CAMBRIAN TREES

Grégory CHATEL
(Univ. MIV)

Carsten LANGE
(Univ. Munich)

Vincent PILAUD
(CNRS & LIX)
MOTIVATION

Combinatorics

- **Permutations**
- **Binary Trees**
- **Binary Sequences**

Geometry

Algebra

Malvenuto-Reutenauer algebra

\[
\text{FQSym} = \text{vect} \left\langle \ F_\tau \mid \ \tau \in \mathcal{S} \right\rangle \\
F_\tau \cdot F_\tau' = \sum_{\sigma \in \tau \sqcup \tau'} F_\sigma \\

\Delta F_\sigma = \sum_{\sigma \in \tau \sqcup \tau'} F_\tau \otimes F_\tau'
\]

Loday-Ronco algebra

\[
P_{\mathrm{BT}} = \text{vect} \left\langle \ P_T \mid \ T \in \mathcal{BT} \right\rangle \\
P_T \cdot P_{T'} = \sum_{T' \leq T'' \leq T_\uparrow_{T'}} P_{T''} \\

\Delta P_\gamma = \sum_{\gamma \text{ cut}} B(T, \gamma) \otimes A(T, \gamma)
\]

Solomon algebra

\[
\text{Rec} = \text{vect} \left\langle \ X_\eta \mid \ \eta \in \pm^* \right\rangle \\
X_\eta \cdot X_\eta' = X_{\eta + \eta'} + X_{\eta - \eta'} \\

\Delta X_\eta = \sum_{\gamma \text{ cut}} B(\eta, \gamma) \otimes A(\eta, \gamma)
\]
COMBINATORICS
Cambrian tree = directed and labeled tree such that

\[
\begin{align*}
\text{Cambrian labeling} & : j < j > j \\
\text{Increasing labeling} & : <j >j
\end{align*}
\]

increasing tree = directed and labeled tree such that labels increase along arcs

leveled Cambrian tree = directed tree with a Cambrian labeling and an increasing labeling
Cambrian trees are dual to triangulations of polygons

signature \leftrightarrow vertices above or below $[0, 9]$

node j \leftrightarrow triangle $i < j < k$

For any signature ε, there are $C_n = \frac{1}{n+1} \binom{2n}{n}$ ε-Cambrian trees
Cambrian correspondence = signed permutation \mapsto leveled Cambrian tree

Exm: signed permutation $\begin{array}{c}2 \begin{array}{c}7 \begin{array}{c}5 \begin{array}{c}1 \begin{array}{c}3 \begin{array}{c}4 \begin{array}{c}6 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}$

\[
\begin{array}{cccccccccc}
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\end{array}
\]
Cambrian correspondence = signed permutation \rightarrow leveled Cambrian tree

Exm: signed permutation $\overline{2751346}$

![Cambrian tree diagram](image-url)
Cambrian correspondence = signed permutation \mapsto leveled Cambrian tree

Exm: signed permutation $\begin{array}{c} 2751346 \end{array}$
Cambrian correspondence = signed permutation \mapsto leveled Cambrian tree

Exm: signed permutation $2\overline{751346}$
Cambrian correspondence $= \text{signed permutation} \leftrightarrow \text{leveled Cambrian tree}$

Exm: signed permutation $2\overline{7}5\overline{1}3\overline{4}6$
Cambrian correspondence $=$ signed permutation \mapsto leveled Cambrian tree

Exm: signed permutation $2\overline{751\overline{346}}$
Cambrian correspondence \(=\) signed permutation \(\longrightarrow\) leveled Cambrian tree

Exm: signed permutation \(2 \rightarrow 751 \rightarrow 34 \rightarrow 6 \rightarrow 1\)
Cambrian correspondence = signed permutation \mapsto leveled Cambrian tree

Exm: signed permutation 2751346
Cambrian Correspondence

Cambrian correspondence = signed permutation \rightarrow leveled Cambrian tree

Exm: signed permutation 2751346

$P(\tau) = P$-symbol of $\tau = \text{Cambrian tree produced by Cambrian correspondence}$

$Q(\tau) = Q$-symbol of $\tau = \text{increasing tree produced by Cambrian correspondence}$

(analogy to Robinson-Schensted algorithm)
Cambrian map $=$ signed permutation \mapsto triangulation

Exm: signed permutation 43816257
Cambrian map = signed permutation \rightarrow \text{triangulation}

Exm: signed permutation \begin{array}{c}4\overline{3}\overline{8}\overline{1}\overline{6}27\end{array}

Diagram of Cambrian lattice with vertices and edges labeled accordingly.
Cambrian map = signed permutation \mapsto triangulation

Exm: signed permutation $\underline{43816257}$
Cambrian map = signed permutation \mapsto triangulation

Exm: signed permutation $4\underline{3}8\underline{1}6\underline{2}5\underline{7}$
Cambrian Correspondence and Triangulations

Cambrian map = signed permutation \mapsto triangulation

Exm: signed permutation $\overline{43816257}$

![Diagram showing a Cambrian lattice with a signed permutation and triangulation indicated.](image)

Reading: Cambrian lattices 2006
Cambrian map $= \text{signed permutation} \leftrightarrow \text{triangulation}$

Exm: signed permutation $\underline{43816257}$
Cambrian map = signed permutation \leftrightarrow triangulation

Exm: signed permutation 43816257
Cambrian map = signed permutation \rightarrow triangulation

Exm: signed permutation 43816257
 Cambrian map = signed permutation \rightarrow\rightarrow triangulation

Exm: signed permutation $\begin{pmatrix} 4 & 3 & 8 & 1 & 6 & 2 & 5 & 7 \end{pmatrix}$

Reading. Cambrian lattices 2006
ε-Cambrian congruence = transitive closure of the rewriting rules

\[UacVbW \equiv_\varepsilon UcaVbW \] if \(a < b < c \) and \(\varepsilon_b = - \)

\[UbVacW \equiv_\varepsilon UbVcaW \] if \(a < b < c \) and \(\varepsilon_b = + \)

where \(a, b, c \) are elements of \([n]\) while \(U, V, W \) are words on \([n]\)

\[\text{PROP. } \tau \equiv_\varepsilon \tau' \iff P(\tau) = P(\tau') \]
CAMBRIAN CONGRUENCE

ε-Cambrian congruence = transitive closure of the rewriting rules

\[
UacVbW \equiv_{\varepsilon} UcaVbW \quad \text{if } a < b < c \text{ and } \varepsilon_b = -
\]

\[
UbVacW \equiv_{\varepsilon} UbVcaW \quad \text{if } a < b < c \text{ and } \varepsilon_b = +
\]

where \(a, b, c\) are elements of \([n]\) while \(U, V, W\) are words on \([n]\)

PROP. \(\tau \equiv_{\varepsilon} \tau' \iff P(\tau) = P(\tau')\)

PROP. Cambrian congruence class labeled by Cambrian tree \(T\)

\[
\{ \tau \in \mathcal{G}^{\varepsilon} \mid P(\tau) = T \} = \{ \text{linear extensions of } T \}\]

PROP. Cambrian classes are intervals of the weak order

Minimums avoid \(\overline{231}\) and \(312\) while maximums avoid \(\overline{213}\) and \(132\)

Reading. Cambrian lattices. 2006
Rotation operation preserves Cambrian trees:

$$T \xrightarrow{\text{rotation of } i \to j} T'$$

increasing rotation = rotation of edge $i \to j$ where $i < j$

PROP. The transitive closure of the increasing rotation graph is the Cambrian lattice

\mathbf{P} defines a lattice homomorphism from weak order to Cambrian lattice

(rotation on Cambrian trees correspond to flips in triangulations)
Rotation on Cambrian trees \leftrightarrow flips on triangulations
ROTATIONS AND CAMBRIAN LATTICES
vertices i and $i + 1$ are always comparable in a Cambrian tree

Canopy of a Cambrian tree $T = \text{sequence } \text{can}(T) \in \pm^{n-1}$ defined by

\[
\text{can}(T)_i = \begin{cases}
- & \text{if } i \text{ above } i + 1 \text{ in } T \\
+ & \text{if } i \text{ below } i + 1 \text{ in } T
\end{cases}
\]

PROP. P, can, and rec define lattice homomorphisms:

\[
\varepsilon \xrightarrow{P} \text{Camb}(\varepsilon) \xrightarrow{\text{can}} \pm^{n-1}
\]
vertices i and $i + 1$ are always comparable in a Cambrian tree

Canopy of a Cambrian tree $T = \text{sequence } \text{can}(T) \in \pm^{n-1}$ defined by

$$\text{can}(T)_i = \begin{cases} - & \text{if } i \text{ above } i + 1 \text{ in } T \\ + & \text{if } i \text{ below } i + 1 \text{ in } T \end{cases}$$

PROP. P, can, and rec define lattice homomorphisms:

\[\mathcal{G}_\varepsilon \xrightarrow{\text{rec}} \varepsilon \xrightarrow{\text{can}} \pm^{n-1} \]

\[P \xrightarrow{\text{Camb}(\varepsilon)} \]

\[\text{P} \xrightarrow{\text{Camb}(\varepsilon)} \]
GEOMETRY
POLYTOPES & COMBINATORICICS

polytope = convex hull of a finite set of \mathbb{R}^d

= bounded intersection of finitely many half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given a lattice, is there a polytope which realizes it?
Permutohedron $\text{Perm}(n)$

$= \text{conv} \{ (\sigma(1), \ldots, \sigma(n + 1)) \mid \sigma \in \Sigma_{n+1} \}$

$= \mathbb{H} \cap \bigcap_{\emptyset \neq J \subseteq [n\!+\!1]} \mathbb{H}^{\geq}(J)$
Permutohedron \(\text{Perm}(n) \)

\[= \text{conv} \left\{ (\sigma(1), \ldots, \sigma(n + 1)) \mid \sigma \in \Sigma_{n+1} \right\} \]

\[= \mathbb{H} \cap \bigcap_{\emptyset \neq J \subseteq [n+1]} \mathbf{H}^{\geq}(J) \]

\(k \)-faces of \(\text{Perm}(n) \)

\[\equiv \text{surjections from} \ [n + 1] \text{ to} \ [n + 1 - k] \]
Permutohedron $\text{Perm}(n)$

$= \text{conv} \{(\sigma(1), \ldots, \sigma(n + 1)) \mid \sigma \in \Sigma_{n+1}\}$

$= \mathbb{H} \cap \bigcap_{\emptyset \neq J \subseteq [n+1]} \mathbb{H}^\geq(J)$

k-faces of $\text{Perm}(n)$

\equiv surjections from $[n + 1]$ to $[n + 1 - k]$

\equiv ordered partitions of $[n + 1]$ into $n + 1 - k$ parts
Permutohedron \(\text{Perm}(n) \)

\[
\begin{align*}
\text{Permutohedron } \text{Perm}(n) &= \text{conv } \{(\sigma(1), \ldots, \sigma(n + 1)) \mid \sigma \in \Sigma_{n+1}\} \\
&= \mathbb{H} \cap \bigcap_{\emptyset \neq J \subseteq [n+1]} H^{\geq}(J)
\end{align*}
\]

\(k\)-faces of \(\text{Perm}(n) \)

\[
\equiv \text{surjections from } [n + 1] \text{ to } [n + 1 - k] \\
\equiv \text{ordered partitions of } [n + 1] \text{ into } n + 1 - k \text{ parts}
\]

connections to

- inversion sets
- weak order
- reduced expressions
- braid moves
- cosets of the symmetric group
ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex \((n + 3)\)-gon, ordered by reverse inclusion

- vertices ↔ triangulations
- edges ↔ flips
- faces ↔ dissections

vertices ↔ binary trees
edges ↔ rotations
faces ↔ Schröder trees
VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex \((n + 3)\)-gon, ordered by reverse inclusion

(Pictures by Ceballos-Santos-Ziegler)

Lee ('89), Gel’fand-Kapranov-Zelevinski ('94), Billera-Filliman-Sturmfels ('90), . . . , Ceballos-Santos-Ziegler ('11) Loday ('04), Hohlweg-Lange ('07), Hohlweg-Lange-Thomas ('12), P.-Santos ('12), P.-Stump ('12'), Lange-P. ('13')
Loday’s associahedron $= \text{conv} \{ L(T) \mid T \text{ triangulation of the } (n+3)\text{-gon} \} = \bigcap_{\delta \text{ diagonal of the } (n+3)\text{-gon}} H^{\geq}(\delta)$

$L(T) = (\ell(T,j) \cdot r(T,j))_{j \in [n+1]}$

$H^{\geq}(\delta) = \left\{ x \in \mathbb{R}^{n+1} \mid \sum_{j \in B(\delta)} x_j \geq \left(|B(\delta)| + 1 \right) \right\}$

Loday, Realization of the Stasheff polytope ('04)
The associahedron is obtained from the permutahedron by removing facets.
Can also replace Loday’s \((n + 3)\)-gon by others...

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 0 & + \\
+ & + & +
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 0 & - \\
+ & + & -
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 0 & + \\
- & + & +
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 0 & - \\
- & + & -
\end{array}
\]

...to obtain different realizations of the associahedron

Hohlweg-Lange, *Realizations of the associahedron and cyclohedron* ('07)
\[\text{Asso}(P) = \text{conv} \left\{ \text{HL}(T) \mid T \text{ triangulation of } P \right\} = H \cap \bigcap_{\delta \text{ diagonal of } P} H^{\geq}(\delta) \]

\[\text{HL}(T)_j = \begin{cases} \ell(T, j) \cdot r(T, j) & \text{if } j \text{ down} \\ n + 2 - \ell(T, j) \cdot r(T, j) & \text{if } j \text{ up} \end{cases} \]

\[H^{\geq}(\delta) = \left\{ x \mid \sum_{j \in B(\delta)} x_j \geq \binom{|B(\delta)| + 1}{2} \right\} \]

Hohlweg-Lange, Realizations of the associahedron and cyclohedron (’07)
Cambrian trees = labeled and oriented dual binary trees

Alternative vertex description of Hohlweg-Lange’s associahedra:

\[
HL(T)_j = \begin{cases}
|\{\pi \text{ maximal path in } T \text{ with 2 incoming arcs at } j\}| & \text{if } j \text{ down} \\
 n + 2 - |\{\pi \text{ maximal path in } T \text{ with 2 outgoing arcs at } j\}| & \text{if } j \text{ up}
\end{cases}
\]
CAMBRIAN TREES AND NORMAL CONES

Incidence cone $C(T) = \text{cone } \{ e_i - e_j \mid \text{for all } i \rightarrow j \text{ in } T \}$

Braid cone $C^\diamond(T) = \{ x \in \mathbb{R}^n \mid x_i \leq x_j \text{ for all } i \rightarrow j \text{ in } T \}$

THEO. The cones form complete simplicial fans:

(i) $\{ C^\diamond(\tau) \mid \tau \in \mathfrak{S}_n \}$ = braid fan = normal fan of the permutahedron

(ii) $\{ C^\diamond(T) \mid T \in \text{Camb}(\varepsilon) \}$ = ε-Cambrian fan = normal fan of the ε-associahedron

(iii) $\{ C^\diamond(\chi) \mid \chi \in \pm^{n-1} \}$ = boolean fan = normal fan of the parallelepiped
Incidence cone $C(T) = \text{cone}\{e_i - e_j | \text{for all } i \to j \text{ in } T\}$
Braid cone $C_\diamond(T) = \{x \in \mathbb{H} | x_i \leq x_j \text{ for all } i \to j \text{ in } T\}$

THEO. The cones form complete simplicial fans:

(i) $\{C_\diamond(\tau) | \tau \in \mathcal{S}_n\} = \text{braid fan} = \text{normal fan of the permutahedron}$
(ii) $\{C_\diamond(T) | T \in \text{Camb}(\varepsilon)\} = \varepsilon\text{-Cambrian fan} = \text{normal fan of the } \varepsilon\text{-associahedron}$
(iii) $\{C_\diamond(\chi) | \chi \in \pm^{n-1}\} = \text{boolean fan} = \text{normal fan of the parallelepiped}$
CAMBRIAN TREES AND NORMAL CONES

Incidence cone \(C(T) = \text{cone} \{ e_i - e_j \mid \text{for all } i \to j \text{ in } T \} \)

Braid cone \(\mathcal{C}(\tau) = \{ \mathbf{x} \in \mathbb{H} \mid x_i \leq x_j \text{ for all } i \to j \text{ in } T \} \)

THEO. The cones form complete simplicial fans:

(i) \(\{ \mathcal{C}(\tau) \mid \tau \in \mathcal{S}_n \} = \text{braid fan} = \text{normal fan of the permutahedron} \)

(ii) \(\{ \mathcal{C}(T) \mid T \in \text{Camb} (\varepsilon) \} = \varepsilon\text{-Cambrian fan} = \text{normal fan of the } \varepsilon\text{-associahedron} \)

(iii) \(\{ \mathcal{C}(\chi) \mid \chi \in \pm^{n-1} \} = \text{boolean fan} = \text{normal fan of the parallelepiped} \)

Characterization of fibers in terms of cones:

\[T = P(\tau) \iff C(T) \subseteq C(\tau) \iff \mathcal{C}(T) \supseteq \mathcal{C}(\tau), \]

\[\chi = \text{can}(T) \iff C(\chi) \subseteq C(T) \iff \mathcal{C}(\chi) \supseteq \mathcal{C}(T), \]

\[\chi = \text{rec}(\tau) \iff C(\chi) \subseteq C(\tau) \iff \mathcal{C}(\chi) \supseteq \mathcal{C}(\tau). \]
ALGEBRA
For \(n, n' \in \mathbb{N} \), consider the set of perms of \(S_{n+n'} \) with at most one descent, at position \(n \):
\[
S^{(n,n')} := \{ \tau \in S_{n+n'} \mid \tau(1) < \cdots < \tau(n) \text{ and } \tau(n+1) < \cdots < \tau(n+n') \}
\]

For \(\tau \in S_n \) and \(\tau' \in S_{n'} \), define
- shifted concatenation \(\tau \bar{\|} \tau' = [\tau(1), \ldots, \tau(n), \tau'(1)+n, \ldots, \tau'(n')+n] \in S_{n+n'} \)
- shifted shuffle product \(\tau \bar{\ll} \tau' = \{ \tau \circ \pi^{-1} \mid \pi \in S^{(n,n')} \} \subset S_{n+n'} \)
- convolution product \(\tau \star \tau' = \{ \pi \circ (\tau \bar{\|} \tau') \mid \pi \in S^{(n,n')} \} \subset S_{n+n'} \)

Exm: \(12 \bar{\|} 231 = \{12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312\}\)
\(12 \star 231 = \{12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231\}\)
MALVENUTO-REUTENAUER ALGEBRA

DEF. Combinatorial Hopf Algebra = combinatorial vector space \mathcal{B} endowed with

- **product** $\cdot : \mathcal{B} \otimes \mathcal{B} \rightarrow \mathcal{B}$
- **coproduct** $\triangle : \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B}$

which are “compatible”, ie.

$$
\begin{array}{ccc}
\mathcal{B} \otimes \mathcal{B} & \cdot & \mathcal{B} \\
\downarrow \triangle \otimes \triangle & & \uparrow \cdot \otimes \cdot \\
\mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} & \rightarrow & \mathcal{B} \otimes \mathcal{B} \\
& I \otimes \text{swap} \otimes I &
\end{array}
$$

Malvenuto-Reteunauer algebra = Hopf algebra $FQSym$ with basis $(\mathcal{F}_\tau)_{\tau \in S}$ and where

$$
\mathcal{F}_\tau \cdot \mathcal{F}_{\tau'} = \sum_{\sigma \in \tau \sqcup \tau'} \mathcal{F}_\sigma \quad \text{and} \quad \triangle \mathcal{F}_\sigma = \sum_{\sigma \in \tau \ast \tau'} \mathcal{F}_\tau \otimes \mathcal{F}_{\tau'}
$$
For signed permutations:

- signs are attached to values in the shuffle product
- signs are attached to positions in the convolution product

Exm:
\[
\begin{align*}
\overline{12} \shuffle \overline{231} &= \{ \overline{12453}, \overline{14253}, \overline{14523}, \overline{14532}, \overline{41253}, \overline{41523}, \overline{41532}, \overline{45123}, \overline{45132}, \overline{45312} \}, \\
\overline{12} \ast \overline{231} &= \{ \overline{12453}, \overline{13452}, \overline{14352}, \overline{15342}, \overline{23451}, \overline{24351}, \overline{25341}, \overline{34251}, \overline{35241}, \overline{45231} \}.
\end{align*}
\]

\[
\text{concatenation} \quad \text{shuffle} \quad \text{convolution}
\]

\[
F_{\text{QSym}} = \text{Hopf algebra with basis } (F_\tau)_{\tau \in S_\pm} \text{ and where }
\]

\[
F_\tau \cdot F_\tau' = \sum_{\sigma \in \tau \shuffle \tau'} F_\sigma \quad \text{and} \quad \Delta F_\sigma = \sum_{\sigma \in \tau \ast \tau'} F_\tau \otimes F_\tau'
\]
Cambrian algebra = vector subspace Camb of FQSym_\pm generated by

\[
P_T := \sum_{\tau \in \mathcal{G}_\pm \atop P(\tau) = T} F_{\tau} = \sum_{\tau \in \mathcal{L}(T)} F_{\tau},
\]

for all Cambrian trees T.

Exm:

\[
P = \begin{array}{c}
F_{2137546} + F_{2173546} + F_{2175346} + F_{2713546} + F_{2715346} \\
+ F_{2751346} + F_{7213546} + F_{7215346} + F_{7251346} + F_{7521346}
\end{array}
\]

THEO. Camb is a subalgebra of FQSym_\pm

(ie. the Cambrian congruence is “compatible” with the product and coproduct in FQSym_\pm

GAME: Explain the product and coproduct directly on the Cambrian trees...
PROP. For any Cambrian trees T and T',

$$\mathcal{P}_T \cdot \mathcal{P}_{T'} = \sum_{S} \mathcal{P}_S$$

where S runs over the interval $[T ↘ \bar{T}', T ↖ \bar{T}']$ in the $\varepsilon(T)\varepsilon(T')$-Cambrian lattice.
\[\Delta P = \Delta (F_{213} + F_{231}) \]

\[= 1 \otimes (F_{213} + F_{231}) + F_1 \otimes F_{12} + F_1 \otimes F_{21} + F_{21} \otimes F_1 + F_{12} \otimes F_1 + (F_{213} + F_{231}) \otimes 1 \]

\[= 1 \otimes P + P \otimes P + P \otimes P + P \otimes P + P \otimes P + \text{other terms} \]

\[= 1 \otimes P + P \otimes (P \cdot P) + P \otimes P + P \otimes P + P \otimes P + P \otimes 1. \]

PROP. For any Cambrian tree \(S \),

\[\Delta P_S = \sum_{\gamma} \left(\prod_{T \in B(S, \gamma)} P_T \right) \otimes \left(\prod_{T' \in A(S, \gamma)} P_{T'} \right) \]

where \(\gamma \) runs over all cuts of \(S \), and \(A(S, \gamma) \) and \(B(S, \gamma) \) denote the Cambrian forests above and below \(\gamma \) respectively.
\[\Delta \mathcal{P} = \Delta (F_{213} + F_{321}) \]

\[= 1 \otimes (F_{213} + F_{321}) + F_{1} \otimes F_{12} + F_{1} \otimes F_{21} + F_{21} \otimes F_{1} + F_{12} \otimes F_{1} + (F_{213} + F_{321}) \otimes 1 \]

\[= 1 \otimes \mathcal{P} + \mathcal{P} \otimes \mathcal{P} \]

\[= 1 \otimes \mathcal{P} + \mathcal{P} \otimes (\mathcal{P} \cdot \mathcal{P}) + \mathcal{P} \otimes \mathcal{P} + \mathcal{P} \otimes \mathcal{P} + \mathcal{P} \otimes \mathcal{P} + \mathcal{P} \otimes \mathcal{P} \]

PROP. For any Cambrian tree \(S \),

\[\Delta \mathcal{P}_S = \sum_{\gamma} \left(\prod_{T \in B(S, \gamma)} \mathcal{P}_T \right) \otimes \left(\prod_{T' \in A(S, \gamma)} \mathcal{P}_{T'} \right) \]

where \(\gamma \) runs over all cuts of \(S \), and \(A(S, \gamma) \) and \(B(S, \gamma) \) denote the Cambrian forests above and below \(\gamma \) respectively.
DUAL CAMBRIAN ALGEBRA AS QUOTIENT OF FQSym*

\[\text{FQSym}_\pm^* = \text{dual Hopf algebra with basis } (G_\tau)_{\tau \in \mathcal{G}_\pm} \quad \text{and where} \]

\[G_\tau \cdot G_{\tau'} = \sum_{\sigma \in \tau \ast \tau'} G_\sigma \quad \text{and} \quad \Delta G_\sigma = \sum_{\sigma \in \tau \sqcup \tau'} G_\tau \otimes G_{\tau'} \]

PROP. The graded dual Camb* of the Cambrian algebra is isomorphic to the image of FQSym* under the canonical projection

\[\pi : \mathbb{C}\langle A \rangle \longrightarrow \mathbb{C}\langle A \rangle / \equiv, \]

where \(\equiv \) denotes the Cambrian congruence. The dual basis \(Q_T \) of \(P_T \) is expressed as \(Q_T = \pi(G_\tau) \), where \(\tau \) is any linear extension of \(T \).
product in dual cambrian algebra

\[Q \cdot Q = G_{12} \cdot G_{213} \]
\[= G_{12}135 + G_{13}125 + G_{14}152 + G_{15}124 + G_{23}415 + G_{24}135 + G_{25}314 + G_{34}215 + G_{35}214 + G_{45}123 \]
\[= Q + Q + Q + Q + Q + Q + Q + Q + Q + Q \]

PROP. For any Cambrian trees \(T \) and \(T' \),

\[QT \cdot QT' = \sum_s QT_s T' \]

where \(s \) runs over all shuffles of \(\varepsilon(T) \) and \(\varepsilon(T') \)
PROP. For any Cambrian trees T and T',

$$Q_T \cdot Q_{T'} = \sum_s Q_{T s T'}$$

where s runs over all shuffles of $\varepsilon(T)$ and $\varepsilon(T')$
\[
\mathbb{Q} \cdot \mathbb{Q} = G_{12} \cdot G_{213} = G_{12} + G_{13} + G_{1325} + G_{1324} + G_{2315} + G_{234} + G_{25314} + G_{34215} + G_{35214} + G_{45213}
\]

\[
= \mathbb{Q} + \mathbb{Q}
\]

PROP. For any Cambrian trees \(T \) and \(T' \),

\[
\mathbb{Q}_T \cdot \mathbb{Q}_{T'} = \sum_s \mathbb{Q}_{T s T'}
\]

where \(s \) runs over all shuffles of \(\varepsilon(T) \) and \(\varepsilon(T') \)
\[Q \cdot Q = G_{12} \cdot G_{213} \]
\[= G_{12435} + G_{13425} + G_{14325} + G_{15324} + G_{23415} + G_{24315} + G_{25314} + G_{34215} + G_{35214} + G_{45213} \]

\[= Q + Q + Q + Q + Q + Q + Q + Q + Q + Q \]

PROP. For any Cambrian trees \(T \) and \(T' \),
\[Q_T \cdot Q_{T'} = \sum_s Q_{T_s T'} \]
where \(s \) runs over all shuffles of \(\varepsilon(T) \) and \(\varepsilon(T') \)
PRODUCT IN DUAL CAMBRIAN ALGEBRA

\[
\begin{align*}
Q_1 \cdot Q_2 &= G_{12} \cdot G_{213} \\
&= G_{12} + G_{13} + G_{1325} + G_{14325} + G_{15324} + G_{23415} + G_{24315} + G_{25314} + G_{34215} + G_{35214} + G_{45213} \\
&= Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 + Q_8 + Q_9 + Q_{10}
\end{align*}
\]

PROP. For any Cambrian trees \(T \) and \(T' \),

\[
Q_T \cdot Q_{T'} = \sum_s Q_{T_s T'}
\]

where \(s \) runs over all shuffles of \(\varepsilon(T) \) and \(\varepsilon(T') \)
\[\Delta Q = \Delta G_{213} = 1 \otimes G_{213} + G_1 \otimes G_{T2} + G_{T1} \otimes G_1 + G_{213} \otimes 1 = 1 \otimes Q + Q \otimes Q + Q \otimes Q + Q \otimes 1. \]

PROP. For any Cambrian tree \(S \),

\[\Delta Q_S = \sum_{\gamma} Q_{L(S, \gamma)} \otimes Q_{R(S, \gamma)} \]

where \(\gamma \) runs over all gaps between vertices of \(S \), and \(L(S, \gamma) \) and \(R(S, \gamma) \) denote the Cambrian trees left and right to \(\gamma \) respectively.
COPRODUCT IN DUAL CAMBRIAN ALGEBRA

\[\triangle Q = \triangle G_{213} \]

\[= 1 \otimes G_{213} + G_1 \otimes G_{214} + G_{214} \otimes G_1 + G_{213} \otimes 1 \]

\[= 1 \otimes Q + Q \otimes Q + Q \otimes Q + Q \otimes Q \otimes 1. \]

PROP. For any Cambrian tree S,

\[\triangle Q_S = \sum_{\gamma} Q_{L(S,\gamma)} \otimes Q_{R(S,\gamma)} \]

where γ runs over all gaps between vertices of S, and $L(S,\gamma)$ and $R(S,\gamma)$ denote the Cambrian trees left and right to γ respectively.
COPRODUCT IN DUAL CAMBRIAN ALGEBRA

\[\Delta Q = \Delta G_{213} = 1 \otimes G_{213} + G_1 \otimes G_{T2} + G_{21} \otimes G_T + G_{213} \otimes 1 \]

\[= 1 \otimes Q + Q \otimes Q + Q \otimes Q + Q \otimes 1. \]

PROP. For any Cambrian tree \(S \),

\[\Delta Q_S = \sum_{\gamma} Q_{L(S, \gamma)} \otimes Q_{R(S, \gamma)} \]

where \(\gamma \) runs over all gaps between vertices of \(S \), and \(L(S, \gamma) \) and \(R(S, \gamma) \) denote the Cambrian trees left and right to \(\gamma \) respectively.
MULTIPLICATIVE BASES

Define

\[E_T := \sum_{T \leq T'} P_{T'} \quad \text{and} \quad H_T := \sum_{T' \leq T} P_{T'} . \]

PROP. \((E^T)_{T \in \text{Camb}} \quad \text{and} \quad (H^T)_{T \in \text{Camb}} \) are multiplicative bases of Camb, i.e.

\[E^T \cdot E^{T'} = E^{T \uparrow T'} \quad \text{and} \quad H^T \cdot H^{T'} = H^{T \setminus T'} . \]
INDECOMPOSABLE ELEMENTS

PROP. The following properties are equivalent for a Cambrian tree S:

- E^S can be decomposed into a product $E^S = E^T \cdot E^{T'}$ for non-empty T, T'
- $([k] \parallel [n] \setminus [k])$ is an edge cut of S for some $k \in [n]$
- at least one linear extension τ of S is decomposable, i.e. $\tau([k]) = [k]$ for some $k \in [n]$

The tree S is then called E-decomposable
PROP. For any signature $\varepsilon \in \pm^n$, the set of \mathbb{E}-indecomposable ε-Cambrian trees forms a principal upper ideal of the ε-Cambrian lattice.

PROP. For any signature $\varepsilon \in \pm^n$, there are C_{n-1} \mathbb{E}-indecomposable ε-Cambrian trees. Therefore, there are $2^n C_{n-1}$ \mathbb{E}-indecomposable Cambrian trees on n vertices.
Extend combinatorial, geometric and algebraic properties of binary trees to further families of trees...
THANK YOU