The greedy flip tree of a subword complex

Vincent PILAUD
CNRS - LIX, École Polytechnique
REDUCED EXPRESSIONS & SUBWORD COMPLEXES
\mathfrak{S}_n = symmetric group
$S = \{\tau_i \mid i \in n - 1\}$ set of simple transpositions $\tau_i = (i \ i + 1)$

ρ permutation of \mathfrak{S}_n
reduced expression of ρ = minimal length expression $\rho = s_1 \cdots s_\ell$ with $s_i \in S$

Count and enumerate reduced expressions of ρ

Example. $\rho = [4, 1, 3, 2] = \tau_2 \tau_3 \tau_2 \tau_1 = \tau_3 \tau_2 \tau_3 \tau_1 = \tau_3 \tau_2 \tau_1 \tau_3$
\(\mathfrak{S}_n = \text{symmetric group}\)
\(S = \{\tau_i \mid i \in n - 1\}\) set of simple transpositions \(\tau_i = (i \ i + 1)\)

\(\rho\) permutation of \(\mathfrak{S}_n\)

reduced expression of \(\rho\) = minimal length expression \(\rho = s_1 \cdots s_\ell\) with \(s_i \in S\)

Count and enumerate reduced expressions of \(\rho\)

\[
\# \text{ reduced expressions of } \omega = \frac{(n)!}{1^{n-1}2^{n-2} \cdots (2n-3)!}
\]

Stanley.
On the number of reduced decompositions of elements of Coxeter groups. 1984

Edelmann & Greene.
Combinatorial correspondences for Young tableaux, balanced tableaux, and maximal chains in the Bruhat order of \(\mathfrak{S}_n\). 1984
REDUCED EXPRESSIONS AS SUBWORDS

\[\mathfrak{S}_n = \text{symmetric group} \]
\[S = \{ \tau_i \mid i \in n - 1 \} \text{ set of simple transpositions } \tau_i = (i \ i + 1) \]
\[\rho \text{ permutation of } \mathfrak{S}_n \]
\[Q = q_1 q_2 \cdots q_m \text{ word on the alphabet } S \]

Enumerate subwords of \(Q \) **which are reduced expressions for** \(\rho \)

Example. \(\rho = [4, 1, 3, 2] = \tau_2 \tau_3 \tau_2 \tau_1 = \tau_3 \tau_2 \tau_3 \tau_1 = \tau_3 \tau_2 \tau_1 \tau_3 \)
\[Q = \tau_2 \tau_3 \tau_1 \tau_3 \tau_2 \tau_1 \tau_2 \tau_3 \tau_1 \]

Possible subwords:
\[\tau_2 \tau_3 \cdots \tau_2 \tau_1 \cdots \rightarrow 34789 \]
\[\tau_2 \tau_3 \cdots \cdots \tau_2 \tau_1 \rightarrow 34568 \]
\[\cdot \tau_3 \cdots \tau_2 \cdot \tau_3 \tau_1 \rightarrow 13467 \]
\[\cdot \tau_3 \cdots \tau_2 \tau_1 \cdot \tau_3 \cdot \rightarrow 13479 \]

etc
\[\mathfrak{S}_n = \text{symmetric group} \]
\[S = \{\tau_i \mid i \in n - 1\} \text{ set of simple transpositions } \tau_i = (i \ i + 1) \]
\[\rho \text{ permutation of } \mathfrak{S}_n \]
\[Q = q_1 q_2 \cdots q_m \text{ word on the alphabet } S \]

Enumerate subwords of \(Q \) which are reduced expressions for \(\rho \)

Example. \(\rho = [4, 1, 3, 2] = \tau_2 \tau_3 \tau_2 \tau_1 = \tau_3 \tau_2 \tau_3 \tau_1 = \tau_3 \tau_2 \tau_1 \tau_3 \)
\[Q = \tau_2 \tau_3 \tau_1 \tau_3 \tau_2 \tau_1 \tau_2 \tau_3 \tau_1 \]
W = finite Coxeter group
S = simple system of generators for W
ρ element of W
$Q = q_1 q_2 \cdots q_m$ word on the alphabet S

Enumerate subwords of Q which are reduced expressions for ρ
\[\mathfrak{S}_n = \text{symmetric group} \]

\[S = \{ \tau_i \mid i \in n - 1 \} \text{ set of simple transpositions } \tau_i = (i \ i + 1) \]

\[\rho \text{ permutation of } \mathfrak{S}_n \]

\[Q = q_1 q_2 \cdots q_m \text{ word on the alphabet } S \]

Subword complex \(SC(Q, \rho) = \text{simplicial complex with} \)

- vertices = \([m]\) = positions in the word \(Q\)
- facets = \(\mathcal{F}(Q, \rho) = \text{complements in } [m] \text{ of position sets of reduced expressions of } \rho \text{ in } Q\)

flip = two subwords of \(Q \) which differ at precisely two positions
The flip graph is connected

GOAL: Find a natural spanning tree of the flip graph
INDUCTIVE STRUCTURE

\[Q = q_1 q_2 \cdots q_{m-1} q_m \quad \text{and} \quad Q_\perp = q_1 q_2 \cdots q_{m-1} \]

\[\mathcal{F}(Q, \rho) = \text{facets of } \mathcal{SC}(Q, \rho) = \text{complements of reduced expressions of } \rho \text{ in } Q \]

\[\mathcal{F}(Q, \rho) = \mathcal{F}(Q_\perp, \rho q_m) \sqcup (\mathcal{F}(Q_\perp, \rho) \star m) \]
\[\mathcal{F}(Q, \rho) = \mathcal{F}(Q_+, \rho q_m) \sqcup (\mathcal{F}(Q_-, \rho) \star m) \]
\(Q = q_1 q_2 \cdots q_{m-1} q_m \) and \(Q^{-} = q_1 q_2 \cdots q_{m-1} \)

\[F(Q, \rho) = \text{facets of } SC(Q, \rho) = \text{complements of reduced expressions of } \rho \text{ in } Q \]

\[
F(Q, \rho) = \begin{cases}
F(Q^{-}, \rho q_m) & \text{if } \rho \not\prec Q^{-} \\
F(Q^{-}, \rho) \star m & \text{if } \ell(\rho q_m) > \ell(\rho) \\
F(Q^{-}, \rho q_m) \sqcup (F(Q^{-}, \rho) \star m) & \text{otherwise}
\end{cases}
\]

⇒ Inductive enumeration of \(F(Q, \rho) \) with complexity \(O(m^2n) \) per facet
COMBINATORIAL MODELS FOR GEOMETRIC GRAPHS
bijection between

• triangulations of a convex $(n + 2)$-gon

• subwords of the odd-even word $Q = \left(\prod_{i \in \left[\frac{n}{2} \right]} \tau_{2i+1} \cdot \prod_{i \in \left[\frac{n}{2} \right]} \tau_{2i} \right)^{\frac{n}{2}}$

which are reduced expressions for the longest element $w_\circ = [n, n-1, \ldots, 2, 1]$
FLIP IN TRIANGULATIONS

[Diagram showing triangulations with labels S, R, U, V, W, T.
A sequence of flips is illustrated with corresponding changes in the diagram structure.]
The flip graph is the 1-skeleton of the associahedron
COMBINATORIAL MODELS FOR GEOMETRIC GRAPHS

- triangulations of convex polygons,
- multitriangulations of convex polygons,
- pseudotriangulations of point sets in general position,
- pseudotriangulations of sets of disjoint convex bodies.

GREEDY FLIP ALGORITHM
increasing flip = flip from I to J with $I \setminus i = J \setminus j$ and $i < j$

The increasing flip graph is acyclic, connected, and has a unique sink

greedy facet $G(Q, \rho) =$ unique sink of the increasing flip graph

$= \text{lexicographically maximal facet of } SC(Q, \rho)$
The greedy facet $G(Q, \rho)$ can be constructed inductively from $G(\varepsilon, e) = \emptyset$ using the following formulas:

$$G(Q, \rho) = \begin{cases} G(Q\downarrow, \rho) \cup m & \text{if } \rho \prec Q\downarrow \\ G(Q\downarrow, \rho q_m) & \text{otherwise} \end{cases}$$

$$G(Q, \rho) = \begin{cases} G(Q\uparrow, q_1 \rho) \rightarrow & \text{if } \ell(q_1 \rho) < \ell(\rho) \\ 1 \cup G(Q\uparrow, \rho) \rightarrow & \text{otherwise} \end{cases}$$

where $Q\downarrow = q_1 q_2 \cdots q_{m-1}$, $Q\uparrow = q_2 \cdots q_{m-1} q_m$ and $X\rightarrow = \{x + 1 \mid x \in X\}$
If m is a flippable element of $G(Q, \rho)$, then $G(Q^{-1}, \rho q_m)$ is obtained from $G(Q, \rho)$ flipping m.
\(\mathcal{F}(Q, \rho) = \mathcal{F}(Q_{\perp}, \rho q_m) \sqcup (\mathcal{F}(Q_{\perp}, \rho) \star m) \)
\[G(Q, \rho) = G(Q_{\perp}, \rho q_{m}) \sqcup (G(Q_{\perp}, \rho) \ast m) \sqcup \{ \text{arc from } G(Q_{\perp}, \rho q_{m}) \text{ to } G(Q, \rho) = G(Q_{\perp}, \rho) \cup m \} \]
Inductive structure of the facets $\mathcal{F}(Q, \rho)$ of the subword complex $\mathcal{S}C(Q, \rho)$:

$$
\mathcal{F}(Q, \rho) = \begin{cases}
\mathcal{F}(Q\upharpoonright, \rho q_m) & \text{if } \rho \not\prec Q\upharpoonright \\
\mathcal{F}(Q\upharpoonright, \rho) \ast m & \text{if } \ell(\rho q_m) > \ell(\rho) \\
\mathcal{F}(Q\upharpoonright, \rho q_m) \sqcup \big(\mathcal{F}(Q\upharpoonright, \rho) \ast m \big) & \text{otherwise}
\end{cases}
$$

Inductive definition of the greedy flip tree $\mathcal{G}(Q, \rho)$:

$$
\mathcal{G}(Q, \rho) = \begin{cases}
\mathcal{G}(Q\upharpoonright, \rho q_m) & \text{if } \rho \not\prec Q\upharpoonright \\
\mathcal{G}(Q\upharpoonright, \rho) \ast m & \text{if } \ell(\rho q_m) > \ell(\rho) \\
\mathcal{G}(Q\upharpoonright, \rho q_m) \sqcup \big(\mathcal{G}(Q\upharpoonright, \rho) \ast m \big) \\
\sqcup \{ \text{arc from } \mathcal{G}(Q\upharpoonright, \rho q_m) \text{ to } \mathcal{G}(Q, \rho) = \mathcal{G}(Q\upharpoonright, \rho) \cup m \} & \text{otherwise}
\end{cases}
$$
$g(I) = \text{greedy index of a facet } I \in \mathcal{F}(Q, \rho) = \text{last position } x \in [m] \text{ such that } I \cap [x] = G(q_1 \cdots q_x, \sigma_{[x]} \setminus I)$

If $I, J \in \mathcal{F}(Q, \rho)$ with $I \setminus i = J \setminus j$ and $i < j \leq g(J)$, then $g(I) = j - 1$
The greedy flip tree $\mathcal{G}(Q, \rho)$ has

- nodes = $\mathcal{F}(Q, \rho)$ = complements of reduced expressions of ρ in Q
- arcs = flip (I, J) such that $I \setminus i = J \setminus j$ with $i < j \leq g(J)$.
Greedy Flip Algorithm = Depth first search generation on the greedy flip tree
Preorder traversal provides an iterator on the reduced expressions of ρ in Q

Working space in $O(mn)$
Running time in $O(m^2n)$ per facet \rightarrow similar to the inductive algorithm

Implemented in Sage (Stump’s combinat patch on subword complexes)
Experimental time comparison to generate the k-triangulations of the n-gon:
Thank you