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Abstract. We consider the problem of reasoning about the probability of as-
sertion violations in straight-line, nonlinear computations involving uncertain
quantities modeled as random variables. Such computations are quite common in
many areas such as cyber-physical systems and numerical computation. Our ap-
proach extends probabilistic affine forms, an interval-based calculus for precisely
tracking how the distribution of a given program variable depends on uncertain
inputs modeled as noise symbols. We extend probabilistic affine forms using the
precise tracking of dependencies between noise symbols combined with the ex-
pectations and higher order moments of the noise symbols. Next, we show how
to prove bounds on the probabilities that program variables take on specific val-
ues by using concentration of measure inequalities. Thus, we enable a new ap-
proach to this problem that explicitly avoids subdividing the domain of inputs, as
is commonly done in the related work. We illustrate the approach in this paper on
a variety of challenging benchmark examples, and thus study its applicability to
uncertainty propagation.

1 Introduction

We consider the problem of propagating uncertainty through computation that gener-
ates random numbers with known distributions on-the-fly, and computes a variety of
arithmetic operations on these numbers. Such computations are common in a wide va-
riety of applications including systems biology, robotics, control theory and randomized
algorithms. Reasoning about uncertainties involves answering queries about the proba-
bilities of assertions over the program variables, expectations of expressions, and more
generally, characterizing the possible probability distributions of program expressions,
at the output. Often, the random number generators draw values from simple distribu-
tions such as uniform random, gaussian or exponential. However, as a result of nonlinear
operations, the resulting distributions can be quite complex.

In this work, we restrict our attention to straight line computations involving ran-
dom variables. In other words, the programs do not branch on the values of the random
variables involved. Nevertheless, such computations are surprisingly common in many
applications arising from controls, robotics and scientific computation that can gener-
ate thousands of random variables. Currently, these applications are beyond many of



the existing approaches for reasoning about probabilistic programs. Our approach com-
bines the framework of probabilistic affine forms introduced by Bouissou et al. [7] to
represent program variables in terms of interval linear expressions involving uncertain
noise symbols, and concentration of measure inequalities in probability theory [13] to
answer queries. This approach has two main advantages: (a) probabilistic affine forms
can be used to rapidly approximate several nonlinear arithmetic operations including
trigonometric operations, and (b) the application of concentration of measure inequali-
ties yields valid probability bounds without the need to perform expensive subdivisions
of the set of support. In fact, in situations involving more than a few tens of noise sym-
bols, such a subdivision is prohibitively expensive.

The contributions of this paper include (a) we extend probabilistic affine forms with
precise tracking of the bounds on the expectations and higher-order moments of these
forms, (b) we propose the use of concentration of measure inequalities to reason about
the probabilities of queries over affine forms and (c) we demonstrate our approach on
many challenging examples involving nonlinear arithmetic operations. Wherever pos-
sible, we also compare our approach with the previous use of probabilistic affine forms
without concentration of measure inequalities [7]. The experimental evaluation in this
paper allows us to draw two main conclusions. (A) Probabilistic affine forms are seen to
be quite efficient even for nonlinear trigonometric and rational functions over random
variables. However, this is at the cost of information lost due to linear approximation
of nonlinear computations. (B) Concentration of measure inequalities can prove bounds
on the probabilities of rare events for large affine forms, quite efficiently. Often, such
bounds seem beyond the reach of related techniques. On the flip side, the bounds may
sometimes be too conservative due to the abstraction.

Related work

Many approaches have focused on the problem of reasoning about uncertainties as they
propagate through computation. These include approaches from interval arithmetic,
polynomial chaos approximations, symbolic verification, and statistical approaches.
Interval Arithmetic and Imprecise Probabilities: Imprecise probability represen-
tations describe sets of probability distributions. These are well-suited for describing
situations where some values, or events are known non-deterministically (e.g. values
in an interval), whereas others are known probabilistically. Tools from this domain in-
clude P-boxes [17] and Dempster-Shafer structures [33]. These have been used to prop-
agate both probabilistic and non-deterministic information in numerical simulation for
instance, see also [8,37,38,30,18,21]. Arithmetic rules for P-boxes have been studied
[39] and implemented in toolboxes such as DSI, INTLAB, and RiskCalc [3,31,16]. Our
work builds on probabilistic affine forms proposed by Bouissou et al., wherein a variety
of operators over these forms including meet, join and widening operators are presented
[7,2].

However, these approaches rely on an explicit, finite representation of probability
bounds that requires us to decompose the joint domain of distributions of these ran-
dom variables. Such a decomposition rapidly becomes intractable beyond a few tens
of random variables. We partly tackle this issue in our approach using concentration of
measure inequalities, whose application does not require a decomposition.



Polynomial chaos approximations express the output distributions as polynomials
over the input random variables [40]. However, these approximations also suffer from
the curse of dimensionality. Moreover, polynomial chaos approximations focus on esti-
mating moments, but not necessarily on providing probability bounds.

Formal Verification Approaches: Prism and related model checking tools have revo-
lutionized the problem of reasoning about finite state probabilistic programs [25]. This
has spurred interest in infinite state programs involving more complex random variables
with distributions such as gaussian and exponential.

Related approaches include probabilistic symbolic executions that extend traditional
symbolic execution over probabilistic programs and probabilistic abstract interpreta-
tion. Probabilistic symbolic execution has been explored for analyzing complex pro-
grams computing over random variables [19,32,4]. These approaches rely on expensive
volume approximation techniques either off the shelf [12], or using domain decompo-
sition [32]. Barring a few exceptions [4], they are restricted to programs with linear
assignments and conditionals. However, recent work by Chistikov et al. has demon-
strated a randomized approximation to volume estimation that holds the promise of
scaling to larger systems involving thousands of random variables [10]. However, that
approach is currently restricted to linear arithmetic SMT formulas. The ProbReach tool
by Shmarov et al. also provides precise probability bounds for nonlinear continuous-
time systems, building on top of the dReach tool [35]. While capable of precise reason-
ing for complex nonlinear systems, it relies on domain decomposition. In particular, it
is currently restricted to systems with uncertainties in initial parameters as opposed to
stochastic systems that are driven by noisy inputs. Similar ideas using Taylor models
have been investigated by Enszer et al. [15]. Finally, the work of Abate et al. derives
discrete Markov chain abstractions to compute probability of reaching unsafe states in
general stochastic Markov processes [1]. The discretization also involves a subdivision
of the state space of these processes with a finer subdivision providing better results. In
contrast, our approach does not subdivide the state or random variables. However, our
approach depends intimately on obtaining good bounds for expectations and higher-
order moments for noise symbols.

Abstract domains for probabilistic programs have been investigated by Monniaux
[29] and Cousot and Monereau [11]. Whereas our approach focuses on finite compu-
tations, abstract interpretation typically excels in dealing with unbounded length com-
putations wherein approximations such as join (see also [2]) and widening provide the
ability to generalize. Previous work by Chakarov et al. also uses concentration of mea-
sure inequalities in this context to handle loops in probabilistic programs [9].

Statistical Approaches: Finally, statistical approaches use hypothesis testing to an-
swer queries on uncertainties [41,24]. The main advantage lies in the ability to handle
quite complex systems through simulations. However, the disadvantages often involve
rare events, wherein the number of simulations required to gain a given degree of sta-
tistical confidence is simply prohibitive. In such situations, techniques like importance
sampling have been applied to minimize the number of simulations [23]. However, sta-
tistical approaches provide guarantees that are fundamentally different from ours. Also,
with very few exceptions [26], they do not attempt to represent the output distribution
but simply answer queries by examining the evidence from simulations. As such, very



1 angles = [10, 60, 110, 160, 140, ...
2 100, 60, 20, 10, 0]
3 x := TruncGaussian(0,0.05,-0.5,0.5)
4 y := TruncGaussian(0, 0.1,-0.5,0.5)
5 for reps in range(0,100):
6 #iterate through angles
7 for theta in angles:
8 # Distance travelled variation
9 d = Uniform(0.98,1.02)

10 # Steering angle variation
11 t = deg2rad(theta) * (1 + ...
12 TruncGaussian(0,0.01,-0.05,0.05))
13 # Move distance d with angle t
14 x = x + d * cos(t)
15 y = y + d * sin(t)
16 #Probability that we went too far?
17 assert(x >= 272)

Fig. 1. Left: A probabilistic program capturing the final position of 2D robotic end effector.
Right: Scatter plot showing the final (x, y) values.

little work has been undertaken to relate the two types of guarantees. A related approach
by Bernholt et al. [5], introduces an explicit uncertainty data type to reason about un-
certainty using Bayesian hypothesis testing. Therein, the main idea is to use Bayes
networks to represent the influence of random variables over program variables and al-
low hypothesis testing techniques to enable programmers to deal with this uncertainty
in making decisions.

2 Motivating Example

Figure 1 shows an example probabilistic program that models the (x, y) position of
a simple 2D robotic end effector that starts close to the origin and whose series of
motions is specified by the list angles. The initial position is uncertain with a trun-
cated normal distribution centered at the origin and with given variance as shown in
Lines 3, 4. At each iteration, the effector moves from its current position (x, y) to
x + dj cos(θj), y + dj sin(θi), wherein dj is distributed as a uniform random number
in the interval [0.95, 1.05] (Line 9, modeling the distance 1.0 with a 5% uniform error).
Likewise, θi is given by multiplying angles(i) with a truncated Gaussian random
variable centered around 1 with variance 0.01 in the interval [0.95, 1.05] (Line 12). The
position update is shown in lines 14 and 15. We are interested in the probability that an
assertion violation is triggered in line 17.

A scatter plot (Fig. 1) of the values of (x, y) at the end of the computation are shown.
As noted, 105 simulations do not produce any violations of the property x ≥ 272. In
fact, the largest value of x seen in our simulations is around 271. Therefore, we may
rightfully conclude that it is “quite rare” to reach x ≥ 272. On the other hand, using
nondeterministic semantics for the random choices concludes a potentially reachable
range of x ∈ [210.5, 324.3]. We therefore, seek to know bounds on the probability that
the assertion is satisfied.

Affine Forms At Output: Our approach uses symbolic execution to track the value of
x at the output as a function of random variables called noise symbols. The affine form



for x is (partially) shown below:

x :

(
[268.78, 268.82] + [1, 1] ∗ y0 + [0.984, 0.985] ∗ y2 + [0.030, 0.031] ∗ y3 + [−1,−1] ∗ y4 + [0.030, 0.031] ∗ y5

+[−1,−1] ∗ y6 + [0.49, 0.51] ∗ y9 + [0.90, 0.91] ∗ y10 + [−1,−1] ∗ y11 + [0.90, 0.91] ∗ y12+
· · ·

[0.03, 0.031] ∗ y6892 + [−1,−1] ∗ y6893 + [1, 1] ∗ y6896 + [−1,−1] ∗ y6898 + [−1,−1] ∗ y6899

)
.

Here, each yi is a noise symbol with associated information concerning it’s range, de-
pendencies with other noise symbol, expectations and higher order moments (e.g., the
second moment). For instance, y0 corresponds to the truncated Gaussian random vari-
able in line 3. Using this affine form, we conclude at the end of computation that the
value of x has an expectation in the range [265.9, 268.9] and variance in the range
[0.17, 0.23]. This matches with the empirical evidence gathered from 105 simulations.
The time required for the affine form was ∼ 15 seconds and comparable to 105 simula-
tions in Matlab (∼ 20 seconds).

Reasoning with Affine Forms: Finally, we utilize a concentration of measure inequal-
ity to obtain the guarantee P(x ≥ 272) ≤ 6.2 × 10−7 [13]. We note that such bounds
on rare events are often valuable, and hard to establish.

3 Probabilistic Affine Forms

In this section, we introduce probabilistic affine forms involving random variables known
as noise symbols, and discuss the approximation of straight line computations using
these affine forms.

3.1 Random Variables, Expectations, Moments and Independence

Let R represent the real numbers and R = R∪{∞,−∞}. Univariate random variables
over reals are defined by a cumulative density function (CDF) F : R 7→ [0, 1], wherein
F (−∞) = 0, F (∞) = 1 and F is a non-decreasing, right continuous function with left
limits. The value of F (t) represents the probability P(X ≤ t) for any t ∈ R. The CDF
naturally extends to multivariate random variables as well [14].

The expectation of a function g(X) for random variable X , denoted by E(g(X))
is defined as the integral: E(g(X)) :

∫
D g(x)dF (x). Here D, the domain of inte-

gration, ranges over the set of support for the random variable X . The expectation
exists if the integral is well-defined and yields a finite value. An important property
of expectations is their linearity. Whenever the expectations exist, and are finite, we
have E(

∑k
i=1 aigi(x)) =

∑k
i=1 aiE(gi(x)), for constants a1, . . . , ak and functions

g1, . . . , gk. Likewise, the kth moment for k ≥ 1 for a random variable X is defined as
E(Xk). Its variance is defined as VAR(X) : E((X −E(X))2).

A pair of random variables (X1, X2) are independent if and only if their CDF
F (x1, x2) can be decomposed as F (x1, x2) : F1(x1)F2(x2). Otherwise, the random
variables are called correlated. More generally, (X1, . . . , Xn) are pairwise independent
iff F (x1, . . . , xn) : F1(x1) · · ·Fn(xn). If X1, X2 are independent then it follows that
E(g(X1)h(X2)) = E(g(X1))E(h(X2)).

We assume that random variables that we encounter in this paper are well-behaved
in the following sense: (a) Each random variable has a bounded set of support. However,



we present a simple trick to handle distributions such as gaussians that have unbounded
sets of support. (b) Expectations and higher moments of the random variables are finite
and computable. We recall useful properties of expectations:

Lemma 1. LetX be a (univariate) random variable whose set of support is the interval
I ⊆ R. It follows that E(X) ∈ I .

Let X1, X2 be two random variables. The following inequality holds:

−
√
E(X2

1 )E(X
2
2 ) ≤ E(X1X2) ≤

√
E(X2

1 )E(X
2
2 ) .

The inequality above follows from the Cauchy-Schwarz inequality.

3.2 Environments and Affine Forms

Before introducing affine forms, we first define noise symbols and the data associated
with these symbols. Let y : (y1, . . . , yn) represent a set of random variables called
noise symbols. Each noise symbol yj is associated with an interval of support Ij , and a
vector of moment intervals I(yj) = (I

(1)
j , . . . , I

(k)
j ), wherein E(ylj) ∈ I

(l)
j .

Note that in addition to storing estimates of E(yli), we may optionally store moments
of the form E(yiyj) for pairs yi, yj ∈ y for i 6= j. This can also extend to higher order
moments of the form E(yl11 · · · ylnn ) for monomials. In this presentation, we restrict
ourselves to (marginal) expectations of single random variables of the form E(ylj), using
Lemma 1 to conservatively estimate missing moment information.

Finally, our approach produced new noise symbols yj that are functions of other
noise symbols yj : f(yj1 , . . . , yjm). While we abstract away the function f , we re-
member these functional dependencies as a directed (functional) dependence graph G
with vertices V : {y1, . . . , yn} and edges E ⊆ V × V wherein the edge (yi, yj) sig-
nifies that the random variable yi : f(· · · , yj , · · · ) for some function f . Clearly, if
(yi, yj) ∈ E and (yj , yk) ∈ E we will also require (yi, yk) ∈ E. The edge relation E is
thus a transitive relation over y. For simplicity, we also add all self-loops (yi, yi) ∈ E.

Definition 1 (Environment). An environment E : 〈y, I,M, G〉 is a collection of noise
symbols y : (y1, . . . , yn), the sets of support for each noise symbol I : (I1, . . . , In),
the moment intervals for each noise symbolM : (I(m1), . . . , I(mn)) and the directed
functional dependence graph G.

Based on the functional dependence graph, we define the notion of independence
between random variables.

Definition 2 (Probabilistic Dependence). Noise symbols yi and yj are probabilisti-
cally dependent random variables if there exists yk such that (yi, yk) and (yj , yk) be-
long to the graph G. Otherwise, they represent independent random variables.

The probabilistic dependence graph Ĝ is an undirected graph where an undirected
edge (yi, yj) exists in Ĝ iff there exists yk such that (yi, yk), (yj , yk) ∈ E of G 1.

1 The functional dependence graph is akin to the points-to graph in programs, whereas the prob-
abilistic dependence graph is analogous to the alias graph.



An affine form is an interval-valued linear expression over noise symbols [7].

Definition 3 (Affine Form). An affine form f(y) is a linear expression f(y) : a0 +∑n
j=1 ajyj , with real 2 coefficients aj .

Example 1 (Environments and Affine Forms). Let us consider an environment E with
the noise symbols y1, y2, y3. Here, yj is a random variable over the set of support Ij :
[−j, j], for j = 1, 2, 3, respectively. The moment vectors containing information up to
the 4th moments are provided below:

E(yj) E(y2j ) E(y3j ) E(y4j )

I(m1) : ([0, 0], [ 23 ,
2
3 ], [0, 0], [ 25 ,

2
5 ]) ← Moments for y1

I(m2) : ([0, 0.1], [1, 1.1], [−0.1, 0.1], [0.1, 0.2])← Moments for y2
I(m3) : ([−1, 0.2], [0.1, 1.2], [−0.5, 0.5], [1.1, 2.3])← Moments for y3

The graph with dependencies is shown below (without the self-loops):

y2 y1 y3

As a result, the variables y1, y3 are independent. But y1 and y2 are dependent. The
expression f1 : [−1, 2] + [3, 3.1]y1 + [1.9, 2.3]y2 + [−0.3,−0.1]y3 is an affine form
over y1, . . . , y3 in the environment E .

Semantics: We briefly sketch the semantics of environments and affine forms.
An environment E with noise symbols y : (y1, . . . , yn) corresponds to a set of pos-

sible random vectors Y : (Y1, . . . , Yn) that conform to the following constraints: (a)
(Y1, . . . , Yn) must range over the set of support I1× · · · × In. They cannot take on val-
ues outside this set. (b) The moment vectors lie in the appropriate ranges defined by E :
(E(Yj), . . . ,E(Y kj )) ∈ I(mj). (c) If noise symbols yi, yj are independent according to
the dependence graph G (Def. 2), the corresponding random variables Yi, Yj are mutu-
ally independent. Otherwise, they are “arbitrarily” correlated while respecting the range
and moment constraints above. Semantically, an affine form f(y) : a0+

∑n
i=1 aiyi rep-

resents a set of linear expressions Jf(y)K over y:

Jf(y)K :=

{
r0 +

n∑
i=1

riYi | ri ∈ ai, (Y1, . . . , Yn) ∈ JEK

}
.

We now present the basic operations over affine forms including sums, differences,
products and continuous (and k-times differentiable) functions over affine forms.

Sums, Differences and Products: Let f1, f2 be affine forms in an environment E
given by f1 : aty + a0 and f2 : bty + b0. We define the sum f1 ⊕ f2 to be the affine
form (a+ b)ty + (a0 + b0).

2 In the implementation, these coefficients will be safely over-approximated either by intervals
of floating-point numbers, or by floating-point coefficients but with additional noise terms
over-approximating the error.



Likewise, let λ be a real number. The affine form λf1 is given by (λa)ty + λa0.
We now define the product of two forms f1 ⊗ f2.

f1 ⊗ f2 : a0b0 + a0f2 + b0f1 + approx(
n∑
i=1

n∑
j=1

aiajyiyj) .

The product operation separates the affine and linear parts of this summation from the
nonlinear part that must be approximated to preserve the affine form. To this end, we
define a function approx that replaces the nonlinear terms by a collection of fresh ran-
dom variables. In particular, we add a fresh random variable yij to approximate the
product term yiyj .
Dependencies: We add the dependency edges (yij , yi) and (yij , yj) to the graph G to
denote the functional dependence of the fresh noise symbol on yi and yj .
Set of Support: The set of support for yij is the interval product of the set of supports
for yi, yj , respectively. In particular if i = j, we compute the set of support for y2i . Let
Iij be the interval representing the set of support for yij .
Moments: The moments of yij are derived from those of yi and yj , as follows.
Case-1 (i = j). If i = j, we have that the E(ypij) = E(y2pi ). Therefore, the even
moments of yi are taken to provide the moments for yij . However, since we assume that
only the first k moments of yi are available, we have that the first k2 moments of yij are
available, in general. To fill in the remaining moments, we approximate using intervals
as follows: E(yrij) ∈ Irij . While this approximation is often crude, this is a tradeoff
induced by our inability to store infinitely many moments for the noise symbols.
Case-2 (i 6= j). If i 6= j, we have that E(ypij) = E(ypi y

p
j ). If yi, yj form an inde-

pendent pair, this reduces back to E(ypi )E(y
p
j ). Thus, in this instance, we can fill in

all k moments directly as entry-wise products of the moments of yi and yj . Other-
wise, they are dependent, so we use the Cauchy-Schwarz inequality (see Lemma 1):

−
√
E(y2pi )E(y2pj ) ≤ E(ypij) ≤

√
E(y2pi )E(y2pj ), and the interval approximation

E(ypij) ∈ I
p
ij .

Continuous Functions: Let g(y) be a continuous and (m + 1)-times differentiable
function of y. The Taylor expansion of g around a point y0 allows us to approximate g
as a polynomial.

g(y) = g(y0) +Dg(y0)(y − y0) +
∑

2≤|α|1≤m

Dαg(y0)(y − y0)
α

α!
+Rm+1

g ,

wherein Dg denotes the vector of partial derivatives ( ∂g∂yj )j=1,...,n, α : (d1, . . . , dn)

ranges over all vector of indices where di ∈ N is a natural number, |α|1 :
∑n
i=1 di,

α! = d1!d2! · · · dn!, Dαg denotes the partial derivative ∂d1g···∂dng

∂y
d1
1 ···∂y

dn
n

and (y − y0)
α :∏n

j=1(yj − y0,j)dj . Finally, Rm+1
g is an interval valued Lagrange remainder. Since we

have discussed sums and products of affine forms, the Taylor approximation may be
evaluated entirely using affine forms.

The remainder is handled using a fresh noise symbol y(m+1)
g . Its set of support is

Rm+1
g and moments are estimated based on this interval. The newly added noise symbol



is functionally dependent on all variables y that appear in g(y). These dependencies are
added to the graph G.

The Taylor expansion allows us to approximate continuous functions including ra-
tional functions and trigonometric functions of these random variables.

Example 2. We illustrate this by computing the sine of an affine form. Let y1 be a
noise symbol over the interval [−0.2, 0.2] with the moments (0, [0.004, 0.006], 0, [6 ×
10−5, 8 × 10−5], 0). We consider the form sin(y1). Using a Taylor series expansion
around y1 = 0, we obtain

sin(y1) = y1 −
1

3!
y31 + [−1.3× 10−5, 1.4× 10−5] .

We introduce a fresh variable y2 to replace y31 and a fresh variable y3 for the re-
mainder interval I3 : [−1.3× 10−5, 1.4× 10−5].

Dependence: We add the edges (y2, y1) and (y3, y1) to G.
Set of Support: I2 : [−0.008, 0.008] and I3 : [−1.3× 10−5, 1.4× 10−5].
Moments: E(y2) = E(y31) = 0. Further moments are computed using interval arith-

metic. The moment vector I(m2) is (0, [0, 64×10−6], [−512×10−9, 512×10−9], . . .).
For y3, the moment vector I(m3) : (I3, square(I3), cube(I3), . . .).

The resulting affine form for sin(y1) is [1, 1]y1 − [0.16, 0.17]y2 + [1, 1]y3.

3.3 Approximating Computations using Affine Forms

Having developed a calculus of affine forms, we may directly apply it to propagate
uncertainties across straight-line computations. Let X = {x1, . . . , xp} be a set of pro-
gram variables collectively written as x with an initial value x0. Our semantics consist
of a tuple (E , η) wherein E is an environment and η : X → AffineForms(E) maps each
variable xi ∈ X to an affine form over E .

The initial environment E0 has no noise symbols and an empty dependence graph.
The initial mapping η0 associates each xi with the constant xi,0. The basic operations
are of two types: (a) assignment to a fresh random variable, and (b) assignment to a
function over existing variables.

Random Number Generation: This operation is of the form xi := rand(I,m),
wherein I denotes the set of support interval for the new random variable, and m de-
notes a vector of moments for the generated random variable. The operational rule is

(E , η) xi:=rand(I,m)−−−−−−−−−→ (E ′, η′), wherein the environment E ′ extends E by a fresh random
variable y whose set of support is given by I and moments by m. The dependence graph
is extended by adding a new node corresponding to y but without any new edges since
freshly generated random numbers are assumed independent. However, if the newly
generated random variable is dependent on some previous symbols, such a dependency
is also easily captured in our framework.

Assignment: The assignment operation is of the form xi := g(x), assigning xi to a
continuous and j + 1-times differentiable function g(x). The operational rule has the



form (E , η) xi:=g(x)−−−−−−→ (E ′, η′). First, we compute an affine form fg that approximates
the function g(η(x1), . . . , η(xn)). Let Yg denote a set of fresh symbols generated by
this approximation with new dependence edges Eg . The environment E ′ extends E with
the addition of the new symbols Yg and and new dependence edges Eg . The new map
is η′ : η[xi 7→ fg].

Let C be a computation defined by a sequence of random number generation and
assignment operations. Starting from the initial environment (E0, η0) and applying the
rules above, we obtain a final environment (E , η). However, our main goal is to answer
queries such as P(xj ∈ Ij) that seek the probability that a particular variable xj belongs
to an interval Ij . This directly translates to a query involving the affine form η(xj)
which may involve a prohibitively large number of noise symbols that may be correlated
according to the dependence graph G.

4 Concentration of Measure Inequalities

We present the use of concentration of measure inequalities to bound probabilities of
the form P(f ≥ c) and P(f ≤ c). Let f be an affine form in an environment E .

There are numerous inequalities in probability theory that provide bounds on the
probability that a particular function of random variables deviates “far” from its ex-
pected value [13]. Let X1, . . . , Xn be a sequence of random variables that may be
pairwise independent or depend on each other according to a probabilistic dependence
graph Ĝ. Consider their sumX :

∑n
j=1Xj and its expected valueE(X) :

∑n
j=1E(Xj).

Under numerous carefully stated conditions, the sum “concentrates” around its aver-
age value so that the “tail” probabilities: the right tail probability P(X − E(X) ≥ t)
of the sum being t > 0 to the right of the expectation, or the left “tail” probability
P(X − E(X) ≤ −t) are bounded from above and rapidly approach zero as t → ∞.
We note that concentration of measure inequalities provide valid bounds on large de-
viations. In other words, they are more powerful than asymptotic convergence results,
although they are typically used to prove convergence. A large category of concentra-
tion of measure inequalities conform to the sub-gaussian type below.

Definition 4 (Sub-Gaussian Concentration of Measure). Let X1, . . . , Xn be a set of
random variables wherein each Xi has a compact set of support in the interval [ai, bi].
A sub-gaussian type concentration of measure inequality is specified by two parts: (a)
a condition Ψ on the dependence structure between the random variables Xi, and (b) a
constant c > 0. The inequality itself has the following form for any t ≥ 0,

P(X −E(X) ≥ t) ≤ exp

(
−t2

c
∑n
j=1(bi − ai)2

)
.

The expression for the left tail probability is derived identically.

In general, many forms of these inequalities exist under various assumptions. We
focus on two important inequalities that will be used here.
Chernoff-Hoeffding: The condition Ψ states that X1, . . . , Xn are independent. Alterna-
tively, the probabilistic dependence graph Ĝ does not have any edges. In this situation,
the inequality applies with a constant c = 1

2 .



Chromatic Number-Based: Janson generalizes the Chernoff-Hoeffding inequality using
the chromatic number of the graph Ĝ [22]. Let χ(Ĝ) be an upper bound on the minimum
number of colors required to color Ĝ (i.e, it’s chromatic number). The condition Ψ
states that the random variables depend according to Ĝ. In this situation, the inequality
applies with a constant c = χ(Ĝ)

2 . For the independent case, χ(Ĝ) = 1 and thus,
Chernoff-Hoeffding bounds are generalized.

The sub-gaussian bounds depend on the range [ai, bi] of the individual random vari-
ables. Often, the variance σ2

i of each random variable is significantly smaller. In such
situations, the Bernstein inequality provides useful bounds.

Theorem 1 (Bernstein Inequality). LetX1, . . . , Xn be independent random variables
such that (a) there exists a constant M > 0 such that |Xi − E(Xi)| ≤ M for each
i ∈ [1, n], and (b) the variance of each Xi is σ2

i . For any t ≥ 0:

P(X −E(X) ≥ t) ≤ exp
(

−t2

2
∑n
i=1 σ

2
i +

2
3Mt

)
For the left tail probability, we may derive an identical bound.

We now illustrate how these inequalities can be used for the motivating example
from Section 2. Let E be an environment and f(y) : a0 +

∑n
i=1 aiyi be an affine form

involving noise symbols y.

Chromatic Number-Based Inequality: The application of Janson’s dependent ran-
dom variable inequality requires the following pieces of information: (a) An upper
bound on the chromatic number of the graph χ(Ĝ). While the precise chromatic num-
ber is often hard to compute, it is often easy to estimate upper bounds. For instance,
χ(Ĝ) ≤ 1 +∆ wherein ∆ is the maximum degree of any node in Ĝ. (b) We compute
the expectation IE : E(f(y)) by summing up the expectations of the individual terms.
(c) Next, for each term aiyi, we compute it’s set of support [ci, di] := aiIi wherein Ii
is the range of the noise symbol yi in E . Specifically, we calculate C :

∑n
i=1(di− ci)2.

Since the expectation IE is an interval, we apply the concentration of measure in-
equality using the upper bound of IE for right tail inequalities and the lower bound for
the left tail inequalities.

Example 3. Continuing the affine form in the 2D robotic effector model in Figure 1,
we compute the relevant constants to enable our application of the dependent random
variable inequality.

The chromatic number χ(Ĝ) ≤ 4. The sum C :
∑n
i=1(di − ci)2 was calculated

as 12.2642. The expectation lies in the range [265.9, 268.9]. Combining, we obtain the
concentration of measure inequalities: P(f ≥ 268.9 + t) ≤ exp

(
−t2
24.53

)
Similarly,

P(f ≤ 265.9− t) ≤ exp
(
−t2
24.53

)
.

f ≤ 220 f ≤ 235 f ≤ 250 f ≤ 260 f ≥ 275 f ≥ 285 f ≥ 295 f ≥ 310
4.2E − 35 1.2E − 13 5E−5 0.48 0.21 2.2E−7 7E−13 9.2E−31



Applying Chernoff-Hoeffding and Bernstein Inequalities: The Bernstein inequality
and Chernoff-Hoeffding bounds require independence of the random variables in the
summation. However, the noise symbols involved in f(y) may be dependent.

Suppose we compute the maximal strongly connected components (MSCC) of the
graph Ĝ. Note that symbols that belong to different MSCCs are mutually indepen-
dent. As a result, we decompose a given affine form f(y) into independent clusters
as f(y) : f1(y1) + · · · + fk(yk). Each cluster corresponds to an affine form fj(yj)

over noise symbols yj involved in the jth MSCC of Ĝ. Note that each fi itself will be
independent of fk for k 6= i. Thus, we may apply the Chernoff-Hoeffding bounds or
the Bernstein inequality by treating each fj(yj) as a summand. Let [`j , uj ] represent
the set of support for each cluster affine form fj(yj). To apply the Chernoff-Hoeffding
bounds, we compute C :

∑k
j=1(uj − `j)2.

To apply the Bernstein inequality, we collect the information on the variance σ2
j

of each fj and compute M as maxnj=1 (|uj −E(fj)|). The environment E tracks the
required information to compute σ2 :

∑n
j=1 σ

2
j and M , respectively. Since the variance

is estimated over an interval, when we apply the Bernstein inequality, we always use
the upper bound on σ2.

Example 4. We illustrate our ideas on the example from Fig. 1. For Chernoff-Hoeffding
bounds, the original form with nearly 6900 variables yields about 3000 clusters. The
value of C is 17.027. Combining, we obtain the concentration of measure inequali-
ties: P(f ≥ 268.9 + t) ≤ exp

(
−t2

8.5138

)
for the right tail and P(f ≤ 265.9 − t) ≤

exp
(
−t2

8.5138

)
for the left tail. This yields much improved bounds when compared to the

bounds in Example 3.

f ≤ 220 f ≤ 235 f ≤ 250 f ≤ 260 f ≥ 275 f ≥ 285 f ≥ 295 f ≥ 310
2.5E−108 2E−49 1.1E−13 0.016 0.21 4E−14 1E − 35 3E−87

Applying the Bernstein inequality, we note that σ2 ∈ [0.1699985951, 0.2292648934]
and M = max(|fi −E(fi)|) = 0.1035521711.

f ≤ 220 f ≤ 235 f ≤ 250 f ≤ 260 f ≥ 275 f ≥ 285 f ≥ 295
5E−253 9E−161 2.6E−71 4E−18 4.2E−19 1.8E−72 2E−223

In particular, we obtain the result in Section 2: P(X ≥ 272) ≤ 6.2E−7.

Finally, it is sometimes seen that the value of M in Bernstein inequality is large but
the value of σ2 lies inside a small range. In such a situation, Chebyshev inequalities are
easy to apply and prove tight bounds.

Theorem 2 (Chebyshev-Cantelli Inequality). For any random variable X , P(X −
E(X) ≥ kσ) ≤ 1

1+k2 . A similar inequality holds for the right tail, as well.

Handling Unbounded Random Variables: Finally, we mention a simple trick that
allows us to bound random variables with distributions such as the normal or the expo-
nential.



Suppose the truncated Gaussian distributions in lines 3, 4 and 12 of the program
in Fig. 1 are all replaced by normal random variables. The concentration of measure
inequalities no longer apply directly. However, for most distributions the probability of
a large deviation from the mean is easily computed. For instance, it is known that for a
normally distributed variable X with mean µ and standard deviation σ, P(|X − µ| ≥
5σ) ≤ 6 × 10−7. Therefore, we simply truncate the domain of each such random
variable to [µ−5σ, µ+5σ] and simply add 6K×10−7 to any probability upper bound,
wherein K is the number of times a Gaussian random variable is generated. Similar
bounds can be obtained for other common distribution types. Even if the distribution
is not known but its mean and variance are provided, a weaker Chebyshev inequality
bound can be derived: P(|X − µ| ≥ kσ) ≤ 1

k2 .

Example 5. If the random variable in line 12 of Fig. 1 were a normally distributed
variable with σ = 0.01, we note that 1500 such variables are generated during the
computation. The result from Example 4 is updated as P(X ≥ 272) ≤ 6.2 × 10−7 +
1500× 6× 10−7 ≤ 9.0062× 10−4.

5 Experiments

In this section, we report on an experimental evaluation of our ideas and a comparison
the p-box based implementation of Bouissou et al. [7], wherever possible.

Implementation: Our prototype analyzer is built as a data-type in C++ on top of the
boost interval arithmetic library with overloaded operators that make it easy to carry out
sequences of computations. Our implementation includes support for nonlinear trigono-
metric operators such as sine and cosine. It tracks the expectation and second moments
of noise symbols. Currently, we do not explicitly account for floating point/round off
errors. However, as future work, we will integrate our work inside the Fluctuat analysis
tool that has a sophisticated model of floating point errors [20]. The dependency G and
probabilistic dependency Ĝ graphs are maintained exactly as described in Section 3. All
concentration of measure inequalities presented in Section 4 have been implemented.

Table 1 reports on the results from our prototype on a collection of interesting ex-
amples taken from related work : FERSON [2], FILTER [2], TANK [2], CARTPOLE [36],
TUMOR [6], RMLSWHL [36], ANESTHESIA [28] as well as new examples for this
domain: DBLWELL, EULER, ARM2D, STEERING. We present for each example, the
number of instructions including the random variables involved. Note that for all but
one example (FERSON), this number ranges from many tens of random variables to
many thousands. We also report on the number of noise symbols involved in our affine
forms. Finally, the times to derive the affine form and analyze it using concentration of
measure inequalities (CMI) are reported. To evaluate the performance of various CMIs
at a single glance, we simply compare the probability bounds that each CMI provides
for the affine form taking a value past its upper or lower bound. This probability should
ideally be zero, but most CMIs will ideally report a small value close to 0. We note
that Bernstein inequality is by far the most successful, thanks to our careful tracking of
higher order moments as part of the affine form. The overestimation of chromatic num-
ber makes the Jansen inequality much less effective than Chernoff-Hoeffding bounds.



Table 1. Experimental results at a glance: †: indicates a nonlinear example, #INS: total number
of instructions, #RV: random variable generator calls, n: number of noise symbols, Taff : Time
(seconds) to generate affine form, Tcmi: Time (seconds) to perform concentration of measure
inequality, χ: Chromatic number of the probabilistic dependence graph Ĝ, #SCC: number of
strongly connected components, JAN.: Jansen 2004, C-H.: Chernoff-Hoeffding, BERN.: Bernstein
inequality, CHEB. Chebyshev inequality.

ID #INS #RV n Taff Tcmi χ #SCC END OF RANGE PROBABILITY

JAN. C-H. BERN. CHEB.
FERSON† 20 2 20 <0.1 <0.1 19 2 0.95 0.55 0.78 1
FILTER 182 32 32 <0.1 <0.1 1 32 0.2 0.2 0.1 0.1
TANK 78 52 52 <0.1 <0.1 1 52 5E-12 5E-12 5E-21 1E-4
CARTPOLE† 180 40 164 0.2 <0.1 92 71 0.94 0.30 0.09 2.5E-4
TUMOR † 400 100 200 2.7 0.1 200 1 0.94 0.65 0.31 0.05
DBLWELL† 400 100 200 < 0.1 < 0.1 99 102 0.95 0.63 0.43 0.34
EULER 3K 1K 1K 2.7 0.1 1 1K 1E-217 1E-217 3E-620 1E-8
ARM2D† 4K 2K 6.9K 5.8 9.5 5 3.1K 3E-44 3E-160 1.1E-309 1E-4
RMLSWHL † 6K 2K 3K 7.4 2.7 3 1K 0.32 0.07 0.02 0.03
STEERING† 11.3K 45 4.5K 3 22 2.9K 1.5K 0.993 0.599 0.224 0.016
ANESTHESIA 22.4K 5.6K 5.6K 438.2 12.2 1 5.6K 9E-19 9E-19 3E-26 0.006

However, for the STEERING and TUMOR examples, we find that CMIs do not yield
bounds close to zero, whereas we still obtain small bounds through Chebyshev inequal-
ity. We now highlight a few examples, briefly. A detailed description of each benchmark
is provided in the Appendix.

Comparison with p-Boxes: We directly compared our approach with the previous
work of Adjé et al. on three reported examples: FERSON, TANK and FILTER [2]. At this
stage, we could not handle any of the other examples using that prototype.

The FERSON example uses a large degree 5 polynomial p(θ1, θ2) over two random
variables θ1, θ2. In this example, Adjé et al. obtain a much smaller range of [1.12, 1.17]
for p due to the subdivisions of the domain of θ1, θ2. In contrast, our tool reports a range
of [1.05, 1.21]. Our approach produces a relatively narrow bound on the expectation of
p and is able to conclude that P(p ≤ 1.13) ≤ 0.5. However, they report a much more
precise bound of 0.05 for the same probability. This suggests that subdividing random
variables can indeed provide us more precision. In contrast, our running time is roughly
0.01 seconds while Bouissou et al. report a running time of nearly 100 seconds.

The TANK example considers the process of filling a tank using noisy tap and mea-
surement devices. In this example, Adjé et al. bound the probability that the tank does
not fill within 20 iterations as 0.63. In fact, our approach bounds the same probability by
0.5. Likewise, they incorrectly report that the tank will always fill within 26 iterations.
Our approach correctly proves a bound of at most 10−6 on the probability that the tank
is not full. A simple calculation also reveals that this probability is tiny but non-zero.

Finally, we compare the filter example wherein the affine form is obtained as a
linear combination of independent random variables. Bouissou et al. [7] analyze the
same example and report probability bounds for the assertion y ≤ −1 as P(y ≤ −1) ≤
0.16. Our approach on the other hand finds a bound of 0.5 for the same assertion. The



difference here is a pitfall of using concentration of measure inequalities which ignore
characteristics of the underlying distributions of the noise symbol. Our approach is quite
fast taking less than 0.01 seconds whereas depending on the number of subdivisions,
Bouissou et al. report between 1 second to 5 minutes.

We now consider models that could not be attempted by the P-Box implementation.

Anesthesia Model: The anesthesia model consists of a four chamber pharmacokinetic
model of the anesthetic fentanyl that is administered to a surgical patient using an infu-
sion pump [28]. This model is widely used as part of automated anesthesia delivery sys-
tems [34]. As part of this process, we model an erroneous infusion that results in vary-
ing amounts of anesthesia infused over time as truncated gaussian random noise. The
target state variable x4 measures the concentration of anesthesia in the blood plasma.
The goal is to check the probability that the infusion errors result either in too much
anesthesia x4 ≥ 300ng/mL potentially causing loss of breathing or too little anesthe-
sia x4 ≤ 150ng/mL causing consciousness during surgery. Our approach bounds the
probability P(x4 ≥ 300) ≤ 7× 10−13 and P(x4 ≤ 150) ≤ 10−23. These bounds guar-
antee that small infusion errors alone have a very small probability of causing safety
violations.

Tumor Model:We examine a stochastic model of tumor growth with immunization [6]:

xn+1 = xn + δ(axn − (b0 +
β

1 + x2
)x2 + xwn) ,

where xn denotes the fraction of tumor cells at time t = nδ. We use a = b0 = β = 1
and w as a truncated normal random variable with mean 0, variance σ2 = δ and range
[−10σ, 10σ]. We ask for the probability that x100 ≥ 0.6, and obtain a Chebyshev
inequality bound P(x100 ≥ 0.6) ≤ 0.405. Note that, the structure of the model leads to
a situation wherein all noise symbols in our final form end up depending on each other.

Rimless Wheel Model: The rimless wheel model, taken from Tedrake et al. [36],
models a wheel with spokes but no rims rolling down a slope. Such models are used as
human gait models in robotics. Details of the model are given in the appendix. As part
of this model, we wish to verify whether P (x1000 ≤ 0) ≤ 0.5. Our approach proves a
bound of 0.07 on this probability, verifying the property.

6 Conclusion and future work

Thus far, we have presented a tractable method for answering queries on probabilities
of assertions over program variables, using a combination of set-based methods (affine
forms), moment propagation and concentration of measure inequalities. We showed
that this method often yields precise results in a very (time and space) efficient manner,
especially when tracking rare events. However, we also documented failures of this
approach on some examples.

As part of the future work, we are considering extensions to programs with con-
ditional branches and the use of concentration of measure inequalities on higher order
moments. We are exploring possible improvements to our approach using the so-called
“moment problem” [27].
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