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POLYTOPALITY AND CARTESIAN PRODUCTS

Vincent Pilaud (Université Paris 7)



COMBINATORICS OF POLYTOPES
POLYTOPES FROM COMBINATORICS

polytope = convex hull of a finite set of R
= bounded intersection of finitely many half-spaces

face = intersection with a supporting hyperplane
face lattice = all the faces with their inclusion relations

sl

Given a set of points, determine the face lattice of its convex hull.
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Given (part of) a face lattice, is there a polytope which realizes it?
In which dimension(s)?




POLYTOPALITY

A graph is d-polytopal if it is the graph of a d-dimensional polytope.

One of these graphs is polytopal. Can you guess which?
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A graph is d-polytopal if it is the graph of a d-dimensional polytope.

One of these graphs is polytopal. Can you guess which?




POLYTOPALITY RANGE

The polytopality range of a graph is the set of dimensions in which it is polytopal.

Which dimension can have a polytope with this graph?
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POLYTOPALITY RANGE

The polytopality range of a graph is the set of dimensions in which it is polytopal.




POLYTOPALITY OF GRAPHS

GENERAL POLYTOPES

THEOREM. 3-polytopal <= simple, planar and 3-connected.

THEOREM. A d-polytopal graph satisfies the following properties:
Balinski’'s Theorem. (G is d-connected.

Principal Subdivision Property. Every vertex of GG is the principal vertex of a principal
subdivision of K, ; contained in G.

SIMPLE POLYTOPES

THEOREM. Two simple polytopes are combinatorially equivalent if and only if they have
the same graph.

LEMMA. All induced 3-, 4- and 5-cycles in the graph of a simple polytope are 2-faces.




POLYTOPALITY OF GRAPHS

LEMMA. All induced 3-, 4- and 5-cycles in the graph of a simple polytope are 2-faces.

EXAMPLE. None of the graphs of the following family is polytopal:




Polytopality
of Cartesian
products
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CARTESIAN PRODUCTS OF GRAPHS

Cartesian product of polytopes: P x Q :={(p,q) | p € P,q € Q}.
VIGx H):=V(G)x V(H),

Cartesian product of graphs: { E(Gx H):=(V(G) x E(H))U(E(G) x V(H)).

REMARK. graph of P x @ = (graph of P) x (graph of Q).

PROBLEM. Does the polytopality of G x H imply that of G and H?




POLYTOPALITY AND CARTESIAN PRODUCTS

PROBLEM. Does the polytopality of G x H imply that of G and H?

THEOREM. G x H simply polytopal <= G and H simply polytopal.

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision
of an e-polytope is (d + e)-polytopal.
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POLYTOPALITY AND CARTESIAN PRODUCTS

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision
of an e-polytope is (d + e)-polytopal.

EXAMPLE. The product of two domino graphs is polytopal.




POLYTOPALITY AND CARTESIAN PRODUCTS

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision
of an e-polytope is (d + e)-polytopal.

EXAMPLE. Polytopal product of regular non-polytopal graphs.




SOME CHALLENGING EXAMPLES

THEOREM. The graph K, , x K, is not polytopal for n > 3.

THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is
K33 x Kj3. It is homeomorphic to RP? x S'.

A. Guedes de Oliveira, E. Kim, M. Noy, A. Padrol, J. Pfeifle & V. P.
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SOME CHALLENGING EXAMPLES

THEOREM. The graph K, , x K5 is not polytopal for n > 3.

THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is
K33 x K3. It is homeomorphic to RP? x S*.

PROBLEM. Is the product of two Petersen graphs the graph of a polytope?

This polytope could have dimension 4 or 5.
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PRODSIMPLICIAL NEIGHBORLY POLYTOPES

k>0and n:=(n,...,n;).

A polytope is (k, n)-prodsimplicial-neighborly if its k-skeleton is combinatorially
equivalent to that of the product of simplices A, ;== A, x --- X A, .

EXAMPLE.

(i) neighborly polytopes arise when r = 1.
For example, the cyclic polytope Coiio(n + 1) is (k,n)-PSN.

(i) neighborly cubical polytopes arise when n = (1,1,...,1).

PROBLEM. What is the minimal dimension of a (k,n)-PSN polytope?




PRODSIMPLICIAL NEIGHBORLY POLYTOPES

k>0and n:=(n,...,n;).

A polytope is (k, n)-prodsimplicial-neighborly if its k-skeleton is combinatorially
equivalent to that of the product of simplices A, ;== A, x --- X A, .

EXAMPLE.

(i) neighborly polytopes arise when r = 1.
For example, the cyclic polytope Coiio(n + 1) is (k,n)-PSN.

(i) neighborly cubical polytopes arise when n = (1,1,...,1).

PROBLEM. What is the minimal dimension of a (k,n)-PSN polytope?

A (k,n)-PSN polytope is (k, n)-projected-prodsimplicial-neighborly if it is a projection
of a polytope combinatorially equivalent to A,,.

PROBLEM. What is the minimal dimension of a (k,n)-PPSN polytope?




PRODUCT OF CYCLIC POLYTOPES

Ca(n) := conv{uq(t;) | © € [n]} the d-dimensional cyclic polytope with n vertices,
where p4(t) = (¢, %, ..., )T and ¢, s, ..., t, € R distinct.

PROPOSITION. Any subset of at most LgJ vertices of Cy(n) forms a face of Cy(n).

F' C [n] defines a facet of Cy(n) <= |F| =d and all inner blocs are even.
The normal vector of this facet is given by the coefficients of the polytope

d ’71(F> tl
[[t—=t)=> wE)=1 + |-| | +n

i€l i=1 Ya(F) +d

PROPOSITION. Let £ > 0 and n := (n1,...,n,). Let I == {i € [n||n; >2k+3}. The

product
H 02k+2(ni o 1) X H Am

il il
is a (k,n)-PPSN polytope of dimension (2k + 2)|I| + > ,,;ni < (2k +2)r.




MINKOWSKI SUM OF CYCLIC POLYTOPES

PROPOSITION. Let £ > 0 and n := (n4, ...,n,). Define

( Zié[r]a \

2
Vay....qr = Zz’e.[r] a; c R%—i_%.
\Zie[r] azszrzT)
For any pairwise disjoint index sets I, ..., I, C R, with |[;| = n; for all 7 € [r],

.....

(2k + 2r)-dimensional polytope.




MINKOWSKI SUM OF CYCLIC POLYTOPES

PROPOSITION. Let £ > 0 and n := (n4, ...,n,). Define

[ e )
ay
Wi = , | € R¥*HL
1 Ziem @;
242
\Zie[r] @; +)
There exists pairwise disjoint index sets I1,..., I, C R, with |I;| = n; for all ¢ € [r],

.....

(k,n)-PPSN (2k + r 4 1)-dimensional polytope.




PRESERVING FACES UNDER PROJECTIONS

n > d.
7 : R" — R the orthogonal projection on the first d coordinates.
7 : R” — R"“ the dual projection on the last n — d coordinates.

A proper face F' of a polytope P is strictly preserved under 7 if:
(i) 7(F) is a face of 7(P),
(ii) F' and 7(F') are combinatorially isomorphic, and

(iii) 7~ !(7(F)) equals F.




PRESERVING FACES UNDER PROJECTIONS

n > d.

7 : R" — R? the orthogonal projection on the first d coordinates.
7 : R" — R"? the dual projection on the last n — d coordinates.

Let Fi,..., F}, be the facets of P. Let f; be the normal vector of F; and ¢, = 7(f;).
For any face I of P, let ¢(F) = {i € [m| | F C F;}. In other words, F' = M;cy(r)Fi.

LEMMA. F' face of P is strictly preserved <= {g; | © € ¢(F')} is positively spanning.




DEFORMED PRODUCTS

Py, ..., P. simple polytopes, with facet description:
P ={x e R"| Ajx < b;}, where A; € R™™" and b; € R"™.

The product P := P, x --- x P, has dimension ZZ.EM n; and is defined by the Ziem m;
inequalities:
Ay by
: r <
A, b,
THEOREM. (DEFORMED PRODUCT CONSTRUCTION)
Ay« *
For any matrix A~ = .. % | obtained by arbitrarily changing the 0's above
A,
the diagonal blocs, there exists b~ such that the polytope defined by A~x < b~ is
combinatorially equivalent to P, x --- x P.,.




PROJECTED DEFORMED PRODUCTS

IDEA. Use your freedom on the upper part of the matrix A™ to obtain a polytope
i {:1: c R | A~x < b”} such that:

(i) P~ is a deformed product combinatorially equivalent to P := P, X --- x P,; and

(ii) the projection of P~ on the first d coordinates preserves its k-skeleton.

EXAMPLE. Let Pj,..., P, be r simple polytopes of respective dimension n; and with
m; many facets. If d = Zie[t] n;, then there exists a d-dimensional polytope whose
k-skeleton is combinatorially equivalent to that of P, x --- x P, provided

E<Y ni— ) mi+ [ 1 IJ.

i€(r] i€(r]

For improvements, see



SANYAL'S TOPOLOGICAL OBSTRUCTION METHOD

n > d.

7 R” — R the orthogonal projection on the first d coordinates.
7 : R" — R"“ the dual projection on the last n — d coordinates.

Let P be a simple full-dimensional polytope whose vertices are strictly preserved by 7.
Let F1,..., [, be the facets of P. Let f; be the normal vector of F; and g; = 7(f;).
For any face F' of P, let ¢(F) = {i € |/m| | FF C F;}. In other words, F' = N;cy(r)F;.

LEMMA. The vector configuration {g; | © € [m|} is the Gale transform of the vertex set
{a; | i € [m]} of a (m —n + d — 1)-dimensional (simplicial) polytope Q.

A face F' of P is strictly preserved by 7
< {g;|i € ¢(F)} is positively spanning
< {a;|i € |m] ¢(F)} is a face of Q.




SANYAL'S TOPOLOGICAL OBSTRUCTION METHOD

Projection preserving the k-skeleton of A,
—— simplicial complex embeddable in a certain dimension (Gale duality)
—— topological obstruction (Sarkaria’s criterion).

THEOREM. (Topological obstruction for low-dimensional skeleta)
Let n := (n1,...,n,) and R :={ie[r]|n;, >2} HO<EZ<)  , L”ZQ_ZJ then the
dimension of any (k,n)-PPSN polytope is at least 2k + |R| + 1.

THEOREM. (Topological obstruction for high-dimensional skeleta)

Let n .= (ny,...,n,). If k> B zie[r] nZ-J, then any (k,n)-PPSN polytope is combi-
natorially equivalent to A,,.
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