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COMBINATORICS OF POLYTOPES
POLYTOPES FROM COMBINATORICS

polytope = convex hull of a finite set of Rd

= bounded intersection of finitely many half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given (part of) a face lattice, is there a polytope which realizes it?

In which dimension(s)?



POLYTOPALITY

A graph is d-polytopal if it is the graph of a d-dimensional polytope.

One of these graphs is polytopal. Can you guess which?
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POLYTOPALITY RANGE

The polytopality range of a graph is the set of dimensions in which it is polytopal.

Which dimension can have a polytope with this graph?
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Which dimension can have a polytope with this graph?



POLYTOPALITY OF GRAPHS

GENERAL POLYTOPES

THEOREM. 3-polytopal ⇐⇒ simple, planar and 3-connected. E. Steinitz 1922

THEOREM. A d-polytopal graph satisfies the following properties:

Balinski’s Theorem. G is d-connected. M. Balinski 1961

Principal Subdivision Property. Every vertex of G is the principal vertex of a principal

subdivision of Kd+1 contained in G. D. Barnette 1967

SIMPLE POLYTOPES

THEOREM. Two simple polytopes are combinatorially equivalent if and only if they have

the same graph. R. Blind and P. Mani 1987, G. Kalai 1988

LEMMA. All induced 3-, 4- and 5-cycles in the graph of a simple polytope are 2-faces.



POLYTOPALITY OF GRAPHS

LEMMA. All induced 3-, 4- and 5-cycles in the graph of a simple polytope are 2-faces.

EXAMPLE. None of the graphs of the following family is polytopal:
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CARTESIAN PRODUCTS OF GRAPHS

Cartesian product of polytopes: P ×Q := {(p, q) | p ∈ P, q ∈ Q}.

Cartesian product of graphs:

{
V (G×H) := V (G)× V (H),

E(G×H) := (V (G)× E(H)) ∪ (E(G)× V (H)) .

REMARK. graph of P ×Q = (graph of P ) × (graph of Q).

PROBLEM. Does the polytopality of G×H imply that of G and H?



POLYTOPALITY AND CARTESIAN PRODUCTS

PROBLEM. Does the polytopality of G×H imply that of G and H?

THEOREM. G×H simply polytopal ⇐⇒ G and H simply polytopal.

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision

of an e-polytope is (d + e)-polytopal.
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J. Pfeifle, V. P. & F. Santos, On polytopality of Cartesian products of graphs, 2010



POLYTOPALITY AND CARTESIAN PRODUCTS

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision

of an e-polytope is (d + e)-polytopal.

EXAMPLE. The product of two domino graphs is polytopal.
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POLYTOPALITY AND CARTESIAN PRODUCTS

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision

of an e-polytope is (d + e)-polytopal.

EXAMPLE. Polytopal product of regular non-polytopal graphs.
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SOME CHALLENGING EXAMPLES

THEOREM. The graph Kn,n ×K2 is not polytopal for n ≥ 3.

THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is

K3,3 ×K3. It is homeomorphic to RP2 × S1.

A. Guedes de Oliveira, E. Kim, M. Noy, A. Padrol, J. Pfeifle & V. P.
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SOME CHALLENGING EXAMPLES

THEOREM. The graph Kn,n ×K2 is not polytopal for n ≥ 3.

THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is

K3,3 ×K3. It is homeomorphic to RP2 × S1.

PROBLEM. Is the product of two Petersen graphs the graph of a polytope?

This polytope could have dimension 4 or 5.
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PRODSIMPLICIAL NEIGHBORLY POLYTOPES

k ≥ 0 and n := (n1, ..., nr).

A polytope is (k, n)-prodsimplicial-neighborly if its k-skeleton is combinatorially

equivalent to that of the product of simplices 4n := 4n1 × · · · × 4nr.

EXAMPLE.

(i) neighborly polytopes arise when r = 1.

For example, the cyclic polytope C2k+2(n + 1) is (k, n)-PSN.

(ii) neighborly cubical polytopes arise when n = (1, 1, . . . , 1).

M. Joswig & G. Ziegler, Neighborly cubical polytopes, 2000

PROBLEM. What is the minimal dimension of a (k, n)-PSN polytope?



PRODSIMPLICIAL NEIGHBORLY POLYTOPES

k ≥ 0 and n := (n1, ..., nr).

A polytope is (k, n)-prodsimplicial-neighborly if its k-skeleton is combinatorially

equivalent to that of the product of simplices 4n := 4n1 × · · · × 4nr.

EXAMPLE.

(i) neighborly polytopes arise when r = 1.

For example, the cyclic polytope C2k+2(n + 1) is (k, n)-PSN.

(ii) neighborly cubical polytopes arise when n = (1, 1, . . . , 1).

M. Joswig & G. Ziegler, Neighborly cubical polytopes, 2000

PROBLEM. What is the minimal dimension of a (k, n)-PSN polytope?

A (k, n)-PSN polytope is (k, n)-projected-prodsimplicial-neighborly if it is a projection

of a polytope combinatorially equivalent to 4n.

PROBLEM. What is the minimal dimension of a (k, n)-PPSN polytope?



PRODUCT OF CYCLIC POLYTOPES

Cd(n) := conv {µd(ti) | i ∈ [n]} the d-dimensional cyclic polytope with n vertices,

where µd(t) = (t, t2, . . . , td)T and t1, t2, . . . , tn ∈ R distinct.

PROPOSITION. Any subset of at most
⌊
d
2

⌋
vertices of Cd(n) forms a face of Cd(n).

F ⊂ [n] defines a facet of Cd(n) ⇐⇒ |F | = d and all inner blocs are even.

The normal vector of this facet is given by the coefficients of the polytope

∏
i∈F

(t− ti) =

d∑
i=1

γi(F )ti =

γ1(F )
...

γd(F )

 ·
t1...
td

 + γ0(F ).

PROPOSITION. Let k ≥ 0 and n := (n1, ..., nr). Let I := {i ∈ [n] | ni ≥ 2k + 3}. The

product ∏
i∈I

C2k+2(ni + 1)×
∏
i/∈I

4ni

is a (k, n)-PPSN polytope of dimension (2k + 2)|I| +
∑

i/∈I ni ≤ (2k + 2)r.



MINKOWSKI SUM OF CYCLIC POLYTOPES

PROPOSITION. Let k ≥ 0 and n := (n1, ..., nr). Define

va1,...,ar :=


∑

i∈[r] ai∑
i∈[r] a

2
i

...∑
i∈[r] a

2k+2r
i

 ∈ R2k+2r.

For any pairwise disjoint index sets I1, . . . , Ir ⊂ R, with |Ii| = ni for all i ∈ [r],

the polytope conv {va1,...,ar | (a1, . . . , ar) ∈ I1 × · · · × Ir} ⊂ R2k+2r is a (k, n)-PPSN

(2k + 2r)-dimensional polytope.



MINKOWSKI SUM OF CYCLIC POLYTOPES

PROPOSITION. Let k ≥ 0 and n := (n1, ..., nr). Define

wa1,...,ar :=



a1
...

ar∑
i∈[r] a

2
i

...∑
i∈[r] a

2k+2
i


∈ R2k+r+1.

There exists pairwise disjoint index sets I1, . . . , Ir ⊂ R, with |Ii| = ni for all i ∈ [r],

such that the polytope conv {wa1,...,ar | (a1, . . . , ar) ∈ I1 × · · · × Ir} ⊂ R2k+r+1 is a

(k, n)-PPSN (2k + r + 1)-dimensional polytope.

B. Matschke, J. Pfeifle & V. P., Prodsimplicial neighborly polytopes, 2010



PRESERVING FACES UNDER PROJECTIONS

n > d.

π : Rn → Rd the orthogonal projection on the first d coordinates.

τ : Rn → Rn−d the dual projection on the last n− d coordinates.

A proper face F of a polytope P is strictly preserved under π if:

(i) π(F ) is a face of π(P ),

(ii) F and π(F ) are combinatorially isomorphic, and

(iii) π−1(π(F )) equals F .

ppq
s

q
s

rr



PRESERVING FACES UNDER PROJECTIONS

n > d.

π : Rn → Rd the orthogonal projection on the first d coordinates.

τ : Rn → Rn−d the dual projection on the last n− d coordinates.

Let F1, . . . , Fm be the facets of P . Let fi be the normal vector of Fi and gi = τ (fi).

For any face F of P , let φ(F ) = {i ∈ [m] | F ⊂ Fi}. In other words, F = ∩i∈φ(F )Fi.

LEMMA. F face of P is strictly preserved ⇐⇒ {gi | i ∈ φ(F )} is positively spanning.

N. Amenta & G. Ziegler, Deformed products and maximal shadows of polytopes, 1999

G. Ziegler, Projected products of polytopes, 2004
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DEFORMED PRODUCTS

P1, . . . , Pr simple polytopes, with facet description:

Pi := {x ∈ Rni | Aix ≤ bi} , where Ai ∈ Rmi×ni and bi ∈ Rmi.

The product P := P1 × · · · × Pr has dimension
∑

i∈[r] ni and is defined by the
∑

i∈[r]mi

inequalities: A1
. . .

Ar

x ≤

b1...
br

 .

THEOREM. (DEFORMED PRODUCT CONSTRUCTION)

For any matrix A∼ :=

A1 ? ?
. . . ?

Ar

 obtained by arbitrarily changing the 0’s above

the diagonal blocs, there exists b∼ such that the polytope defined by A∼x ≤ b∼ is

combinatorially equivalent to P1 × · · · × Pr.

N. Amenta & G. Ziegler, Deformed products and maximal shadows of polytopes, 1999



PROJECTED DEFORMED PRODUCTS

IDEA. Use your freedom on the upper part of the matrix A∼ to obtain a polytope

P∼ :=
{
x ∈ R

∑
ni
∣∣ A∼x ≤ b∼

}
such that:

(i) P∼ is a deformed product combinatorially equivalent to P := P1 × · · · × Pr; and

(ii) the projection of P∼ on the first d coordinates preserves its k-skeleton.

EXAMPLE. Let P1, . . . , Pr be r simple polytopes of respective dimension ni and with

mi many facets. If d =
∑

i∈[t] ni, then there exists a d-dimensional polytope whose

k-skeleton is combinatorially equivalent to that of P1 × · · · × Pr provided

k ≤
∑
i∈[r]

ni −
∑
i∈[r]

mi +

⌊∑
i∈[t]mi − 1

2

⌋
.

For improvements, see

B. Matschke, J. Pfeifle & V. P., Prodsimplicial neighborly polytopes, 2010



SANYAL’S TOPOLOGICAL OBSTRUCTION METHOD

n > d.

π : Rn → Rd the orthogonal projection on the first d coordinates.

τ : Rn → Rn−d the dual projection on the last n− d coordinates.

Let P be a simple full-dimensional polytope whose vertices are strictly preserved by π.

Let F1, . . . , Fm be the facets of P . Let fi be the normal vector of Fi and gi = τ (fi).

For any face F of P , let φ(F ) = {i ∈ [m] | F ⊂ Fi}. In other words, F = ∩i∈φ(F )Fi.

LEMMA. The vector configuration {gi | i ∈ [m]} is the Gale transform of the vertex set

{ai | i ∈ [m]} of a (m− n + d− 1)-dimensional (simplicial) polytope Q.

A face F of P is strictly preserved by π

⇐⇒ {gi | i ∈ φ(F )} is positively spanning

⇐⇒ {ai | i ∈ [m] r φ(F )} is a face of Q.

R. Sanyal, Topological obstructions for vertex numbers of Minkowski sums, 2009



SANYAL’S TOPOLOGICAL OBSTRUCTION METHOD

Projection preserving the k-skeleton of 4n

7−→ simplicial complex embeddable in a certain dimension (Gale duality)

7−→ topological obstruction (Sarkaria’s criterion).

THEOREM. (Topological obstruction for low-dimensional skeleta)

Let n := (n1, . . . , nr) and R := {i ∈ [r] | ni ≥ 2}. If 0 ≤ k ≤
∑

i∈R
⌊
ni−2
2

⌋
, then the

dimension of any (k, n)-PPSN polytope is at least 2k + |R| + 1.

THEOREM. (Topological obstruction for high-dimensional skeleta)

Let n := (n1, . . . , nr). If k ≥
⌊
1
2

∑
i∈[r] ni

⌋
, then any (k, n)-PPSN polytope is combi-

natorially equivalent to ∆n.

B. Matschke, J. Pfeifle & V. P., Prodsimplicial neighborly polytopes, 2010
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