fans for brick and 2-acyclic quivers

Arkani-Hamed–Bai–He–Yan ('18)
BMDMTY ('18+)
Palu–P.–Plamondon ('18)
closed type cone of braid fan = \{\text{deformed permutahedra}\} = \{\text{submodular functions}\}

deformed permutahedron = \text{polytope whose normal fan coarsens the braid fan}

\[\text{Defo}(z) = \{ \mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{1} \mid \mathbf{x} \rangle = z_{[n]} \text{ and } \langle \mathbf{1}_R \mid \mathbf{x} \rangle \geq z_R \text{ for all } R \subseteq [n] \} \]

for some vector \(z \in \mathbb{R}^{2^n} \) such that \(z_R + z_S \leq z_{R \cup S} + z_{R \cap S} \) and \(z_{\emptyset} = 0 \)

Postnikov ('09) Postnikov–Reiner–Williams ('08)
closed type cone of braid fan = \{\text{deformed permutahedra}\} = \{\text{submodular functions}\}

deformed permutahedron = \text{polytope whose normal fan coarsens the braid fan}

\[
\text{Defo}(z) = \{ \mathbf{x} \in \mathbb{R}^n_{\geq 0} \mid \langle \mathbf{1} | \mathbf{x} \rangle = z_{[n]} \text{ and } \langle \mathbf{1}_R | \mathbf{x} \rangle \geq z_R \text{ for all } R \in \mathcal{J} \}
\]

for some vector \(z \in \mathbb{R}^{2^n} \) such that \(z_R + z_S \leq z_{R \cup S} + z_{R \cap S} \) and \(z_{\emptyset} = z_{\{i\}} = 0 \),

where \(\mathcal{J} = \{ J \subseteq [n] \mid |J| \geq 2 \} \)
SUBMODULAR FUNCTIONS

\[\text{dim } \text{TC}(\mathcal{F}) = N - n = 6 - 2 = 4 \]
SUBMODULAR FUNCTIONS

\[SP(\cdot) = \]

\[SP(\cdot) = \]

\[SP(\cdot) = \]

\[SP(\cdot) = \]

\[= SP(\cdot) \]

\[= SP(\cdot) \]

\[= SP(\cdot) \]

\[= SP(\cdot) \]
all quotientopes of PS ('18) are Minkowski sums of scaled shard polytopes

Padrol-P.-Ritter (20+)
all quotientopes of PS ('18) are Minkowski sums of scaled shard polytopes

shard polytopes are Minkowski indecomposable (thus rays of the type cone)
⇒ Newton polytopes F-polyn.
⇒ brick polytope summands
all quotientopes of PS ('18) are Minkowski sums of scaled shard polytopes

shard polytopes are Minkowski indecomposable (thus rays of the type cone)

⇒ Newton polytopes F-polyn.
⇒ brick polytope summands

Any deformed permutahedron is a Minkowski sum and difference of shard polytopes

$$\text{Defo}(z) = \sum_{J \in J} y_J \triangle J = \sum_{I \in J} s_I \text{SP} (\Sigma_I)$$

with explicit (combinatorial) exchange matrices between the parameters s, y and z
OPEN QUESTIONS
QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

\(\mathcal{H}\) hyperplane arrangement in \(\mathbb{R}^n\)

base region \(B = \) distinguished region of \(\mathbb{R}^n \setminus \mathcal{H}\)

inversion set of a region \(C = \) set of hyperplanes of \(\mathcal{H}\) that separate \(B\) and \(C\)

poset of regions \(\text{PR}(\mathcal{H}, B) = \) regions of \(\mathbb{R}^n \setminus \mathcal{H}\) ordered by inclusion of inversion sets

The poset of regions \(\text{PR}(\mathcal{H}, B)\)

- is never a lattice when \(B\) is not a simplicial region
- is always a lattice when \(\mathcal{H}\) is a simplicial arrangement

If \(\text{PR}(\mathcal{H}, B)\) is a lattice, and \(\equiv\) is a congruence of \(\text{PR}(\mathcal{H}, B)\), the cones obtained by glueing the regions of \(\mathbb{R}^n \setminus \mathcal{H}\) in the same congruence class form a complete fan \(\mathcal{F}_\equiv\)

Is the quotient fan \(\mathcal{F}_\equiv\) always polytopal?
SHARDS FOR HYPERPLANE ARRANGEMENTS

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards
shard = piece of hyperplane obtained after cutting all rank 2 subgroups
shard poset = (pre)poset of forcing relations among shards

SHARDS FOR HYPERPLANE ARRANGEMENTS

Reading (‘03)
SHARDS FOR HYPERPLANE ARRANGEMENTS

shard = piece of hyperplane obtained after cutting all rank 2 subgroups
shard poset = (pre)poset of forcing relations among shards

Reading (’03)
SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope for a shard \(\Sigma \) = polytope whose normal fan

- contains the shard \(\Sigma \),
- is contained in the union of the shards forcing \(\Sigma \)

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions
SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

shard = piece of hyperplane obtained after cutting all rank 2 subgroups
shard poset = (pre)poset of forcing relations among shards

shard polytope for a shard $\Sigma = \text{polytope whose normal fan}$
 • contains the shard Σ,
 • is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

If any shard Σ admits a shard polytope $\mathbb{SP}(\Sigma)$, then
 • for any lattice congruence \equiv of $\text{PR}(\mathcal{H}, B)$, the quotient fan \mathcal{F}_\equiv is the normal of the Minkowski sum of the shard polytopes $\mathbb{SP}(\Sigma)$ for Σ in the shard ideal Σ_\equiv
 • if the arrangement \mathcal{H} is simplicial, then the shard polytopes $\mathbb{SP}(\Sigma)$ form a basis for the type cone of the fan defined by \mathcal{H} (up to translation)

Padrol-P.-Ritter (20+)
SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

shard = piece of hyperplane obtained after cutting all rank 2 subgroups
shard poset = (pre)poset of forcing relations among shards

shard polytope for a shard Σ = polytope whose normal fan
- contains the shard Σ,
- is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

For crystallographic arrangements, Newton polytopes of F-polynomials all seem to be shard polytopes, but some shards are missing...
THANKS