UNEXPECTED DIAGONALS

Vincent PILAUD (CNRS & École Polytechnique)
Bérénice DELCROIX-GER (Univ. Montpellier)
Guillaume LAPLANTE-ANFOSSI (Univ. Melbourne)
Kurt STOECKL (Univ. Melbourne)

Alin BOSTAN (INRIA)
Frédéric CHYZAK (INRIA)

arXiv:2308.12119
arXiv:2303.10986

\(P \) polytope in \(\mathbb{R}^d \)

diagonal of \(P = \delta : P \rightarrow P \times P \)

\[p \mapsto (p, p) \]
\mathbb{P} polytope in \mathbb{R}^d

diagonal of $\mathbb{P} = \delta : \mathbb{P} \to \mathbb{P} \times \mathbb{P}$
\[p \mapsto (p, p) \]

cellular approximation of the diagonal of $\mathbb{P} = \text{map } \mathbb{P} \to \mathbb{P} \times \mathbb{P}$ s.t.
- its image is a union of faces of $\mathbb{P} \times \mathbb{P}$
- it agrees with δ on the vertices of \mathbb{P}
- it is homotopic to δ
DIAGONALS OF POLYTOPES

\[P \text{ polytope in } \mathbb{R}^d \]

diagonal of \(P = \delta : P \to P \times P \)

\[p \mapsto (p, p) \]

cellular approximation of the diagonal of \(P = \) map \(P \to P \times P \) s.t.

- its image is a union of faces of \(P \times P \)
- it agrees with \(\delta \) on the vertices of \(P \)
- it is homotopic to \(\delta \)
any vertex of the fiber polytope

\[\sum \left(\begin{array}{c}
\mathbb{P} \times \mathbb{P} \\
\downarrow \\
\mathbb{P} \\
\end{array} , \begin{array}{c}
(p, q) \\
\frac{p+q}{2}
\end{array} \right) \]

gives a cellular approximation of the diagonal of \(\mathbb{P} \)
projecting back on \(\mathbb{P} \), we see it as a polyhedral subdivision of \(\mathbb{P} \)
the vertex of the fiber polytope selected by \((-v, v)\)

\[
\sum \left(\frac{p \times p}{p + q} \right)
\]

gives a cellular approximation of the diagonal of \(P\) projecting back on \(P\), we see it as a polyhedral subdivision \(\Delta_{P,v}\) of \(P\)
THM. combinatorics of the diagonal $\Delta_{P,v}$ of P
\[
\cong
\]
common refinement of two copies of the normal fan of P translated by v

Laplante-Anfossi '22
Faces of $\Delta_{P,v} \subseteq \text{pairs } (F, G)$ such that $\max_v(F) \leq \min_v(G)$

When these are exactly the faces, it is called “magical formula”

This is the case for simplices, cubes, associahedra, but not permutahedra (see later)
THM. Faces of $\Delta_{P,v} \subseteq$ pairs (F, G) such that $\max_v(F) \leq \min_v(G)$

When these are exactly the faces, it is called “magical formula”

This is the case for simplices, cubes, associahedra, but not permutahedra (see later)

\[
f_k(\Delta_{\text{Simplex}(n)}) = (k + 1) \binom{n + 1}{k + 2}
\]

\[
f_k(\Delta_{\text{Cube}(n)}) = \binom{n}{k} 2^k 3^{n-k}
\]

[OEIS, A127717]
[OEIS, A038220]
PERMUTAHEDRON & ASSOCIAHEDRON
weak order = permutations of $[n]$ ordered by paths of simple transpositions

Tamari lattice = binary trees on $[n]$ ordered by paths of right rotations
weak order = permutations of \([n]\) ordered by paths of simple transpositions

Tamari lattice = binary trees on \([n]\) ordered by paths of right rotations
LATTICES: WEAK ORDER & TAMARI LATTICE

Weak order = permutations of \([n]\) ordered by paths of simple transpositions

Tamari lattice = binary trees on \([n]\) ordered by paths of right rotations

Sylvester congruence = equivalence classes are sets of linear extensions of binary trees

= equivalence classes are fibers of BST insertion

= rewriting rule \(UacVbW \equiv_{\text{sylv}} UcaVbW\) with \(a < b < c\)

Quotient lattice = lattice on classes with \(X \leq Y \iff \exists x \in X, y \in Y, x \leq y\)
weak order = permutations of $[n]$
ordered by paths of simple transpositions

Tamari lattice = binary trees on $[n]$
ordered by paths of right rotations

sylvester congruence = equivalence classes are sets of linear extensions of binary trees
= equivalence classes are fibers of BST insertion
= rewriting rule $UacVbW \equiv_{sylv} UcaVbW$ with $a < b < c$

quotient lattice = lattice on classes with $X \leq Y \iff \exists x \in X, y \in Y, x \leq y$
FANS: BRAID FAN & SYLVESTER FAN

\[
\text{braid fan} = \mathcal{C}(\sigma) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)} \} \\
\text{sylvester fan} = \mathcal{C}(T) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \leq x_j \text{ if } i \to j \text{ in } T \}
\]
FANS: BRAID FAN & SYLVESTER FAN

\begin{align*}
\text{braid fan} & = \mathcal{C}(\sigma) = \left\{ x \in \mathbb{R}^n \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)} \right\} \\
\text{sylvester fan} & = \mathcal{C}(T) = \left\{ x \in \mathbb{R}^n \mid x_i \leq x_j \text{ if } i \to j \text{ in } T \right\}
\end{align*}
braid fan = \(\mathcal{C}(\sigma) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)} \} \)

sylvester fan = \(\mathcal{C}(T) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \leq x_j \text{ if } i \to j \text{ in } T \} \)

quotient fan = \(\mathcal{C}(T) \) is obtained by gluing \(\mathcal{C}(\sigma) \) for all linear extensions \(\sigma \) of \(T \)
Polytopes: Permutahedron & Associahedron

Permutahedron $\text{Perm}(n)$

- $\text{conv} \left\{ [\sigma^{-1}(i)]_{i \in [n]} \mid \sigma \in \mathfrak{S}_n \right\}$
- $H \cap \bigcap_{\emptyset \neq J \subset [n]} H_J$

Where $H_J = \left\{ x \in \mathbb{R}^n \mid \sum_{j \in J} x_j \geq \binom{|J|+1}{2} \right\}$

Associahedron $\text{Asso}(n)$

- $\text{conv} \left\{ [\ell(T, i) \cdot r(T, i)]_{i \in [n]} \mid T \text{ binary tree} \right\}$
- $H \cap \bigcap_{1 \leq i < j \leq n} H_{[i,j]}$

Stasheff (’63)
Shnider – Sternberg (’93)
Loday (’04)
POLYTOPES: PERMUTAHEDRON & ASSOCIAHEDRON

Permutahedron $\text{Perm}(n)$

\[
\text{Perm}(n) = \text{conv} \left\{ [\sigma^{-1}(i)]_{i \in [n]} \mid \sigma \in \mathfrak{S}_n \right\} \\
= H \cap \bigcap_{\emptyset \neq J \subseteq [n]} H_J
\]

where $H_J = \left\{ x \in \mathbb{R}^n \mid \sum_{j \in J} x_j \geq \binom{|J|+1}{2} \right\}$

Associahedron $\text{Asso}(n)$

\[
\text{Asso}(n) = \text{conv} \left\{ [\ell(T, i) \cdot r(T, i)]_{i \in [n]} \mid T \text{ binary tree} \right\} \\
= H \cap \bigcap_{1 \leq i < j \leq n} H_{[i,j]}
\]

Stasheff (’63)
Shnider – Sternberg (’93)
Loday (’04)
permutahedron $\Perm(n)$
\[
= \text{conv} \left\{ [\sigma^{-1}(i)]_{i \in [n]} \mid \sigma \in \mathfrak{S}_n \right\}
\]
\[= \mathbb{H} \cap \bigcap_{\emptyset \neq J \subsetneq [n]} \mathbb{H}_J\]
where $\mathbb{H}_J = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{j \in J} x_j \geq \binom{|J|+1}{2} \right\}$

associahedron $\Asso(n)$
\[
= \text{conv} \left\{ \ell(T, i) \cdot r(T, i)_{i \in [n]} \mid T \text{ binary tree} \right\}
\]
\[= \mathbb{H} \cap \bigcap_{1 \leq i < j \leq n} \mathbb{H}_{[i,j]}\]
Stasheff ('63)
Shnider – Sternberg ('93)
Loday ('04)
LATTICES – FANS – POLYTOPES

permutahedron $\mathbb{Perm}(n)$

\rightarrow braid fan

\rightarrow weak order on permutations

associahedron $\mathbb{Asso}(n)$

\rightarrow Sylvester fan

\rightarrow Tamari lattice on binary trees
F-VECTOR OF DIAGONALS

Saneblidze – Umble ’04
Markl – Shnider ’06
Loday ’11

Masuda – Thomas – Tonks – Vallette ’21
Laplante-Anfossi ’22
\[f_k = \sum_{F \leq G} \prod_{i \in [2]} \prod_{p \in G_i} (\#F_i[p] - 1)! \]

\[f_0 = [x^n] \exp \left(\sum_m \frac{x^m}{m(m+1)} \binom{2m}{m} \right) \]

\[f_{n-1} = 2(n + 1)^{n-2} \]

\[f_k = \frac{2}{(3n + 1)(3n + 2)} \binom{n - 1}{k} \binom{4n + 1 - k}{n + 1} \]
DIAGONAL OF THE ASSOCIAHEDRON

arXiv:2303.10986

with
Alin BOSTAN (INRIA)
Frédéric CHYZAK (INRIA)
$\text{Tam}(n) = \text{Tamari lattice on binary trees with } n \text{ nodes}$
NUMBER OF TAMARI INTERVALS

Tam\((n)\) = Tamari lattice on binary trees with \(n\) nodes

THM. For any \(n \geq 1\),

\[
\#\{S \leq T \in \text{Tam}(n)\} = \frac{2}{(3n + 1)(3n + 2)} \binom{4n + 1}{n + 1}
\]

1, 3, 13, 68, 399, 2530, 16965, ... [OEIS A000260]
Tam(n) = Tamari lattice on binary trees with \(n \) nodes
\(\text{des}(T) \) = number of binary trees covered by \(T \)
\(\text{asc}(T) \) = number of binary trees covering \(T \)
FIRST REFINED FORMULA ON TAMARI INTERVALS

Tam$(n) =$ Tamari lattice on binary trees with n nodes

des$(T) =$ number of binary trees covered by T

asc$(T) =$ number of binary trees covering T

THM. For any $n, k \geq 1$,

\[
\# \{ S \leq T \in \text{Tam}(n) \mid \text{des}(S) + \text{asc}(T) = k \} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}
\]

<table>
<thead>
<tr>
<th>$n \backslash k$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>12</td>
<td>33</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>20</td>
<td>105</td>
<td>182</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>399</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>30</td>
<td>255</td>
<td>816</td>
<td>1020</td>
<td>408</td>
<td></td>
<td></td>
<td></td>
<td>2530</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>42</td>
<td>525</td>
<td>2660</td>
<td>5985</td>
<td>5814</td>
<td>1938</td>
<td></td>
<td></td>
<td>16965</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>54</td>
<td>956</td>
<td>7084</td>
<td>24794</td>
<td>42504</td>
<td>33649</td>
<td>9614</td>
<td></td>
<td>118668</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>72</td>
<td>1638</td>
<td>16380</td>
<td>81900</td>
<td>215280</td>
<td>296010</td>
<td>197340</td>
<td>49335</td>
<td>857956</td>
</tr>
</tbody>
</table>
CANONICAL COMPLEX OF THE TAMARI LATTICE

\((L, \leq, \land, \lor)\) lattice

join semidistributive \iff \(x \lor y = x \lor z\) implies \(x \lor (y \land z) = x \lor y\) for all \(x, y, z \in L\)

\iff any \(x \in L\) admits a canonical join representation \(x = \lor J\)

canonical join complex = simplicial complex of canonical join representations

= a simplex \(J\) for each element \(\lor J\) of \(L\)
(\(L, \leq, \land, \lor\)) lattice

\textbf{meet semidistributive} \iff x \land y = x \land z \text{ implies } x \land (y \lor z) = x \land y \text{ for all } x, y, z \in L

\iff \text{any } x \in L \text{ admits a canonical meet representation } x = \bigwedge M

canonical meet complex = simplicial complex of canonical meet representations

= a simplex \(M\) for each element \(\bigwedge M\) of \(L\)
CANONICAL COMPLEX OF THE TAMARI LATTICE

(L, \leq, \land, \lor) lattice

\textbf{semidistributive} \iff join semidistributive and meet semidistributive

\iff any $x \in L$ admits canonical representations $x = \lor J = \land M$

\textbf{canonical complex} = simplicial complex of canonical representations

$= \text{a simplex } J \sqcup M \text{ for each interval } \lor J \leq \land M \text{ in } L$
CANONICAL COMPLEX OF THE TAMARI LATTICE

(L, \leq, \land, \lor) lattice

semidistributive \iff join semidistributive and meet semidistributive
\iff any $x \in L$ admits canonical representations $x = \lor J = \land M$

canonical complex = simplicial complex of canonical representations
$= a$ simplex $J \sqcup M$ for each interval $\lor J \leq \land M$ in L
THM. For any $n, k \geq 1$,

$$f_k(\mathcal{CC}_n) = \# \{S \leq T \in \text{Tam}(n) \mid \text{des}(S) + \text{asc}(T) = k\} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}$$

Bostan – Chyzak – P.'23+
1 + 12 + 33 + 22 = 68
SECOND REFINED FORMULA ON TAMARI INTERVALS

\[\text{Tam}(n) = \text{Tamari lattice on binary trees with } n \text{ nodes} \]

\[\text{des}(T) = \text{number of binary trees covered by } T \]

\[\text{asc}(T) = \text{number of binary trees covering } T \]

THM. For any \(n, k \geq 1 \),

\[
\sum_{S \leq T \in \text{Tam}(n)} \binom{\text{des}(S) + \text{asc}(T)}{k} = \frac{2}{(3n + 1)(3n + 2)} \binom{n - 1}{k} \binom{4n + 1 - k}{n + 1}
\]

<table>
<thead>
<tr>
<th>(n \setminus k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>18</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>144</td>
<td>99</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>399</td>
<td>1140</td>
<td>1197</td>
<td>546</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2530</td>
<td>9108</td>
<td>12903</td>
<td>8976</td>
<td>3060</td>
<td>408</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16965</td>
<td>73710</td>
<td>131625</td>
<td>123500</td>
<td>64125</td>
<td>17442</td>
<td>1938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>118668</td>
<td>604128</td>
<td>1302651</td>
<td>1540770</td>
<td>1078539</td>
<td>446292</td>
<td>100947</td>
<td>9614</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>857956</td>
<td>5008608</td>
<td>12660648</td>
<td>18086640</td>
<td>15958800</td>
<td>8898240</td>
<td>3058770</td>
<td>592020</td>
<td>49335</td>
</tr>
</tbody>
</table>
$\Delta_{\text{asso}}(n) = \text{diagonal of } (n - 1)\text{-dimensional associahedron}$
$\Delta_{\text{asso}(n)} = \text{diagonal of } (n - 1)\text{-dimensional associahedron}$
\[\Delta_{\text{Asso}(n)} = \text{diagonal of } (n - 1)\text{-dimensional associahedron} \]

THM. (Magical formula)

\[
\begin{align*}
 \text{k-faces of } \Delta_{\text{Asso}(n)} & \iff (F, G) \text{ faces of } \text{Asso}(n) \text{ with} \\
 \dim(F) + \dim(G) &= k \text{ and } \max(F) \leq \min(G)
\end{align*}
\]

Masuda – Thomas – Tonks – Vallette ’21
\[\Delta_{\text{asso}}(n) = \text{diagonal of } (n - 1)\text{-dimensional associahedron} \]

THM. For any \(n, k \geq 1 \),

\[
f_k(\Delta_{\text{asso}}(n)) = \sum_{S \leq T \in \text{Tam}(n)} \binom{\text{des}(S) + \text{asc}(T)}{k} = \frac{2}{(3n + 1)(3n + 2)} \binom{n - 1}{k} \binom{4n + 1 - k}{n + 1}
\]

Bostan – Chyzak – P. '23
CONNECTION BETWEEN THE TWO FORMULAS

THM. For any \(n, k \geq 1 \),

\[
f_k(\mathcal{C}_n) = \# \{ S \leq T \in \text{Tam}(n) \mid \text{des}(S) + \text{asc}(T) = k \} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}
\]

THM. For any \(n, k \geq 1 \),

\[
f_k(\Delta_{\text{Asso}}(n)) = \sum_{S \leq T \in \text{Tam}(n)} \binom{\text{des}(S) + \text{asc}(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}
\]
CONNECTION BETWEEN THE TWO FORMULAS

THM. For any $n, k \geq 1$,

\[f_k(\mathbb{C}C_n) = \# \{ S \leq T \in \text{Tam}(n) \mid \text{des}(S) + \text{asc}(T) = k \} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k} \]

THM. For any $n, k \geq 1$,

\[f_k(\Delta_{\text{asso}}(n)) = \sum_{S \leq T \in \text{Tam}(n)} \binom{\text{des}(S) + \text{asc}(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1} \]

Second formula follows from the first since ...

THM. For any $n, k, r \in \mathbb{N}$,

\[\sum_{\ell=k}^{n-1} \binom{n+1}{\ell+2} \binom{r}{\ell} \binom{\ell}{k} = \frac{n(n+1)}{(r+1)(r+2)} \binom{n-1}{k} \binom{r+n+1-k}{n+1} \]

... by application of Chu – Vandermonde equality
\[n(T) = \text{number of nodes of } T \]
\[\ell(T) = \text{number of bounded edges on the left branch of } T \]

\[\mathcal{A}(u, v, t, z) := \sum_{S \leq T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\text{des}(S) + \text{asc}(T)} \]
QUADRATIC EQUATION

\[n(T) = \text{number of nodes of } T \]
\[\ell(T) = \text{number of bounded edges on the left branch of } T \]

\[
\mathbb{A}(u, v, t, z) := \sum_{S \leq T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\text{des}(S) + \text{asc}(T)}
\]

We want to compute

\[
A := A(t, z) := \sum_{S \leq T} t^{n(S)} z^{\text{des}(S) + \text{asc}(T)} = \mathbb{A}(1, 1, t, z)
\]

we will use \(u \) and \(v \) as catalytic variables ...
QUADRATIC EQUATION

\[n(T) = \text{number of nodes of } T \]
\[\ell(T) = \text{number of bounded edges on the left branch of } T \]

\[
\mathbb{A}(u, v, t, z) := \sum_{S \leq T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\text{des}(S) + \text{asc}(T)}
\]

We want to compute

\[
A := A(t, z) := \sum_{S \leq T} t^{n(S)} z^{\text{des}(S) + \text{asc}(T)} = \mathbb{A}(1, 1, t, z)
\]

we will use \(u \) and \(v \) as catalytic variables ...

PROP. The generating functions \(A_u := \mathbb{A}(u, 1, t, z) \) and \(A_1 := \mathbb{A}(1, 1, t, z) \) satisfy the quadratic functional equation

\[
(u - 1)A_u = t(u - 1 + u(u + z - 1)A_u - zA_1)(1 + uzA_u)
\]
GRAFTING DECOMPOSITIONS

$S \setminus T =$ binary tree obtained by grafting S on the leftmost leaf of T

$S = S_0 \setminus S_1 \ldots \setminus S_k$ grafting decomposition

\[\begin{array}{ccc}
\text{red} & = & \text{green} \\
\text{blue} & = & \text{green} \\
\end{array} \]

LEM. If $S = S_0 \setminus S_1 \ldots \setminus S_k$ and $T = T_0 \setminus T_1 \ldots \setminus T_k$ are s.t. $n(S_i) = n(T_i)$ for all $i \in [k]$, then

$S \leq T \iff S_i \leq T_i$ for all $i \in [k]$

Chapoton '07

\[\begin{array}{ccc}
\text{red} & = & \text{green} \\
\text{blue} & = & \text{green} \\
\end{array} \]

LEM. If $S \leq T$, then we can write $S = S_0 \setminus S_1 \ldots \setminus S_\ell$ and $T = T_0 \setminus T_1 \ldots \setminus T_\ell$ where

$\ell = \ell(T)$ and $n(S_i) = n(T_i)$ for all $i \in [\ell]$

Chapoton '07

$\ell(T) =$ number of bounded edges on the left branch of T
\[n(T) = \text{number of nodes of } T \]
\[\ell(T) = \text{number of bounded edges on the left branch of } T \]

\[
\mathbb{A}(u, v, t, z) := \sum_{S \leq T} u^{\ell(S)} n(S) z^{\text{des}(S) + \text{asc}(T)}
\]

Consider

\[
A_u(t, z) := \mathbb{A}(u, 1, t, z)
\]

and

\[
A_u^0(t, z) := \mathbb{A}(u, 0, t, z)
\]

= all Tamari intervals

= indecomposable intervals
QUADRATIC EQUATION

$A_u = A_u(t, z) = \text{all Tamari intervals}$

$A^\circ_u = A^\circ_u(t, z) = \text{indecomposable intervals}$

$$\sum_{S \leq T} u^{\ell(S)} t^{n(S)} z^{\text{des}(S) + \text{asc}(T)}$$

Chapoton '07
\[A_u = A_u(t, z) = \text{all Tamari intervals} \]
\[A_u^\circ = A_u^\circ(t, z) = \text{indecomposable intervals} \]

1. all intervals \(= \) indecomposable intervals \(\setminus (\varepsilon + \text{all intervals}) \)

\[A_u \quad = \quad A_u^\circ \quad (1 + uzA_u) \]
\[A_u = A_u(t, z) = \text{all Tamari intervals} \]
\[A_u^\circ = A_u^\circ(t, z) = \text{indecomposable intervals} \]

1. all intervals = indecomposable intervals \(\setminus (\varepsilon + \text{all intervals}) \)
 \[A_u = A_u^\circ (1 + uzA_u) \]

2. from any Tamari interval \((S, T)\) where \(S = S_0/S_1/\ldots/S_\ell(S)\), we can construct \(\ell(S) + 2\) indecomposable Tamari intervals \((S'_k, T')\) for \(0 \leq k \leq \ell(S) + 1\), where
 \[S'_k = (S_0/\ldots/S_{k-1})/Y\setminus(S_k/\ldots/S_\ell(S)) \quad \text{and} \quad T' = Y\setminus T \]

... and all indecomposable intervals are obtained this way

\[A_u^\circ = t \left(1 + \frac{zuA_u - A_1}{u - 1} + uA_u \right) \]

Chapoton '07
QUADRATIC EQUATION

\[A_u = A_u(t, z) = \text{all Tamari intervals} \]
\[A_u^\circ = A_u^\circ(t, z) = \text{indecomposable intervals} \]

1. \[A_u = A_u^\circ(1 + uzA_u) \]

2. \[A_u^\circ = t \left(1 + z \frac{uA_u - A_1}{u - 1} + uA_u \right) \]

PROP. The generating functions \(A_u := A(u, 1, t, z) \) and \(A_1 := A(1, 1, t, z) \) satisfy the quadratic functional equation

\[(u - 1)A_u = t \left(u - 1 + u(u + z - 1)A_u - zA_1 \right) \left(1 + uzA_u \right) \]
QUADRATIC METHOD

PROP. The generating functions $A_u := A(u, 1, t, z)$ and $A_1 := A(1, 1, t, z)$ satisfy the quadratic functional equation

$$(u - 1)A_u = t\left(u - 1 + u(u + z - 1)A_u - zA_1\right)(1 + uzA_u)$$

Quadratic equation with a catalytic variable... quadratic method
The discriminant of this quadratic polynomial must have multiple roots, hence, its own discriminant vanishes

CORO. The generating function $A = A(t, z)$ is a root of the polynomial

$$t^3 z^6 X^4$$

$$+ t^2 z^4 (t z^2 + 6 t z - 3 t + 3) X^3$$

$$+ t z^2 (6 t^2 z^3 + 9 t^2 z^2 - 12 t^2 z + 2 t z^2 + 3 t^2 - 6 t z + 21 t + 3) X^2$$

$$+ (12 t^3 z^4 - 4 t^3 z^3 - 9 t^3 z^2 - 10 t^2 z^3 + 6 t^3 z + 26 t^2 z^2$$

$$- t^3 + 6 t^2 z + t z^2 + 3 t^2 - 12 t z - 3 t + 1) X$$

$$+ t(8 t^2 z^3 - 12 t^2 z^2 + 6 t^2 z - t z^2 - t^2 + 10 t z + 2 t - 1)$$
The generating function $A = A(t, z)$ is a root of the polynomial

\[t^3 z^6 X^4 + t^2 z^4 (tz^2 + 6tz - 3t + 3) X^3 \]
\[+ t z^2 (6t^2 z^3 + 9t^2 z^2 - 12t^2 z + 2t z^2 + 3t^2 - 6tz + 21t + 3) X^2 \]
\[+ (12t^3 z^4 - 4t^3 z^3 - 9t^3 z^2 - 10t^2 z^3 + 6t^3 z + 26t^2 z^2 \]
\[- t^3 + 6t^2 z + tz^2 + 3t^2 - 12tz - 3t + 1) X \]
\[+ t(8t^2 z^3 - 12t^2 z^2 + 6t^2 z - tz^2 - t^2 + 10tz + 2t - 1) \]

Reparametrize by

\[t = \frac{s}{(s + 1)(sz + 1)^3} \quad X = s - zs^2 - zs^3 \]

The generating function $A = A(t, z)$ can be written

\[A = S - zs^2 - zs^3 \quad \text{where} \quad t = \frac{S}{(S + 1)(Sz + 1)^3} \]
LAGRANGE INVERSION

CORO. The generating function $A = A(t, z)$ can be written

$$A = S - zS^2 - zS^3 \quad \text{where} \quad t = \frac{S}{(S+1)(Sz+1)^3}$$

THM. (Lagrange inversion) If $S = t \psi(S)$, then $[t^n] S^r = \frac{r}{n} [s^{n-r}] \phi(s)^n$ for any $r \geq 1$

Here $\phi(s) := (s + 1)(sz + 1)^3$

Hence $[s^a] \phi(s)^n = [s^a](s + 1)^n(sz + 1)^3n = \sum_{i+j=a} \binom{n}{i} \binom{3n}{j} z^j$

Hence $[t^n z^k] S^r = \frac{r}{n} [s^{n-r} z^k] \phi(s)^n = \frac{r}{n} \binom{n}{n-r-k} \binom{3n}{k} = \frac{r}{n} \binom{n}{k+r} \binom{3n}{k}$

Finally,

$$[t^n z^k] A = [t^n z^k] S - [t^n z^{k-1}] S^2 - [t^n z^{k-1}] S^3 = \frac{2}{n(n+1)} \binom{3n}{k} \binom{n+1}{k+2}$$
Tam\((n) \) = Tamari lattice on binary trees with \(n \) nodes

THM. For any \(n \geq 1 \),

\[
\#\{S \leq T \in \text{Tam}(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}
\]

Chapoton '07

Also counts rooted 3-connected planar triangulations with \(2n + 2 \) faces

Tutte
BIJECTIONS TO PLANAR TRIANGULATIONS

Tam\((n) \) = Tamari lattice on binary trees with \(n \) nodes

THM. For any \(n \geq 1 \),

\[
\# \{ S \leq T \in \text{Tam}(n) \} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}
\]

Also counts rooted 3-connected planar triangulations with \(2n + 2 \) faces
BIJECTIONS TO PLANAR TRIANGULATIONS

Tam(n) = Tamari lattice on binary trees with n nodes

THM. For any \(n \geq 1 \),

\[
\#\{ S \leq T \in \text{Tam}(n) \} = \frac{2}{(3n + 1)(3n + 2)} \binom{4n + 1}{n + 1}
\]

Also counts rooted 3-connected planar triangulations with \(2n + 2 \) faces

Bernardi – Bonichon, '09
M planar triangulation with external vertices v_0, v_1, v_3
n internal nodes, $3n$ internal edges, $2n + 1$ internal triangles

Schnyder wood = color (with 0, 1, 2) and orient the internal edges s.t.
- the edges colored i form a spanning tree oriented towards v_i
- each vertex satisfies the vertex rule:
M planar triangulation with external vertices v_0, v_1, v_3

n internal nodes, $3n$ internal edges, $2n + 1$ internal triangles

Schnyder wood = color (with 0, 1, 2) and orient the internal edges s.t.
- the edges colored i form a spanning tree oriented towards v_i
- each vertex satisfies the vertex rule:

Used for graph drawing and representations:
A planar triangulation with external vertices v_0, v_1, v_3

n internal nodes, $3n$ internal edges, $2n + 1$ internal triangles

Schnyder wood = color (with 0, 1, 2) and orient the internal edges s.t.
- the edges colored i form a spanning tree oriented towards v_i
- each vertex satisfies the **vertex rule**:

THM. The Schnyder woods of a planar triangulation form a lattice structure under reorientations of clockwise essential cycles

CORO. Any planar triangulation admits a unique Schnyder wood with no clockwise cycle

Ossona de Mendez '94
Propp '97
Felsner '04
binary trees $S \leq T$ with n nodes

Dyck paths $\mu \leq \nu$ with semilength n

planar triangulations with n internal vertices
BERNARDI – BONICHON BIJECTION

binary trees \(S \leq T \) with \(n \) nodes

descents of \(S \) ascents of \(T \)

Dyck paths \(\mu \leq \nu \) double falls of \(\mu \) valleys of \(\nu \)

with semilength \(n \)

planar triangulations intermediate red vertices intermediate blue vertices

with \(n \) internal vertices

Bernardi – Bonichon, ’09
THM. The generating function $F := F(u, v, w) := \sum_{S \leq T} u^{S} v^{v} w^{w}$ is given by

$$wvF = uU + vV + wUV - \frac{UV}{(1 + U)(1 + V)}$$

where the series $U := U(u, v, w)$ and $V := V(u, v, w)$ satisfy the system

$$U = (v + wU)(1 + U)(1 + V)^{2}$$
$$V = (u + wV)(1 + V)(1 + U)^{2}$$

Fusy – Humbert '19
CORO. The function $A := A(t, z) := \sum_{S \leq T} t^n(S) z^{\text{des}(S)} + \text{asc}(T) = tF(tz, tz, t)$ is given by

$$tz^2 A = 2tzS + tS^2 - \frac{S^2}{(1 + S)^2}$$

where the series $S := S(t, z)$ satisfies

$$S = t(z + S')(1 + S')^3$$

... and Lagrange inversion again (thanks to Éric Fusy)
T binary tree with n nodes, labeled in inorder and oriented towards its root.

canopy of $T = \text{vector } \text{can}(T) \in \{-, +\}^{n-1}$ with $\text{can}(T)_i = -$
 \iff $(j+1)$st leaf of T is a right leaf
 \iff there is an oriented path joining its jth node to its $(j+1)$st node
 \iff the jth node of T has an empty right subtree
 \iff the $(j+1)$st node of T has a non-empty left subtree
 \iff the cone corresponding to T is located in the halfspace $x_j \leq x_{j+1}$
T binary tree with n nodes, labeled in inorder and oriented towards its root.

canopy of $T = \text{vector } \text{can}(T) \in \{-, +\}^{n-1}$ with $\text{can}(T)_i = -$
\iff the jth node of T has an empty right subtree
\iff the $(j+1)$st node of T has a non-empty left subtree

LEM. \[\text{asc}(T) = \# \{i \mid \text{can}(T)_i = -\} \quad \text{and} \quad \text{des}(T) = \# \{i \mid \text{can}(T)_i = +\} \]

LEM. If $S \leq T$, then
\begin{itemize}
 \item $\text{can}(S) \leq \text{can}(T)$ componentwise
 \item $\text{des}(S) = \# \{i \mid \text{can}(S)_i = \text{can}(T)_i = +\}$ and $\text{asc}(S) = \# \{i \mid \text{can}(S)_i = \text{can}(T)_i = -\}$
\end{itemize}

CORO. \[\text{des}(S) + \text{asc}(T) = \#\text{canopy agreements between } S \text{ and } T \]
FANG – FUSY – NADEAU BIJECTION

\[\sum \text{meandres} \]

\[u \leftrightarrow v \leftrightarrow w \]

Diagram of meander with labeled elements.
\[\sum_{\text{meandres}} \left(\left(\begin{array}{c} \updownarrow \\ \downarrow \end{array} \right) + \left(\begin{array}{c} \updownarrow \\ \downarrow \end{array} \right) + \left(\begin{array}{c} \updownarrow \\ \downarrow \end{array} \right) \right) - 1 \right) \begin{array}{c} u \\ v \\ w \end{array} \]
\[\sum_{\text{meandres}} (\underline{+} + \underline{+} + \underline{-} - 1) uvw = \sum_{\text{cyan half-meanders}} uvw \cdot \sum_{\text{orange half-meanders}} uvw \]
\[\sum \text{meandres} \left(u \varepsilon v \varepsilon w - 1 \right) = \text{CHM}(u, v, w) \cdot \text{OHM}(u, v, w) \]
\[
\sum_{\text{meandres}} \left(\frac{1}{1 + \frac{1}{1 - \text{CHM}}} \right)^2 \left(u + \frac{w}{1 - \text{OHM}} \right) = \text{CHM}(u, v, w) \cdot \text{OHM}(u, v, w)
\]
FANG – FUSY – NADEAU BIJECTION

\[\sum_{\text{meandres}} (u + v + w - 1) u v w = \text{CHM}(u, v, w) \cdot \text{OHM}(u, v, w) \]

\[
\begin{aligned}
\text{CHM} &= \frac{1}{(1 - \text{CHM})^2} \left(u + \frac{w \text{OHM}}{1 - \text{OHM}}\right) \\
\text{and} \quad \text{OHM} &= \frac{1}{(1 - \text{OHM})^2} \left(v + \frac{w \text{CHM}}{1 - \text{CHM}}\right)
\end{aligned}
\]
\[
\sum_{\text{meandres}} \frac{1}{\varphi} \left(1 - \frac{1}{\varphi} - 1 \right) (t z)^{\frac{1}{2}} (t z)^{\frac{1}{2}} t = \text{HM}(t, z)^2
\]

where

\[
\text{HM} = \frac{t}{(1 - \text{HM})^2} \left(z + \frac{\text{HM}}{1 - \text{HM}} \right)
\]
\[
\sum_{\text{meandres}} (z + \frac{1}{z} + \frac{1}{z} - 1)(tz)^{\frac{1}{2}}(tz)^{\frac{1}{2}}t = \text{HM}(t, z)^2
\]

where
\[
\text{HM} = \frac{t}{(1 - \text{HM})^2}(z + \frac{\text{HM}}{1 - \text{HM}})
\]

Lagrange inversion again:
\[
[t^n z^k] \text{HM}^2 = \frac{2}{n} [s^{n-2} z^k] \frac{1}{(1 - s)^{2n}} (z + \frac{s}{1 - s})^n = \frac{2}{n} \binom{n}{k} [s^{n-k}] \frac{s^{n-k}}{(1 - s)^{3n-k}}
\]
\[
= \frac{2}{n} \binom{n}{k} [s^{k-2}] \frac{1}{(1 - s)^{3n-k}} = \frac{2}{n} \binom{n}{k} \left(\frac{3n - 3}{k - 2} \right)
\]
\[
\sum_{\text{meandres}} \left(\frac{1}{t} + \frac{1}{z} + \frac{1}{t} - 1 \right) (tz)^{\frac{1}{2}} (tz)^{\frac{1}{2}} t = \text{HM}(t, z)^2
\]

where
\[
\text{HM} = \frac{t}{(1 - \text{HM})^2} \left(z + \frac{\text{HM}}{1 - \text{HM}} \right)
\]

Lagrange inversion again:
\[
[t^n z^k] \text{HM}^2 = \frac{2}{n} \left[s^{n-2} z^k \right] \frac{1}{(1 - s)^{2n}} \left(z + \frac{s}{1 - s} \right)^n = \frac{2}{n} \binom{n}{k} \left[s^{n-2} \right] \frac{s^{n-k}}{(1 - s)^{3n-k}}
\]
\[
= \frac{2}{n} \binom{n}{k} \left[s^{k-2} \right] \frac{1}{(1 - s)^{3n-k}} = \frac{2}{n} \binom{n}{k} \binom{3n - 3}{k - 2}
\]

Hence
\[
[t^n z^k] A(t, z) = \frac{1}{n + 1} \left[t^{n+1} z^{k+2} \right] \text{HM}^2 = \frac{2}{n(n + 1)} \binom{n + 1}{k + 2} \binom{3n}{k}
\]
DIAGONAL OF THE PERMUTAHEDRON

with

Bérénice DELCROIX-OGER (Univ. Montpellier)
Matthieu JOSUAT-VERGES (CNRS & Univ. Paris Cité)
Guillaume LAPLANTE-ANFOSSI (Univ. Melbourne)
Kurt STOECKL (Univ. Melbourne)
\[\Delta_{\text{Perm}(n)} = \text{diagonal of } (n - 1)\text{-dimensional permutahedron} \]

THM. \(k \)-faces of \(\Delta_{\text{Perm}(n)} \) \(\iff \) \((\mu, \nu) \) ordered partitions of \([n]\) such that

\[
\forall (I, J) \in D(n), \ \exists k \in [n], \ #\mu_{[k]} \cap I > #\mu_{[k]} \cap J
\]

or \(\exists \ell \in [n], \ #\mu_{[\ell]} \cap I < #\mu_{[\ell]} \cap J \)

where \(D(n) := \{(I, J) \mid I, J \subseteq [n], \ #I = #J, \ I \cap J = \emptyset, \ \min(I \cup J) \in I\} \)

Laplante-Anfossi '22
\(\Delta_{\text{Perm}(n)} = \text{diagonal of } (n - 1)\text{-dimensional permutahedron} \)

PROP. \(B^2_n = \text{two generically translated copies of the braid arrangement} \)

\[f_k\left(\Delta_{\text{Perm}(n)} \right) = f_{n-k-1}\left(B^2_n \right) \]
flat poset $Fl(A)$ of an hyperplane arrangement $A = \\text{reverse inclusion poset on nonempty intersections of hyperplanes of } A$
FLAT POSET & ZASLAVSKY’S THEOREM

flat poset $\text{Fl}(\mathcal{A})$ of an hyperplane arrangement $\mathcal{A} =$ reverse inclusion poset on nonempty intersections of hyperplanes of \mathcal{A}

\begin{align*}
\text{EXM.} & \quad \text{flat poset of braid arrangement } \mathcal{B}_n \\
\text{refinement poset on partitions of } [n] & \quad \left\{ \begin{array}{c}
\mathbf{x} \in \mathbb{R}^n \\
x_i = x_j \text{ for all } i, j \text{ in the same part of } \pi
\end{array} \right\}
\end{align*}

\uparrow

\downarrow

π
flat poset $Fl(\mathcal{A})$ of an hyperplane arrangement \mathcal{A} = reverse inclusion poset on nonempty intersections of hyperplanes of \mathcal{A}

Möbius function μ of a poset: $\mu(x, x) = 1$ and $\sum_{x \leq y \leq z} \mu(x, y) = 0$ for all $x < z$
The flat poset $\text{Fl}(\mathcal{A})$ of an hyperplane arrangement \mathcal{A} is defined as the reverse inclusion poset on nonempty intersections of hyperplanes of \mathcal{A}.

The Möbius function μ of a poset: $\mu(x, x) = 1$ and $\sum_{x \leq y \leq z} \mu(x, y) = 0$ for all $x < z$.
flat poset $Fl(A)$ of an hyperplane arrangement $A =$ reverse inclusion poset on nonempty intersections of hyperplanes of A

Möbius function μ of a poset: $\mu(x, x) = 1$ and $\sum_{x \leq y \leq z} \mu(x, y) = 0$ for all $x < z$

Möbius polynomial $\mu_A(x, y) = \sum_{F \leq G} \mu(F, G) x^{\dim(F)} y^{\dim(G)}$

THM. $f_A(x) = \mu_A(-x, -1)$ and $b_A(x) = \mu_A(-x, 1)$

Zaslavsky '75
$\mathcal{B}_n^\ell = \text{union of } \ell \text{ generically translated copies of the braid arrangement}$
\(\mathcal{B}^\ell_n = \) union of \(\ell \) generically translated copies of the braid arrangement

\((\ell, n) \text{ partition forest} = \)
\(\ell \)-tuple of partitions of \([n]\) whose intersection hypergraph is a forest

Prop. Intersection poset of \(\mathcal{B}^\ell_n \) \(\leftrightarrow \) refinement poset on \((\ell, n) \) partition forests
\(\mathcal{B}_n^\ell = \text{union of } \ell \text{ generically translated copies of the braid arrangement} \)

\((\ell, n) \text{ partition forest} =\)
\(\ell\)-tuple of partitions of \([n]\) whose intersection hypergraph is a forest

PROP. Intersection poset of \(\mathcal{B}_n^\ell \) \(\longleftrightarrow \) refinement poset on \((\ell, n)\) partition forests
MÖBIUS POLYNOMIAL

$\mathbb{P}_p = \text{refinement poset on partitions of } [p]$

$\mathbb{PF}_n^\ell = \text{refinement poset on } (\ell, n) \text{ partition forests}$

FACT 1. The Möbius function of \mathbb{P}_p is $\mu(\hat{0}, \hat{1}) = (-1)^{p-1}(p-1)!$

FACT 2. In \mathbb{P}_p, $[F, G] \simeq \prod_{p \in G} \mathbb{P}_p \#F[p]$ where $F[p] = \text{restriction of } F \text{ to } p$

FACT 2. $[F, G] \simeq \prod_{i \in [\ell]} [F_i, G_i]$ for $F = (F_1, \ldots, F_\ell)$ and $G = (G_1, \ldots, G_\ell)$ in \mathbb{PF}_n^ℓ

FACT 4. Möbius is multiplicative $\mu_{P \times Q}((p, q), (p', q')) = \mu_P(p, p') \cdot \mu_Q(q, q')$
The Möbius function of \mathbb{P}_p is $\mu(\hat{0}, \hat{1}) = (-1)^{p-1}(p-1)!$

In \mathbb{P}_p, $[F, G] \simeq \prod_{p \in G} \mathbb{P}^{{\#F}[p]}$ where $F[p] = \text{restriction of } F \text{ to } p$

for $F = (F_1, \ldots, F_\ell)$ and $G = (G_1, \ldots, G_\ell)$ in \mathbb{PF}^{ℓ}_n

$\mu_{P \times Q}((p, q), (p', q')) = \mu_P(p, p') \cdot \mu_Q(q, q')$

$\mu_{B_n} = x^{n-1-\ell n} y^{n-1-\ell n} \sum_{F \leq G} \prod_{i \in [\ell]} x^{\#F_i} y^{\#G_i} \prod_{p \in G_i} (-1)^{\#F_i[p]-1} (\#F_i[p] - 1)!$
THM. \[
f_{B_n^\ell}(x) = x^{n-1-\ell n} \sum_{F \leq G} \prod_{i \in [\ell]} x^{\#F_i} \prod_{p \in G_i} (\#F_i[p] - 1)!
\]
BOUNDLED FACE POLYNOMIAL

THM.

\[
b_{B_{n}^\ell}(x) = (-1)^\ell x^{n-1-\ell n} \sum_{F \leq G} \prod_{i \in [\ell]} x^{\# F_i} \prod_{p \in G_i} - (\# F_i[p] - 1)!
\]

<table>
<thead>
<tr>
<th>(n \backslash k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(\ell = 1 \)

<table>
<thead>
<tr>
<th>(n \backslash k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>43</td>
<td>132</td>
<td>138</td>
<td>50</td>
</tr>
</tbody>
</table>

\(\ell = 2 \)

<table>
<thead>
<tr>
<th>(n \backslash k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>16</td>
<td>36</td>
<td>21</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>224</td>
<td>684</td>
<td>702</td>
<td>243</td>
</tr>
</tbody>
</table>

\(\ell = 3 \)
VERTICES

THM. \(f_0(\mathcal{B}_n^\ell) = \#\{(\ell, n) \text{ partition trees}\} = \ell(n(\ell - 1) + 1)^{n-2} \)

<table>
<thead>
<tr>
<th>(n \backslash \ell)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8</td>
<td>21</td>
<td>40</td>
<td>65</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>50</td>
<td>243</td>
<td>676</td>
<td>1445</td>
<td>2646</td>
</tr>
<tr>
<td>1</td>
<td>(\uparrow)</td>
<td>(\leftarrow 2(n + 1)^{n-2}) [OEIS, A007334]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\textbf{THM.} \, \, f_0(B^2_n) = \#\{(2, n) \text{ partition trees}\} = \#\text{spanning trees of } K_{n+1} \text{ with } 01

1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762, \ldots

\textbf{[OEIS, A007334]}
\[
f_0(\mathcal{B}_n^2) = \# \{(2, n) \text{ partition trees} \} = \# \text{spanning trees of } K_{n+1} \cdot \frac{2}{n+1} = 2(n + 1)^{n-2}
\]

1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762, \ldots

[OEIS, A007334]
THM. \(f_{n-1}(B^\ell_n) = n! \left[z^n\right] \exp \left(\sum_{m \geq 1} \frac{F_{\ell,m} z^m}{m} \right) \) where \(F_{\ell,m} = \frac{1}{(\ell - 1)m + 1} \binom{\ell m}{m} \)

\[
\begin{array}{c|cccccc}
 n \backslash \ell & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
 1 & 1 & 1 & 1 & 1 & 1 & 1 \leftarrow 1 \\
 2 & 2 & 3 & 4 & 5 & 6 & 7 \leftarrow \ell + 1 \\
 3 & 6 & 17 & 34 & 57 & 86 & 121 \leftarrow 3\ell^2 + 2\ell + 1 \text{ [OEIS, A056109]} \\
 4 & 24 & 149 & 472 & 1089 & 2096 & 3589 \\
\end{array}
\]

\(n! \rightarrow \leftarrow \text{ [OEIS, A213507]} \)
THM. \(b_{n-1}(\mathcal{B}_n^\ell) = (n - 1)! [z^{n-1}] \exp \left((\ell - 1) \sum_{m \geq 1} F_{\ell,m} z^m \right) \)

<table>
<thead>
<tr>
<th>(n \backslash \ell)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>16</td>
<td>33</td>
<td>56</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>43</td>
<td>224</td>
<td>639</td>
<td>1384</td>
<td>2555</td>
</tr>
</tbody>
</table>

0 \(\mapsto \leftarrow \) [OEIS, A251568]