
A

A scalable algebraic method to infer quadratic invariants of switched
systems
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We present a new numerical abstract domain based on ellipsoids designed for the formal verification of

switched linear systems. Unlike the existing approaches, this domain does not rely on a user-given template.

We overcome the difficulty that ellipsoids do not have a lattice structure by exhibiting a canonical operator
over-approximating the union. This operator is the only one which permits to perform analyses that are

invariant with respect to a linear transformation of state variables. It provides the minimum volume ellipsoid

enclosing two given ellipsoids. We show that it can be computed in O(n3) elementary algebraic operations.
We finally develop a fast non-linear power-type algorithm, which allows one to determine sound quadratic

invariants on switched systems in a tractable way, by solving fixed point problems over the space of ellipsoids.

We test our approach on several benchmarks, and compare it with the standard techniques based on linear
matrix inequalities, showing an important speedup on typical instances.
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1. INTRODUCTION
Motivation. Program verification has long relied on affine methods. Analyzers based

on abstract interpretation [Cousot and Cousot 1977] have mostly been using polyhedric
or subpolyhedric domains, as in e.g. [MathWorks Inc. 2007; Goubault 2013]. Ellipsoidal
(or quadratic) invariants have led to more accurate analyses for some classes of pro-
grams. They have been used in linear control applications [Kurzhanski and Vályi 1997]
and in program verification of linear recursive filters [Feret 2004], they are also used
locally in the static analyzer Astrée [Cousot et al. 2005]. More general applications of
ellipsoids in program validation can be found in [Cousot 2005; Adjé et al. 2012]. The
latter reference develops a template approach, based on the linear template original
idea of [Sankaranarayanan et al. 2005]. In template based methods, the shape of the
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A:2 Xavier Allamigeon et al.

ellipsoid has to be decided in advance by the user. Still, this is an approach which is
adapted to control codes: we may use as (quadratic) templates the (quadratic) Lya-
punov functions that the control theorist would have introduced to prove the stability
of the underlying algorithms, as put forward in [Feron and Alegre 2008a; 2008b].

Recently, some methods have been proposed in program validation for synthesizing
invariant ellipsoids for linear systems e.g. [Roux 2013; Roux et al. 2012; Roozbehani
et al. 2013], using linear matrix inequalities (LMI) techniques of control theory suit-
ably adapted to program analysis.

Contribution. In this paper, we are motivated by the analysis of more general sys-
tems and programs, including the important class of switched linear systems. Our
main objective is develop scalable methods adapted to large scale instances. Also, we
wish to avoid requiring extra information from the user, as in template based methods.

To this end, we develop a numerical abstract domain based on ellipsoids. The novelty
of this domain does not consist in the use of ellipsoids as abstractions, but rather in
the fact that we overcome two key difficulties which so far have limited the use of
ellipsoids in abstract interpretation. The first issue is that the ordered set of ellipsoids
does not constitute a lattice. This implies that there is a priori no canonical choice of
the abstraction of the union of two sets, making the analysis less predictable as it relies
on the selection of good upper bounds. The second issue is that most recent works using
on ellipsoids rely on LMI methods. The latter are efficient on moderate size examples
but they are inherently limited by the complexity of interior point algorithms, which, in
the case of matrix inequality problems, do not scale as well as for linear programming
or second order cone programming problems.

Our main contributions are the following.
First, we reduce the question of abstracting by an ellipsoid the union of two sets to

the selection of a minimal upper bound of two positive semidefinite (PSD) matrices
with respect to the Löwner order (recall that the Löwner order is the canonical order
on PSD matrices, corresponding to the inclusion of ellipsoids). We show in Theorem 4.1
that there is a unique selection procedure which has the property of being invariant
with respect to linear transformations of the program variables. This invariance prop-
erty is essential to guarantee that the analysis is robust. We call invariant join the
minimal upper bound which is selected in this way. We show that the invariant join
can be computed with the same cost as performing a Cholesky decomposition, i.e., in
O(n3) algebraic operations. We also show that the invariant join of two ellipsoids co-
incides with the minimal volume ellipsoid enclosing these two ellipsoids, so that, sur-
prisingly, two distinct natural approaches lead to the same choice of selection. Then,
we show that the invariant join operation can be used as a building block, to construct
in a systematic way an abstract functional associated with a program.

Our second main contribution is to show that an invariant ellipsoid can be computed
by a scalable algorithm. This is based on a non-linear generalization of the power al-
gorithm which is classically used to compute the dominant eigenvalue of a matrix.
Indeed, we replace the fixed point problem of abstract interpretation by a nonlinear
eigenvalue problem. The eigenvalue represents a stability margin and allows us to ab-
sorb errors due to finite precision computations. Then, the classical Kleene algorithm
of abstract analysis is replaced by the power iteration. We present two variants of
this iteration, based on additive and multiplicative perturbations ideas, respectively.
We show that the multiplicative iteration does converge by exploiting metric geometry
techniques: there is a known metric on the space of positive definite matrices, called
Thompson’s part metric, for which geodesic triangles satisfy a nonpositive curvature
condition. This entails that for suitably chosen perturbation parameters, the multi-
plicative power iteration is contracting. This leads to a fast algorithm as performing
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one power iteration is not harder than evaluating the abstract interpretation func-
tional.

We finally illustrate our approach by applying it to examples of switched linear sys-
tems. We show that the power iteration leads to important speedups by comparison
with LMI based methods, at the price of a limited loss of precision. Indeed, for many
typical examples, the ellipsoids computed by both methods yield stability certificates
of comparable precision.

Discussion of the results and related work. In previous works, quadratic invariants of
hybrid systems have been synthesized by LMI methods. The LMI approach is versatile,
it allows in particular to compute non centered quadratic invariants [Oulamara and
Venet 2015], but it is computationally expensive. In the present paper, we showed that
LMI can be avoided at least in the case of centered quadratic invariants. Although this
case is restrictive, it applies to the class of linear switched systems, which is already
considered to be a challenging and significant one in control applications. Whereas the
present ideas may be useful as well for non centered ellipsoids, a systematic study of
the non centered cased is left for a further work.

For general hybrid systems, or switched linear systems as in this article, there
are several classical approaches from control theory [Liberzon 2003], such as piece-
wise (linear or quadratic) Lyapunov function [Johansson and Rantzer 1998; Adjé and
Garoche 2015], common (quadratic) Lyapunov functions [Peleties and DeCarlo 1991],
or multiple Lyapunov functions [Branicky 1998; Bacciotti and Mazzi 2007] when the
switching may depend on the current state. The question of checking, in an optimal
way, the stability of switched linear systems is a well known hard problem, which
essentially boils down to computing the joint spectral radius of a set of matrices.
The standard approach is to use the theory of Barabanov norms. Computing or ap-
proximating the Barabanov norm, for instance by using polyhedral norm approxima-
tion [Kozyakin 2010], or SOS methods for approximating it [Parrilo and Jadbabaie
2008], can be a highly demanding computational task. This paper follows a different
path, by achieving much coarser but scalable stability proofs.

The question of selecting minimal upper bound of matrices with respect to the
Löwner ordered as appeared in information geometry and mathematical morphology,
see specially [Burgeth et al. 2007; Angulo 2013]. Whereas the minimal volume ellipsoid
has been considered in this context, its characterization as the invariant join, as well
as the fast algorithm to compute it, is new. Also, the idea of studying dynamical sys-
tems on the cone positive definite matrices by means of metric geometry techniques
was used in [Gaubert and Vigeral 2012] in the context of repeated games. Whereas
some similarities exist between the fixed point functionals encountered in the present
static analysis and the ones encountered in game theory, the former turn out to be less
well behaved as they are no longer order preserving. We finally emphasize that the
Thompson’s part metric used here is a classical notion which has been widely stud-
ied [Nussbaum 1988]. To our knowledge, such metric geometry ideas were not applied
previously to invariant synthesis for programs and systems.

Organization of the paper. In Section 2, we specify the class of programs and
switched systems addressed in this paper. In Section 3, we present the domain of el-
lipsoids and give an abstract semantics to general programs, exploiting the equiva-
lence between the poset of the ellipsoid and the poset of positive semidefinite matrices
equipped with the Löwner order. In Section 4, we establish the main properties of the
invariant join of two matrices. In Section 5, we describe the power iteration and estab-
lish convergence properties. Benchmarks on programs implementing switched linear
systems or taken from the literature are presented in Section 6. Technical proofs are
provided in the appendix.
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while (rand_bool) {
switch (rand_int) {
case 0:
I0

case 1:
I1

...
case k:
Ik

}
}

(a) Structure of studied programs

(* h = 0.01, ω0 = 1, ω1 = 0.8 are constants *)
declare x = [-1,1];
declare v = [-1,1];
while (rand_bool) {
switch (rand_bool) {
case 0:
(x, v) <- (x+h*v, -(hω2

0)*x+(1-hω0)*v);
case 1:
(x, v) <- (x+h*v, -(hω2

1)*x+(1-hω1)*v);
}

}
(b) Implementation of system (1) using an explicit Euler
integration scheme

Fig. 1: Structure of programs and example of implementation

2. PROGRAMS AND SYSTEMS OF INTEREST
The programs we are considering in the sequel consist of a sequence of possibly nested
while loops of the form depicted in Figure 1a meaning that any I0, I1 to Ik can be
of a similar form, or an instruction. Instructions can be either, variable initialization
(or declaration) or (parallel linear) assignments. Variables have a local scope, in the
same way as in C or Java for instance. This will be semantically encoded by a variable
deletion operator, in Section 3.2.3 (but has no specific syntax, as in C or Java). The
expression rand_bool stands for a boolean with random value.

A variable declaration corresponds to the introduction of a new variable in the pro-
gram. In addition, this variable is initialized according to two possible modes: (i) either
with the constant 0, (ii) or with an arbitrary value within a symmetric interval [−R,R].
The latter possibility allows in particular to handle the declaration of a variable asso-
ciated with a sensor measuring a physical value.

The programs may contain general assignments of the form
(x_1,...,x_n) <- P(x_1,...,x_n), where P is an (n × n)-matrix. This opera-
tion corresponds to n parallel assignments of the variables xi to linear terms

∑
j Pijxj

respectively (note that the assignment xi <- xi encodes the fact that the variable xi
remains unchanged).

Programs expressed in this grammar encompass many classical situations we may
find in embedded systems. For instance, linear control programs, with (uninterpreted)
modes, that is a controller which might have several control modes. They can also
represent (discrete) simulation schemes to compute the state of a switched linear sys-
tem, modelling some complex physical phenomenon. Let us recall that a discrete-time
switched linear system can be modeled as a finite collection of equations

xk+1 = Aixk, k ∈ N, i ∈ I = {1, ..., N}

where x ∈ Rn is the state, {Ai}i∈I are transition matrices and I enumerates the dif-
ferent modes. Our method will also allow for conservative proofs of stability of such
systems, by constructing invariant ellipsoids which do not exploit the knowledge of
the switching mechanism.

For example, we may consider a system switching between two damped harmonic
oscillators: {

ẍ+ ω0ẋ+ ω2
0x = 0

ẍ+ ω1ẋ+ ω2
1x = 0

. (1)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A scalable algebraic method to infer quadratic invariants of switched systems A:5

Using ω0 = 1 and ω1 = 0.8, we can simulate this system with the program in Figure 1b.

3. THE DOMAIN OF ELLIPSOIDS
3.1. Poset of ellipsoids and Löwner order
We begin by introducing some usual notation in linear algebra. We denote by In the
identity matrix of size n×n, or simply I when the dimension is clear from the context.
The transpose of a matrix M is denoted by MT . In particular, if x = (xi) ∈ Rn is a
column vector, the notation xT simply stands for the associated row vector with entries
xi.

Recall that a matrix M = (Mij) ∈ Rn×n is said to be symmetric when M = MT ,
i.e. Mij = Mji for all i, j. We will denote by Sn the set of symmetric matrices of size
n× n. A matrix U ∈ Rn×n is orthogonal if UUT = UTU = I. Every symmetric matrix A
can be diagonalized by an orthogonal change of basis. This means that we can write A
under the form UTDU , where D is a diagonal matrix, and U is orthogonal. The group
of invertible matrices of Rn×n is denoted by GLn(R).

A symmetric matrix A = (Aij) ∈ Sn is said to be positive semidefinite (shortened
PSD) if for all x ∈ Rn, we have xTAx =

∑
ij Aijxixj > 0. This is equivalent to any of the

two following properties: all the eigenvalues of A are non-negative; A can be written as
A =MMT for some M ∈ Rm×n where m 6 n is the rank of M . We write A < 0 to mean
that A is PSD, and we denote by S+n the set of PSD matrices. The relation < extends
to any pair of matrices A,B ∈ Sn by writing A < B when A − B < 0. This provides
a partial ordering over Sn, referred to as the Löwner order. When xTAx > 0 holds for
all non-zero x ∈ Rn, the matrix A is said to be positive definite. A matrix is positive
definite if and only if it is PSD and invertible. In this case, its inverse is also positive
definite. We shall write A � 0 to mean that A is positive definite.

We now review some properties on PSD matrices which will be useful in the sequel.
First, PSD matrices have square roots, just as non-negative numbers. More precisely,

if A is a PSD matrix, there exists a unique PSD matrix A1/2 such that (A1/2)2 = A.
Writing A under the form UTDU as above, then A1/2 is given by the matrix UT

√
DU ,

where
√
D stands for the diagonal matrix with diagonal entries

√
Dii. More generally,

for all positive scalars s, we define As to be the matrix UTDsU , where Ds is the diago-
nal matrix obtained by raising to the power s every diagonal entry of D. We shall refer
to As as the s-th power of A, as it coincides with the usual s-th power for integer values
of s.

Moreover, given A,B ∈ S+n , the combination λA+µB also lies in S+n for all λ, µ ∈ R+.
In other words, the set Sn+ of PSD matrices forms a convex cone. It is also a pointed cone,
meaning that there is no A ∈ Sn+ such that A < 0 and−A < 0, unless A = 0. Any convex
and pointed cone C induces a partial ordering defined by “x > y” if x− y ∈ C. The most
famous cone is certainly the orthant Rn+ of Rn; the associated partial order gives rise
to systems of linear inequalities and to linear programming. Other cones play a major
role in optimization, such as the Lorentz cone used in quadratic programming, and the
PSD cone S+n in semidefinite programming.

We point out that the cone S+n does not yield a lattice structure on Sn. Indeed, S+n is
not a polyhedral cone: it has infinitely many extreme rays, generated by the matrices
of rank 1. In contrast, cones providing a lattice structure are characterized by the
following result of Krein and Rutman [Krein and Rutman 1948]: a finite dimensional
cone yields a lattice order if and only if it is simplicial, i.e. it is generated by finitely
many linearly independent extreme rays.

We now introduce ellipsoids and relate them with PSD matrices. Recall that, in this
paper, we restrict our attention to centered ellipsoids.
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A =

(
4 −2
−2 1

)
B =

(
3 1
1 3

)

Fig. 2: Flat ellipsoids

Formally, a (centered) ellipsoid is defined as the image of the unit ball B(0, 1) := {x ∈
Rn | xTx 6 1} under a linear map x 7→ Mx, where M ∈ Rn×n. When the matrix M is
invertible, this ellipsoid is given by the set

{x ∈ Rn | xTA−1x 6 1} , (2)
where A is the matrix MMT . Note in particular that A is positive definite. However, it
will be convenient for our purposes to allow M to be singular. Equivalently the matrix
A = MMT will be allowed to be only PSD (not necessarily definite). In this case, we
show in Lemma A.1 in the Appendix that the former ellipsoid is characterized as the
following set

EA := {x ∈ Rn | xxT 4 A} . (3)
Equivalently, EA is the set of vectors x ∈ Rn satisfying (yTx)2 6 yTAy for all y ∈ Rn.

The benefit of relaxing the condition on the invertibility of A is that it allows to
consider ellipsoids which are not necessarily full-dimensional, while this is not possible
with the former representation (2) in which A is positive definite. Indeed, following the
discussion above, the ellipsoid EA is contained in the range {My | y ∈ Rn} of the matrix
M , which coincides with the range of the matrix A. Thus, when A is not invertible,
the ellipsoid EA is “flat”, see Figure 2 for an example. Handling non-full dimensional
ellipsoids will be useful in the setting of formal verification by abstract interpretation,
since we also have to handle destructive updates, i.e. non invertible assignments such
as an assignment of a variable to 0.

We are now ready to present (centered) ellipsoids in the framework of abstract in-
terpretation. In essence, we use PSD matrices to over-approximate bounded subsets
of Rn by ellipsoids. Following the terminology of abstract interpretation, our concrete
domain is defined as ℘bounded(Rn), the lattice of bounded subsets of Rn equipped with
the subset partial order ⊆. The abstract domain is the cone S+n of PSD matrices. The
concretization operator γ, which maps an abstract element to a concrete one, is de-
fined as the function γ : S+n → ℘bounded(Rn) which associates a PSD matrix A to the
corresponding ellipsoid EA. In other words, every PSD matrix A ∈ S+n “abstracts” the
subsets contained in EA.

We first check that the concretization operator is order preserving:

LEMMA 3.1. The map γ : A 7→ EA is order-preserving.

PROOF. Let 0 4 A 4 B and let x ∈ EA. By transitivity of 4, we get xxT 4 A 4 B,
thus x ∈ EB .

Like several other abstract domains (convex polyhedra [Cousot and Halbwachs
1978], zonotopes [Ghorbal et al. 2009], etc.), the domain of ellipsoids cannot be
equipped with an abstraction operator α. Indeed, this operator would be supposed
to map any bounded subset S to the “smallest” PSD matrix A such that S ⊂ EA.1

1In this case, (α, γ) forms a Galois connection.
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Fig. 3: Non-monotony of the minimum volume ellipsoid

Such a matrix A does not exist in general since the cone S+n of PSD matrices does not
constitute a lattice in the Löwner order.

An important result on ellipsoids, by John, states that given a bounded full-
dimensional subset S of Rn, there is a unique ellipsoid of minimal volume containing
S, see [Ball 1997, p. 19]. Note that this can be extended to any bounded subset S (not
necessarily full-dimensional), by solving the minimization problem in a subspace of
Rn, and then mapping back to the initial space, which ultimately yields a flat ellipsoid.
As illustrated in Figure 3, the function which maps S to the minimum volume ellipsoid
containing S is not order preserving. Indeed, the minimum volume ellipsoid containing
the square C is the disk EA, and the minimum volume ellipsoid containing an ellipsoid
EB is itself. However, we have here C ⊆ EB but EA 6⊆ EB .

3.2. Abstract primitives
We present here our abstractions for the following operations: declaration of a variable,
linear assignment, deletion of a variable, switch/case statement and the while loop.
More precisely, each of these operations can be modeled by a function [[op]] mapping the
concrete states to the new ones arising after the operation. Then our goal is to define a
corresponding operator [[op]]] dealing with abstract states and which is sound, i.e. such
that [[op]](γ(A)) ⊂ γ([[op]]](A)) for all PSD matrix A. The latter condition ensures that
the abstract primitive propagates over-approximations of the concrete states in a cor-
rect way. When the inclusion turns to be an equality, the abstract operator is said to
be exact, which means that it does not introduce an additional approximation of the
concrete states.

3.2.1. Variable declaration. In both cases, starting from a PSD matrix A ∈ S+n , the ab-
straction of the introduction of a new variable corresponds to an augmentation of A in
block form:

A 7→
[
α1A

α2

]
∈ S+n+1 (4)

for some well-chosen α1, α2 > 0. If the variable is set to 0, we take α1 = 1 and α2 = 0. In
this case, the ellipsoid is unchanged, but is now flat with respect to the new variable.
When the variable is initialized with the interval [−R,R], we set

α1 :=

{
1 + 1/ rkA if A 6= 0 ,

1 otherwise,
α2 := (1 + rkA)R , (5)

where rkA stands for the rank ofA. It can be proved that with this choice, the extended
matrix given in (4) corresponds to the minimum volume ellipsoid containing the trun-
cated cylinder EA × [−R,R]. By construction, we deduce that our abstract primitive is
sound.
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Let us give an example from the first two variable declarations in Figure 1b. Initially,
since no variable is declared, the abstract state A is the (0× 0)-matrix. After the decla-
ration of x, this matrix is augmented to a (1×1)-matrix A′, whose only entry is equal to
1 + rkA = 1. At this point, the abstraction is exact since this precisely corresponds to
the set of concrete states, formed by the interval [−1, 1]. Next, for the declaration of v,
Eq. (5) provides the parameters α1 = α2 = 2 (as rkA′ = 1). Hence, the new abstract el-
ement is the PSD matrix A′′ = ( 2 0

0 2 ). This encodes the disk of radius
√
2, which tightly

over-approximates the set of concrete states, given by the square [−1, 1]× [−1, 1]. More
generally, the matrix nIn encodes the n-dimensionnal ball of radius

√
n that tightly

approximates the n-dimensionnal box [−1, 1]n.

3.2.2. Linear assignment. We consider here linear assignment operations applied to
vectors, i.e. of the form (x1, . . . , xn) <- P (x1, . . . , xn), where P is an (n × n)-matrix.
As an example, the first parallel assignment in Figure 1b corresponds to the ma-
trix P =

(
1 h
−hω0 1−hω2

0

)
. We define the corresponding abstract operator as the function

A 7→ PAPT . The following lemma shows that this operator is sound and even exact:

LEMMA 3.2. We have {Px | x ∈ EA} = EPAPT .

PROOF. Let M such that A = MMT . We know that EA and EPAPT respectively
correspond to the image of the unit ball B(0, 1) under the linear maps x 7→ Mx and
x 7→ PMx. The expected result follows straightforwardly.

3.2.3. Variable deletion. The deletion of a variable xi consists in the projection of the
state on the other remaining variables. This is also a linear transformation and its
matrix P is the identity whose i-th line has been deleted. For instance, deleting w
from the state [x , v , w]T would yield the matrix P = ( 1 0 0

0 1 0 ). As for the assignment
operation, the abstract operator for deleting a variable is the function mapping A ∈
S+n to PAPT ∈ S+n−1. Again, this operator can be shown to be exact, using the same
argument as in the proof of Lemma 3.2.

3.2.4. Switch statement. As described in Section 2, we are interested in switched sys-
tems (or programs) with an arbitrary switching rule. This means that our abstraction
of a switch/case statement that tests the value of an expression does not guard the
state space with respect to the outcome of this expression. Instead, we choose a coarser
abstraction by considering that the expression has a random value. In the standard
framework, this abstract operator would return the supremum of the abstract ele-
ments resulting from each branch of the switch/case statement. But as ellipsoids do
not form a lattice, this supremum may not exist in general. Nevertheless, we would
like to settle for a minimal upper bound of the results from each branch. We develop
in Section 4 the selection of such a minimal upper bound of two positive semidefinite
matrices, denoted by t. Note that this operator only takes two arguments and is not
associative (as is the general case for non-lattice abstract domains [Gange et al. 2013]).
If there are more than two branches A1, . . . , An, we simply join the branches sequen-
tially by computing

(
(A1tA2)tA3

)
· · ·tAn. In general, this does not return a minimal

upper bound when n > 3 branches are involved, and this particular sequence may
yield a coarse upper bound. Instead, we can consider means of such terms in the com-
putation, changing the order of the parentheses in each term. Such a mean remains an
upper bound of the results of each branch and may return an abstraction with better
quality.

3.2.5. While loop. Consider a while loop of the form while (e < r) { s } where e and
r are general arithmetic expressions, and s is a sequence of instructions correspond-
ing to the body of the loop. Like for the switch statement, our abstraction ignores the
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boolean expression e < r and replaces it with a random exit of the loop. We can do this
without loss of generality under the assumption that the loop condition is eventually
verified. If we were in the usual lattice based framework, the loop invariant could be
determined as the least post-fixpoint of the function X 7→ A t s(X), where A corre-
sponds to the abstract state at the entry of the loop, and s to the abstract operator
of the body of the loop. However, in our setting, the join operator is not defined, and
the least fixed point of the latter function may not exist. Instead, we define an ab-
stract primitive which, given the abstract element A, returns an abstract element X
satisfying A 4 X and s(X) 4 X.

To this end, we first look for a positive definite matrix T satisfying s(T ) 4 T (i.e. a
post-fixpoint of the abstract operator s) using the power-like algorithm described in
Section 5. The matrix T is then scaled in order to “contain” the abstract element A,
i.e. we return the abstract element X := µTT , where µT = inf{µ ∈ R+ | µT < A}. This
approach yields a sound invariant, because essentially every operator s presented here
is positively homogeneous: for all nonnegative λ and Y ∈ S+n , we have s(λY ) = λs(Y ).
(The only one that is not positively homogeneous is the bounded variable declaration,
however, we assume this type of declaration do not appear in loops.) Consequently, we
deduce that the abstract element X that we have computed also satisfies s(X) 4 X.

As a consequence, the matrix T somehow serves as a template which is here com-
puted in an automatic way. A similar scaling technique appeared in [Roux 2013], in
which the template is computed using semidefinite programming.

We point out that our method is open for a possible refinement, by scaling individu-
ally the semi-axes of the ellipsoid ET , instead of applying the same scaling factor µ.

4. SELECTION OF MINIMAL UPPER BOUNDS IN THE LÖWNER ORDER
A binary operation defined on a poset will be called a selection of a minimal upper
bound or quasi-join if it sends every pair of elements of this poset to a minimal upper
bound of this pair. The question of the selection of a minimal upper bound of posi-
tive definite matrices, with respect to the Löwner order, has arisen in several fields.
In particular, the following selection has been considered in mathematical morphol-
ogy [Burgeth et al. 2007]:

A tm B =
A+B

2
+

1

2

(
(A−B)(A−B)T

)1/2
.

This is the analogue of the usual expression of the maximum of two scalars: max(a, b) =
a+b
2 + 1

2 |a− b| . Based on this, we introduce an operation (A,B) 7→ A t B on the set
of PSD matrices. For simplicity, we assume that one of the two matrices, say A, is
invertible. Then,

A tB := X
(
In tm X−1BX−T

)
XT , (6)

where X denotes a square matrix (not necessarily PSD) such that A = XXT . The fact
that AtB does not depend on the choice of X is proved in Lemma A.2 of the Appendix.

An essential property of the selection (A,B) 7→ AtB, which we shall establish below,
is that it commutes with the action of invertible linear transformations, meaning that

∀U ∈ GLn(R),
(
UAUT

)
t
(
UBUT

)
= U

(
A tB

)
UT . (7)

This entails that the precision of the operator is not affected by a linear change of vari-
ables in the program , nor is the quality of final invariants provided by the program
analysis. Let us illustrate the latter property on the programs given in Figure 4. The
right-hand side program is obtained from the left-hand side one by applying the linear
change of variables Ux → y. We denote by X0 the initial abstract state in the anal-
ysis of the left-hand side program, i.e. before the execution of the switch statement.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Xavier Allamigeon et al.

switch (rand_bool)
case 0: x <- Px;
case 1: x <- Qx;

switch (rand_bool)
case 0: y <- UPU−1y;
case 1: y <- UQU−1y;

Fig. 4: Linear change of variables in a switch statement

Accordingly, we assume that the abstract state of the right-hand side program is given
by Y0 = UX0U

T . Following the definition of the abstract primitives in Section 3.2, the
analysis of the two programs respectively provides the following final invariants:

Xf = (PX0P
T ) t (QX0Q

T )

Yf = (UPU−1Y0U
−TPTUT ) t (UQU−1Y0U

−TQTUT )

= (UPX0P
TUT ) t (UQX0Q

TUT ) .

Then it can be verified using (7) that the final invariant of the second program corre-
sponds to a rewriting of the invariant of the first program, i.e. Yf = UXfU

T .
The following theorem justifies the term invariant join for the operator t.

THEOREM 4.1. The binary operator t defined in (6) is the only selection of a min-
imal upper bound, with respect to the Löwner order, that commutes with the action of
invertible linear transformations.

PROOF. We first show that the operator t commutes with the action of invertible
linear transformations. Let A be a positive definite matrix and B a positive semidefi-
nite matrix. Let P and D as given by Lemma A.3, so that A = PPT and B = PDPT .
Note that we then have:

A tB = P
(
I tm D

)
PT = P

(
I ∨D

)
PT .

where I ∨D denotes the diagonal matrix with diagonal entries max(1, Dii).
Assume that5 is a minimal upper bound selection that is commutes with the action

of linear transformations. Using this property with P−1, we shall only prove that I 5
D = I ∨D. Let Sk denote the invertible diagonal matrix with 1 on the diagonal, except
for a −1 in the k-th place. Using again the invariance property (7) with Sk on I 5
D shows that every non-diagonal elements on the k-th row and k-th column is null.
Repeating this process for every k between 1 and n shows that I 5 D is a diagonal
matrix. The minimality of I 5D implies that (I 5D)ii = max(1, Dii).

We finally show that A tB is a minimal upper bound of A and B. Since the Löwner
ordering is compatible w.r.t. any invertible linear transformation L ∈ GLn(R), meaning
that

∀X,Y ∈ S+n , X 4 Y ⇐⇒ LXLT 4 LY LT , (8)

and since we just showed that the t operation commutes with the action of linear
transformations, we may assume that A = I and B = D. Without loss of generality,
we may assume that the p first diagonal entries of D are greater than 1 whereas the
following entries do not exceed 1. For all J ⊂ {1, . . . , n} and for all symmetric matrices
M , we denote by M [J ] the principal submatrix of M obtained by selecting the rows and
columns with indices in J . Then, M := I tD is a block diagonal matrix, with diagonal
blocks M [{1, . . . , p}] = diag(D11, . . . , Dpp) and M [{p + 1, . . . , n}] = In−p, the identity
matrix of size n − p. Observe that X 4 Y implies that every diagonal block of X is
bounded above in the Löwner order by the corresponding diagonal block of Y . Then, if
F is such that I 4 F , D 4 F and F 4 I t D, we have M [{1, . . . , p}] 4 F [{1, . . . , p}] 4
M [{1, . . . , p}] and In−p 4 F [{p + 1, . . . , n}] 4 In−p. It follows that F and M have the
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same diagonal blocks. Since M −F < 0 and M −F has zero diagonal blocks, we deduce
that M − F = 0, showing that M is a minimal upper bound of A,B.

To evaluate the expression (6), it is convenient to use the Cholesky decomposition
A = XXT , computed in O(n3) operations, where X is a lower triangular matrix, so
that the inverse X−1 appearing in (6) can be computed in O(n2) arithmetic operations
by back-substitution. As an immediate consequence, we obtain the following bound for
the complexity of the invariant join operator computation.

PROPOSITION 4.2. The invariant join A t B can be computed in O(n3) operations
in {+, −, ×, ÷, √}.

The minimum volume ellipsoid enclosing EA ∪ EB is usually determined by solving
an LMI problem. As a surprising by-product of Theorem 4.1 and Proposition 4.2, we
obtain a cheaper way to compute this minimum volume ellipsoid by using elementary
algebraic operations.

COROLLARY 4.3. Let A,B be positive definite matrices. The invariant join AtB co-
incides with [opt(A,B)]−1, where opt(A,B) denote the optimal solution of the semidefi-
nite program:

minimize − log detC
subject to C 4 A−1, C 4 B−1 .

C � 0

. (9)

As a consequence, the ellipsoid associated to A t B is the minimum volume enclosing
ellipsoid of EA and EB .

PROOF. First, this minimization problem is well posed. Indeed, the objective func-
tion X 7→ − log detX is a strictly convex function and the set {C | C 4 A−1, C 4
B−1, C � 0} is convex, ensuring the uniqueness of the solution opt(A,B). Moreover,
the existence of this solution follows from the fact that the objective function has com-
pact sublevels sets. The solution opt(A,B) must be a maximal lower bound of A−1 and
B−1, since the objective function is strictly order-preserving, meaning that C 4 F and
− log detC = − log detF , for a symmetric matrix F , implies C = F .

Next, we show that the selection of a minimal upper bound given by the semidef-
inite program (9) commutes with the action of invertible linear transformations. We
consider L ∈ GLn and the modified semidefinite program

minimize − log detD
subject to D 4 (LALT )−1, D 4 (LBLT )−1 .

D � 0

. (10)

The feasibility conditions of the semidefinite program (10) are equivalent to {LTDL 4
A−1, LTDL 4 B−1, LTDL � 0}, so that, if we denote C = LTDL, the program (10) can
be rewritten as:

minimize − log detC − 2 log detL
subject to C 4 A−1, C 4 B−1 .

C � 0

. (11)

The feasible sets of the programs (9) and (11) coincide and their objective
functions only differ by a constant. Thus, their optimal solutions coincide:
opt(A,B) = LT opt(LALT , LBLT )L. This can be rewritten as [opt(LALT , LBLT )]−1 =
L[opt(A,B)]−1LT . As a consequence of Theorem 4.1, we have AtB = [opt(A,B)]−1.
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Theorem 4.1 shows that selecting the minimal volume ellipsoid yields a canonical
abstraction of the union of two ellipsoids. However, since the invariant join t is not an
order preserving map, using this selection locally, in an analysis, may not necessarily
lead to the tightest global invariant.

5. A SCALABLE NONLINEAR FIXPOINT ALGORITHM
5.1. Additive and multiplicative power iterations
In this section, we present two scalable algorithms which will allow us to find an el-
lipsoid invariant. As explained in Section 3.2.5, if s denotes the abstract operator of
the body of the loop, this boils down to finding a non-zero positive semidefinite matrix
X such that s(X) 4 X. To this end, we shall consider an auxiliary nonlinear spectral
problem, which consists in finding a non-zero matrix X ∈ S+n and a scalar λ > 0 such
that

s(X) = λX . (12)

If we find a matrix X for which λ 6 1, then the original problem s(X) 4 X is solved.
An interest of introducing the extra degree of freedom λ is to allow for finite precision
computations. If s(X) = λX holds for λ < 1 and X positive definite, then, the relation
s(X) 4 X remains valid under a small perturbation of X.

A simple idea to solve (12) is to choose an order preserving linear form ψ : S+n → R+,
and to define the following fixed point scheme

Xk+1 =
s(Xk)

ψ(s(Xk))
(13)

initialized with a positive definite X0. A convenient choice of ψ is the trace functional.
The latter has the property that it does not vanish on S+n except at the zero matrix.
So, a division by zero will not occur in (13), unless s(Xk) vanishes at some iteration,
which will not be the case for the abstract operators considered here. By construction,
ψ(Xk+1) = 1 holds for all k. Moreover, the set of positive semidefinite matrices X of
trace one is bounded. Therefore, an additional advantage of the trace functional is that
the sequence Xk remains bounded. If Xk converges to a matrix X, we get X = s(X)

ψ(s(X))

and so, s(X) = λX with λ = ψ(s(X)), which solves problem (12).
The algorithm (13) is a non-linear analogue of the power algorithm which is familiar

in matrix theory [Golub and Van Loan 2013]. The latter allows one to compute an
eigenvector associated to a dominant eigenvalue (eigenvalue of maximal modulus) of a
real matrix M by computing the sequence

xk+1 =
Mxk
‖Mxk‖2

(14)

where x0 is a non-zero vector. This is similar to (13), except that we replaced the Eu-
clidean norm ‖ · ‖2 by the linear functional ψ. The well known advantage of the power
algorithm is its scalability. To implement it, the matrix M need not be explicitly stored,
it suffices to have an oracle which takes x as input and return Mx, hence, it is adapted
to instances of large dimension (e.g., the “pagerank” algorithm is a variant of the power
iteration). The classical power iteration is known to converge for generic values of the
initial vector x0, provided that the matrix M has a unique eigenvalue of maximal
modulus. This is the case in particular when the matrix M has positive entries. It is
straightforward to find examples in which the power iteration (14) does not converge
if the latter positivity condition is relaxed.

Therefore, in order to guarantee that the non-linear iteration (13) converges, we
need to find an analogue of the classical positivity condition. Geometrically speaking,
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the latter means that the map x 7→Mx sends the cone Rn+ to its interior. By analogy, it
is natural to require that the abstract operator s sends the cone of PSD matrices S+n to
its interior, i.e., to require that s(X) is positive definite as soon as X is a non-zero PSD
matrix. We can always make sure that this assumption is satisfied by introducing a
damping parameter ε > 0 and replacing the operator s by

x 7→ s(x) + εIψ(x) .

This leads to the damped non-linear power iteration

Xk+1 =
s(Xk) + εψ(Xk)I

ψ [s(Xk) + εψ(Xk)I]
. (15)

We shall refer to (15) as the non-linear additive power iteration in the sequel, for the
ε-perturbation acts in an additive way on s.

The choice of ε will be a trade off between making the perturbation small, which
requires to choose a small ε, and ensuring a fast convergence, which is the case when ε
is large. For the present experimental purposes, we will see that taking ε ∈ [10−2, 10−1]
leads to satisfactory results. The interest of the non-linear additive power iteration
is its simplicity of implementation. However, in the present setting, its convergence
study is not-immediate. It is conceivable to exploit some convergence results concern-
ing non-linear power type algorithms over cones [Nussbaum 1988]. These require the
map s to be order preserving, and this assumption is not satisfied here. Hence, we de-
fer the analysis of the additive power iteration to a further work. However, the simple
modification of the perturbation idea that we next present leads to a variant of the
power algorithm which will be easier to analyze theoretically, and which experimen-
tally gives comparable results. This variant uses a multiplicative perturbation instead
of an additive one:

Xk+1 =
s(Xk)

1−ε

ψ [s(Xk)1−ε]
. (16)

Recall that for all PSD matrices Y and for all s > 0, Y s denotes the s-th power of Y
defined in Section 3.1. For brevity, we write s(Xk)

1−ε for (s(Xk))
1−ε. We refer to (16) as

the non-linear multiplicative power iteration.

5.2. Convergence analysis of the multiplicative power iteration
The reason for considering the multiplicative power iteration is that, when Y is posi-
tive definite and 0 < s < 1, the map Y 7→ Y s is a contraction with respect to a classical
metric on the cone, called Thompson’s (part) metric [Nussbaum 1988].

Let us recall the definition of this metric. Given two positive definite matrices X and
Y , the Thompson’s distance dT (X,Y ) is defined by

dT (X,Y ) = logmin{α > 0 | α−1X 4 Y 4 αX} .
It can be easily computed as

dT (X,Y ) = max(log λmax(X
−1Y ), log λmax(Y

−1X)) ,

where λmax denotes the largest eigenvalue of a matrix.
It is known (ibid.) that a geodesic for Thompson’s metric linking I and a positive

matrix X is given by the curve sending t ∈ [0, 1] to t 7→ Xt. By geodesic, we mean
that the equality holds in the triangular inequality dT (I,Xt) 6 dT (I,X

s) + dT (X
s, Xt)

for all 0 < s < t. The Thompson’s part metric has the remarkable property of being
invariant with respect to the action of the linear group, that is,

dT (PXP
>, PY P>) = dT (X,Y )
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Fig. 5: The nonpositive curvature property of Thompson’s metric on the space of posi-
tive definite matrices.

for all P ∈ GLn(R). This is similar to the invariance property (8) which we required for
the selection operator t, and this is the reason for using this metric.

The geodesics between I and two positive matrices X and Y have the following prop-
erty, which is known in metric geometry as nonpositive curvature in the sense of Buse-
mann,

dT (X
t, Y t) 6 t dT (X,Y ) . (17)

This can be deduced either from [Bhatia 2003] or from classical log-majorization in-
equalities for matrix eigenvalues [Zhan 2002], see [Gaubert and Vigeral 2012] for de-
tails. This inequality means that the triangles are thin, it is illustrated Figure 5. We
warn the reader that non positive curvature in the sense of Busemann is a milder
condition than other nonpositive curvature conditions more commonly used like being
CAT(0), see [Papadopoulos 2005] for background.

The property given in (17) is the core of the multiplicative perturbation method.
Indeed, in the case where the body of the loop contains at least two case branches, the
abstract loop operator s involves the invariant join. In addition of not preserving the
Löwner order, the latter is also possibly expansive: it is easy to find positive definite
matrices Xi and Yi (1 6 i 6 2) for which dT (X1 tX2, Y1 t Y2) > dT (X1, Y1) ∨ dT (X2, Y2).
Let Cn denote the Lipschitz constant of the invariant join operator, i.e., the infimum of
the positive numbers C such that

dT (X1 tX2, Y1 t Y2) 6 C
[
dT (X1, Y1) ∨ dT (X2, Y2)

]
holds for all positive definite matrices X1, X2, Y1, Y2 of size n × n. We show in a com-
panion work that Cn is in O(log n), although this bound may not be optimal.

The next result shows that the power algorithm does converge for a large enough
ε. This is mostly of theoretical interest. In the present experiments, we use a much
smaller value of ε.

THEOREM 5.1. Let N denote the number of invariant join operations involved in
the abstract loop operator s. If ε > 1 − 1/(2CNn ), then the sequence Xk produced by the
multiplicative power algorithm satisfies

dT (Xk+1, X∞)

dT (Xk, X∞)
6 2CNn (1− ε) < 1 , where X∞ = lim

k→∞
Xk .

PROOF. For simplicity, we only prove the theorem when N = 1, like in the example
in Figure 1b (the extension to the general case is straitghforward). Let (Xk) and (Yk)
denote two multiplicative power iterations initialized at positive definite matrices X0

and Y0, as well as S0 and S1 the abstract assignment matrices respectively from the
case branches 0 and 1. With this notation,

s(X) = S0XS
T
0 t S1XS

T
1 .
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(a) Invariant join with
the LMI (red) and the
algebraic definition
(green)

(b) Program invariant,
with LMI (red), additive
power (blue) and multi-
plicative power (green)

(c) Program invariant in high di-
mensions, with an LMI (red), ad-
ditive power (blue) and multi-
plicative power (green)

Fig. 6: Computation times (in s) w.r.t. the dimension of the problem.

Moreover, as S0 and S1 are assumed to be nonzero, we have{
dT (S0XkS

T
0 , S0YkS

T
0 ) 6 dT (Xk, Yk)

dT (S1XkS
T
1 , S1YkS

T
1 ) 6 dT (Xk, Yk)

(18)

The invariant join operator is Cn-lipschitz, hence using Equation (17) and (18):

dT
(
s(Xk)

1−ε, s(Yk)
1−ε) 6 Cn(1− ε)dT (Xk, Yk) .

Finally, using Lemma A.5 in the Appendix, we get

dT (Xk+1, Yk+1)

dT (Xk, Yk)
6 2Cn(1− ε) < 1 . (19)

Remark 5.2. The limit X∞ can be approximated with an accuracy η in p∗ :=
dlog(η/dT (X0, X∞))/ log(2CNn (1 − ε))e iterations, leading to O(n3Np∗) arithmetic op-
erations.

6. BENCHMARKS
We now experiment the methods that we have introduced, and we compare them with
alternative techniques based on LMI. The experiments are implemented in MATLAB,
running on one core of an 2.2GHz Intel Core i7 with 8Gb RAM.

We compare in Figure 6a the execution time of the two possible implementations of
the invariant join given in Section 4: (i) the original algebraic definition (6), depicted
in green, (ii) the implementation based on the LMI formulation (9), plotted in red. The
comparison is made on random matrices of dimension up to 25. We first observe that
at any dimension, the algebraic definition provided a speed-up by a factor of order
103–104. Moreover, we note that asymptotically, the time to solve the LMI increases
as the time to solve the algebraic equation squared (beware that the time is given in
logarithmic scale).

We next show in Figure 6b the average time to find an invariant using LMIs (in
red), the additive nonlinear power algorithm (in blue) and the multiplicative power
algorithm (in green). These results were obtained on randomly generated programs
of the form depicted in Figure 7, where S0 and S1 are invertible matrices. For the
benchmarks, the power algorithms are always initialized at In and the LMI approach
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while (rand_bool) {
switch (rand_bool) {

case 0:
x <- S0x;

case 1:
x <- S1x;

}
}

Fig. 7: Structure of programs used in the benchmarks

for finding an invariant is done by testing the feasibility of the following LMI: X < S0XS
T
0

X < S1XS
T
1

X � 0
. (20)

Such a feasible element X is an invariant for the programs described above. We ob-
serve that the power type algorithms bring a significant speed-up over the LMI tech-
nique.

Furthermore, we compare in Figure 6c the execution time of the power algorithms
with the resolution of an LMI on a set of high-dimensional linear systems without any
switch. The linear systems correspond to parallel simulations of damped oscillators
ẍi + ciẋi + kixi = 0, i.e. given by S0 =

(
In hIn
−hK In−hC

)
, where h = 0.05, and C,K ∈

Rn×n are diagonal matrices, respectively with positive diagonal elements ci and ki.
Unlike Figure 6b, the additive power algorithm seems to be faster: here, there is no
invariant join computation, hence the cost of the matrix power in the multiplicative
algorithm becomes visible. This example highlights another scalability aspect of the
power algorithms: while the semidefinite program approach runs out of memory for
systems of dimension 140 and beyond, the computation of an invariant through the
power-methods is successful and still runs in less than 2s even when there are 200
variables. Note that when there is no switch, the present power algorithm essentially
reduces to the classical power algorithm applied to the linear operator X 7→ SXST .

In Table I, we compare our method with an LMI-based approach on a specific set
of instances. On top of providing the execution time of the analyses, we also provide
the relative stability margin of the invariants that we obtain. Given an invariant X,
the latter quantity is defined as λmin

(
X−s(X)

)
/λmax(X), where λmin(M) and λmax(M)

respectively denote the smallest and largest eigenvalues of the matrix M . This quan-
tity is nonnegative and well defined as an invariant X satisfies X � 0 and X < s(X).
A large relative margin ensures that the invariant is stable with respect to rounding
errors. Except in the last example, the invariants that we obtain using the two ap-
proaches are not comparable. However, we give an estimate of the precision of each
invariant by using its largest eigenvalue once it has been rescaled to contain the iden-
tity matrix, or, in terms of ellipsoids, the unit ball: a size of 1 means that the invariant
is very close to the unit ball, while greater sizes mean that the ellipsoid spans far from
the unit ball in some directions.

The switched oscillator refers to the example of Figure 1b. We also consider another
switched linear system, already studied in [Shaker and How 2010], characterized by
the matrices

S0 =
(−0.06515 −0.4744 0.3041
−0.4744 0.4872 0.3732
0.3041 0.3732 −0.1271

)
S1 =

(
0.04419 0.3155 −0.04247
0.1451 −0.04931 −0.2805
0.2833 −0.01418 0.1554

)
.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A scalable algebraic method to infer quadratic invariants of switched systems A:17

Table I: Benchmarks on specific examples

Example Switched oscillator Switched system Symplectic operator
ε 0.05 0.1 0.8 0.1

Time
(ms)

LMI 160 190 190 100

add 5 6 3 1

mult 80 15 14 3

Stability
margin

LMI 4.10−3 0.36 0.36 6 5.10−3

add 4.10−4 0.07 0.36 6 5.10−3

mult 9.10−3 0.02 0.36 6 5.10−3

Invariant
size

LMI 1.52 1.56 1.56 1

add 1.91 23.37 2.19 1

mult 2.48 9.78 1.50 1

This system allows us to show the importance of the parameter ε by its action on
the final quality of the invariant. Indeed, if the power algorithms use ε = 0.1, then
the quality of the invariants is quite bad relative to the one computed by the LMI. In
contrast, if they use ε = 0.8, then, with even less computation time, the quality of the
new invariants similar to the one computed by the LMI.

Finally, we apply the power algorithms to the simulation of the non-damped oscil-
lator ẍ + cẋ + x = 0 with c = 0. In this case, the energy of the oscillator is preserved.
However, the Euler scheme used in the example in Figure 1b is not energy-preserving
and even diverges when applied to this system. This is why we use a variant of a sym-
plectic integration scheme (xn+1, vn+1)

T = S(xn, vn)
T , where S =

(
1−τ2/2 τ3/4−τ

τ 1−τ2/2

)
and

τ = 0.001. This integration method preserves a quadratic energy function represented
by a positive definite matrix Q, i.e. (x, v)STQS(x, v)T = (x, v)Q(x, v)T . This means that
there is no stability margin. In spite of that, all three methods return an invariant,
scalar multiples of the same matrix

(
1 0
0 1−τ2/4

)
which is very close to the identity ma-

trix. It is remarkable that both power algorithms successfully compute that invariant,
as other algorithms may not even find a bounded invariant [Adjé et al. 2012].

7. CONCLUSION
We developed a static analysis method to synthesize ellipsoidal invariants, avoiding
the use of pre-defined templates. We showed by experiments that this method is scal-
able. For the moment, it is limited to centered ellipsoids. The latter, however, are al-
ready very useful invariants, as they have been extensively used in the context of
hybrid systems. In particular, our method allows one to find common quadratic Lya-
punov functions for switched linear systems, a problem which is receiving attention in
the control community.

Apart from dealing with the non centered case, our future work comprises the imple-
mentation of a guaranteed version of these computations. We have shown convergence
of our algorithms in the real numbers domain, and both experiments and theory show
robustness under numerical errors, up to some point. Still, we may rely on guaran-
teed methods as in e.g. [Rohn 2005] to deliver fully guaranteed computations in this
ellipsoidal domain.

We replaced here the invariance problem s(X) 4 X by an eigenvalue problem
s(X) = λX, where λ < 1 represents a stability margin. This may be related to a
perturbation technique already introduced in ASTREE to absorb rounding errors (Sec-
tion 7.1.4 of [Blanchet et al. 2003]). It would be interesting to embed both approaches
in a common framework. We also believe that the damping idea behind the power type
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algorithm of Section 5.1 could be useful to handle other domains (for instance combin-
ing ellipsoids and linear templates).

APPENDIX
We state and prove here some lemmas referred to in the body of the paper.

Recall that if A is a PSD matrix, EA is defined as the set {x ∈ Rn | xxT 4 A}.
LEMMA A.1. The image of the unit ball B(0, 1) under the linear map x 7→ Mx is

equal to the set EA, where A =MMT .

PROOF. We first remark that z belongs to the ball B(0, 1) if and only if zzT 4 I.
Indeed, by definition of the Löwner order, the latter property amounts to (zT y)2 6 yT y
for all y ∈ Rn. Now, assuming that zT z 6 1, we get by the Cauchy-Schwarz inequality:

(zT y)2 6 (zT z)(yT y) 6 yT y .

Reciprocally, if (zT y)2 6 yT y for all y ∈ Rn, then taking y = z provides (zT z)2 6 zT z. If
z 6= 0, we obtain that z ∈ B(0, 1), and this is still true if z = 0. This proves the expected
equivalence.

Now, let E be the ellipsoid given by the image of B(0, 1) under the map x 7→ Mx. Let
x ∈ E , and z ∈ B(0, 1) satisfying x =Mz. As zzT 4 I, we have:

xxT =M(zzT )MT 4MMT = A .

This shows E ⊆ EA. Reciprocally, if x ∈ EA, it can be shown than x belongs to the
range of A, meaning that there exists y such that x = Ay, as the range of the matrix
M is equal to the range of the matrix A. We introduce z := MT y, so that x = Mz.
Since xxT 4 A, we know that (yTx)2 6 yTAy = yTx, hence yTx 6 1. Now observe that
yTx = yTMMT y = zT z. We deduce that z ∈ B(0, 1).

LEMMA A.2. The operator t is well defined.

PROOF. Let X,Y such that A = XXT = Y Y T . A classical argument shows that
there is an orthogonal matrix U such that X = Y U , thus:

X
[
In tm (X−1BX−T )

]
XT = Y U

[
In tm UTY −1BY −TU

]
UTY T

Recall that tm is invariant with respect to orthogonal transformations [Burgeth et al.
2007]:

In tm UTY −1BY −TU = UT
[
In tm Y −1BY −T

]
U

which concludes the proof.

LEMMA A.3. Let A be a positive definite matrix and B a positive semidefinite ma-
trix. There exist P ∈ GLn(R) and D a diagonal matrix with non-negative entries such
that A = PPT and B = PDPT .

PROOF. If A is invertible, then A1/2 is also invertible. If we diagonalize
A−1/2BA−1/2 = UDUT , let P = A1/2U and we have A = PPT and B = PDPT .

LEMMA A.4. Given a nonzero matrix S ∈ Rn×n and two positive definite matrices
X,Y ,

dT (SXS
T , SY ST ) 6 dT (X,Y ) .

PROOF. By definition of Thompson’s metric,

dT (X,Y ) = inf{logα > 0 | α−1X 4 Y 4 αX} .
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Using the ordering compatibility (8), an α satisfying α−1X 4 Y 4 αX also satisfies
α−1SXST 4 SY ST 4 αSXST , thus dT (SXST , SY ST ) 6 dT (X,Y ).

LEMMA A.5. Given an order preserving linear form ψ that does not vanish on posi-
tive definite matrices and positive matrices X,Y ,

dT

[
X

ψ(X)
,
Y

ψ(Y )

]
6 2dT (X,Y )

PROOF. By symmetry, we assume that ψ(Y ) > ψ(X). Thus, α−1X/ψ(X) 4 Y/ψ(Y ) 4
αX/ψ(X) is equivalent to β−1X 4 Y 4 βX with β = αψ(Y )/ψ(X). Taking the infimum
for β of this expression, we have

dT

[
X

ψ(X)
,
Y

ψ(Y )

]
= dT (X,Y ) + log

ψ(Y )

ψ(X)

As ψ is order preserving, we also have α−1ψ(X) 6 ψ(Y ) 6 αψ(X) and thus, taking the
infimum over α: log

[
ψ(Y )/ψ(X)

]
6 dT (X,Y ).
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Analyzer for Large Safety-critical Software. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI ’03). ACM, New York, NY, USA, 196–207.
DOI:http://dx.doi.org/10.1145/781131.781153

M. S. Branicky. 1998. Multiple Lyapunov Functions and Other Analysis Tools for switched and hybrid sys-
tems. In IEEE TAC, Vol. 43.

B. Burgeth, A. Bruhn, N. Papenberg, M. Welk, and J. Weickert. 2007. Mathematical morphology for matrix
fields induced by the Loewner ordering in higher dimensions. Signal Processing 87 (2007), 277–290.

P. Cousot. 2005. Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Re-
laxation and Semidefinite Programming.. In Proceedings of VMCAI (LNCS), Vol. 3385. Springer.

P. Cousot and R. Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fixpoints. In Proceedings of POPL’77. ACM, 238–252.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. 2005. The ASTREÉ
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