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Motivation: bounded-time reachable sets for uncertain dynamical systems
ż(t) = f (z), z(t0) ∈ [z0]

Computing reachable sets is central to program analysis, control theory
including discretization/roundoff errors, parameters and data uncertainty

Classically: compute guaranteed (over ou outer-approximated) enclosures

But: outer approximations provide safety proof but are conservative (“false alarms”)

Here: compute under or inner-approximated flowpipes = sets of values that are
guaranteed to be reached, for some value of the uncertain parameters

falsification of safety properties
when inconclusive, Hausdorff distance between inner and outer tubes gives precision
estimates
property verification: reach-avoid

, sweep-avoid; parameter synthesis,

0.2 0.4 0.6 0.8

1

2

[z0]
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In this talk: inner-approximated flowpipes for uncertain dynamical systems

Inner approximation of the range of f : Rn → Rp on a set [x ] using ([HSCC’14])

modal intervals and Kaucher arithmetic (f : Rn → R)

generalized mean value theorem: relies on outer-approximation of f and its Jacobian
on [x ]

Inner approximation of the solution of an uncertain dynamical system
ż(t) = f (z), z(t0) ∈ [z0] ([HSCC’17])

solution z0 7→ z(t, z0) of this system is a function z : Rn → Rn

we want to compute inner-approximated flowpipe on this function

we need an outer-approximated flowpipe for z and its Jacobian with respect to z0:
“classical” Taylor model based outer-approximated flowpipes

then we can apply generalized mean value theorem on z

Implementation and experimental results
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Intervals, outer and inner approximations

Intervals: closed connected subsets of R, noted [x ] ∈ I ; by extension [x ] ∈ I n n-dim boxes

For f : Rn → Rp, we would like to compute range(f , [x ]) = {f (x), x ∈ [x ]}.

Outer (or over) approximation

An outer approximating extension of f : Rn → R over intervals is [f ] : I n → I such
that

∀[x ] ∈ I n, range(f , [x ]) ⊆ [z] = [f ]([x ])

Natural interval extension: replacing real by interval operations in function f .

Example: the extension of f (x) = x2 − x on [2, 3] is [f ]([2, 3]) = [2, 3]2 − [2, 3] = [1, 7],
and can be interpreted as

(∀x ∈ [2, 3]) (∃z ∈ [1, 7]) (f (x) = z).

Inner (or under) approximation

An interval inner approximation [z] ∈ I satisfies [z] ⊆ range(f , [x ]) of the range of f over
[x ], and can be interpreted as

(∀z ∈ [z]) (∃x ∈ [x ]) (f (x) = z).
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Generalized intervals for outer and inner approximations

Generalized intervals

Intervals whose bounds are not ordered K = {[a, b], a ∈ R, b ∈ R}
Called proper if a ≤ b, else improper

Definition (Following Goldsztejn et al. 2005)

Let f : Rn → R be a continuous function and [x ] ∈ K n, decomposed in [x ]A ∈ I p and
[x ]E ∈ (dual I )q with p + q = n. A generalized interval [z] ∈ K is (f , [x ])-interpretable if

(∀xA ∈ [x ]A) (Qzz ∈ pro [z]) (∃xE ∈ pro [x ]E), (f (x) = z)

where Qz = ∃ if [z] is proper, and Qz = ∀ if [z] is improper.

When all intervals are proper, we get an outer approximation of range(f , [x ])

(∀x ∈ [x ]) (∃z ∈ [z]) (f (x) = z).

When all intervals are improper, we get an inner approximation of range(f , [x ])

(∀z ∈ pro [z]) (∃x ∈ pro [x ]) (f (x) = z).
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Kaucher arithmetic [Kaucher 1980] on generalized intervals

Kaucher addition extends addition on classical intervals:
[x ] + [y ] = [x + y , x + y ] and [x ]− [y ] = [x − y , x − y ].

Kaucher multiplication

Let P = {[x ] = [x , x ], x > 0 ∧ x > 0}, −P = {[x ] = [x , x ], x 6 0 ∧ x 6 0},
Z = {[x ] = [x , x ], x 6 0 6 x}, and dual Z = {[x ] = [x , x ], x > 0 > x}.

[x ]× [y ] [y ] ∈ P Z −P dualZ
[x ] ∈ P [xy , xy ] [xy , xy ] [xy , xy ] [xy , xy ]

Z [xy , xy ]
[min(xy , xy),
max(xy , xy)]

[xy , xy ] 0

−P [xy , xy ] [xy , xy ] [xy , xy ] [xy , xy ]

dualZ [xy , xy ] 0 [xy , xy ]
[max(xy , xy),
min(xy , xy)]

Interpretation of Kaucher arithmetic, Goldsztejn et al. 2005

Let f : Rn → R be given by an arithmetic expression with single occurrences of variables.
Then for [x ] ∈ K n, f ([x ]), computed using Kaucher arithmetic, is (f , [x ])-interpretable.
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Limitations of Kaucher and interval arithmetic

Kaucher arithmetic defines a generalized interval natural extension :

Interpretable as outer approximation when all intervals are proper (interval
arithmetic), but may be insufficiently accurate because of dependency problem

Interpretable as inner approximation when all intervals are improper and f is given
by an arithmetic expression with single occurences of variables

Example

Let f (x) = x2 − x that we want to evaluate on [2, 3]. Exact range is
range(f , [2, 3]) = [2, 6].

dependency problem in outer-approximation: accuracy loss
[f ]([2, 3]) = [2, 3] ∗ [2, 3]− [2, 3] = [1, 7]

single-occurence limitation in inner-approximation: not interpretable
[f ]([3, 2]) computed with Kaucher arithmetic is [7, 1], not an inner-approximation.

A solution: mean-value theorem (and inductive construction of a zonotopic
outer-approximation)
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Solving the single-occurence limitation

Generalized mean-value theorem (Goldsztejn 2005)

Let f : Rn → R be differentiable, [x ] ∈ K n, and suppose that for each i ∈ {1, . . . , n}, we

can compute [∆i ] ∈ I such that
{
∂f
∂xi

(x), x ∈ pro [x ]
}
⊆ [∆i ]. Then, for any x̃ ∈ pro [x ],

f̃ ([x ]) = f (x̃) +
n∑

i=1

[∆i ]([xi ]− x̃i ),

evaluated with Kaucher interval arithmetic, is (f , [x ])-interpretable. In particular,

if f̃ (dual pro [x ]), computed with Kaucher arithmetic, is improper, then
pro f̃ (dual pro [x ]) is an inner approximation of {f (x), x ∈ pro [x ]} = range(f , [x ]).

f̃ (pro [x ]) is proper and it is an outer approximation of range(f , [x ]).

Example (Mean-value theorem for same example f (x) = x2 − x for 2 ≤ x ≤ 3)

f̃ ([x ]) = f (2.5) + [f ′([2, 3])]([x ]− 2.5) = 3.75 + [3, 5]([x ]− 2.5) is (f , [x ])-interpretable:

solves the single-occurence limitation
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pro([5.25, 2.25]) ⊆ range(f , [2, 3]) ⊆ [1.25, 6.25]

solves the single-occurence limitation
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Taylor models for outer-approximated flowpipes of ODEs (Berz & Makino)

For uncertain dynamical system ż(t) = f (z), z(t0) ∈ [z0] with f : Rn → Rn, given a
time grid t0 < t1 < . . . < tN , we use Taylor models at order k to outer-approximate the
solution (t, z0) 7→ z(t, z0) on each time interval [tj , tj+1]:

[z](t, tj , [z j ]) = [z j ] +
k−1∑
i=1

(t − tj)
i

i !
f [i ]([z j ]) +

(t − tj)
k

k!
f [k]([r j+1]),

the Taylor coefficients f [i ] are the i − 1th Lie derivative of f along vector field f :
defined inductively as follows (can be computed by automatic differentiation)

f
[1]
k = fk

f
[i+1]
k =

n∑
j=1

∂f
[i ]
k

∂zj
fj

bounding the remainder needs to first compute a (rough) enclosure [r j+1] of solution
z(t, z0) on [tj , tj+1], classical by Picard iteration: find hj+1, [rj+1] such that

[zj ] + [0, hj+1]f ([rj+1]) ⊆ [rj+1]

initialization of next iterate [z j+1] = [z](tj+1, tj , [z j ])
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Inner-approximated flowpipes for uncertain ODEs

Generalized mean-value theorem on the solution z0 7→ z(t, z0) of the ODE:

we need a guaranteed enclosure of z(t, z̃0) for some z̃0 ∈ pro [z0] and{
∂z
∂z0,i

(t, z0), z0 ∈ pro [z0]
}
⊆ [J i ] : Taylor models

Algorithm (Init: j = 0, tj = t0, [z j ] = [z0], [z̃j ] = z̃0 ∈ [z0], [J j ] = Id)

For each time interval [tj , tj+1], build Taylor models for:
[z̃](t, tj , [z̃j ]) outer enclosure of z(t, z̃0) valid on [tj , tj+1]
[z](t, tj , [zj ]) outer enclosure of z(t, [z0])

[J](t, tj , [zj ], [Jj ]) outer enclosure of Jacobian ∂z
∂z0

(t, [z0]) (can be derived from [z])

Deduce an inner-approximation valid for t in [tj , tj+1] : if

]z[(t, tj) = [z̃](t, tj , [z̃ j ]) + [J](t, tj , [z j ]) ∗ ([z0, z0]− z̃0)

is an improper interval, then pro ]z[(t, tj) is an inner-approximation of the set of
solutions {z(t, z0), z0(t0) ∈ z0}, otherwise the inner-approximation is empty.

[z j+1] = [z](tj+1, tj , [z j ]), [z̃ j+1] = [z̃](tj+1, tj , [z̃ j ]), [J j+1] = [J](t, tj , [z j ], [Jj ])
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Example: simple ODE ż = z with z0 ∈ [z0] = [0, 1], on t ∈ [0, 0.5]

0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

[z0]

Init: [z0] = [0, 1], z̃0 = 0.5, [J0] = 1

A priori enclosures: ∀t ∈ [0, 0.5] , ∀z0 ∈ [0, 1], z(t, z0) ∈ [0, 2] and J(t, z0) ∈ [1, 2]
Taylor Model for the center z(t, z̃0), z̃0 ∈ [z0] = [0, 1] :

z(t, z0) = z(0, z0) + z(0, z0)t +
z(ξ, z0)

2
t2, ξ ∈ [0, 0.5]

[z](t, z̃0) = z̃0 + z̃0t + [0, 1]t2

Taylor model for the Jacobian for all z0 ∈ [z0] = [0, 1]

J(t, z0) = 1 + J(0, z0)t +
J(ξ, z0)

2
t2, ξ ∈ [0, 0.5]

[J] (t, [z0]) = = 1 + t + [0.5, 1] t2

E. Goubault and S. Putot ( LIX, Ecole Polytechnique - CNRS, Université Paris-Saclay)Forward inner-approximated reachability of non-linear continuous systemsHSCC 2017, Pittsburgh 11 / 18
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Mean-value theorem, with z̃0 = mid([z0]) = 0.5 for inner tube:

]z[(t, [z0]) = [z̃](t, tj , [z̃ j ]) + [J](t, tj , [z j ])× ([z0, z0]− z̃0)

= [z̃](t, 0.5) + [J](t, [z0]) ∗ ([1, 0]− 0.5)

= 0.5 + 0.5t + [0, 1]t2︸ ︷︷ ︸
proper

+ [(1 + t + [0.5, 1]t2)× [0.5,−0.5]︸ ︷︷ ︸
improper

= improper?

= [0.5 + 0.5t, 0.5 + 0.5t + t2] + [1 + t + 0.5t2, 1 + t + t2]︸ ︷︷ ︸
∈P

× [0.5,−0.5]︸ ︷︷ ︸
∈dual Z

= [0.5 + 0.5t, 0.5 + 0.5t + t2]︸ ︷︷ ︸
proper x1

+ [0.5 + 0.5t + 0.25t2,−0.5− 0.5t − 0.25t2]︸ ︷︷ ︸
x2 improper (iff 0/∈[J])

= [1 + t + 0.25t2, 0.75t2] is improper! (width ]z[ = width x2 - width x1)

0.1 0.2 0.3 0.4 0.5

−0.5

0.5

1

1.5
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Implementation and experiments

First prototype implementation in C++ (fixed stepsize, etc)

relying on external packages (FILIB++ for intervals, FADBAD++ for automatic
differentiation, aaflib for affine arithmetic)

repeatibility package available from
http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/software.html

the library should evolve in the future (hybrid systems, property verification)

Comparison to the related work

Chen, Sankaranarayanan, and Abraham, Under-approximate flowpipes for non-linear
continuous systems [FMCAD’14]

Xue, She, and Easwaran, Under-approx. backward reachable sets by polytopes
[CAV’16]

Our method is forward whereas the above are rather backward, and involve some
constraint solving

We study the range of each variable separately (but we can also characterize joint
ranges, simply relying on the outer-approximated Jacobian)

Fair comparison is not easy
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Brusselator example: inner and outer reachable sets (Taylor Models order 4)
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Comparison to Chen, Sankaranarayanan, and Abraham, Under-approximate
flowpipes for non-linear continuous systems [FMCAD’14]

compare quality measure γmin = min
γu(v)

γo(v)
, v ∈ V a set of vectors (the axes here)

where γu(v) and γo(v) are the width of the inner/outer-approximation in direction v ∈ V .

Brusselator (dim 2, order 4 TM, step h=0.02) Biological (dim 7, order 5, h=0.01)

time (sec) γmin(t = 3) γmin(t = 4) time(sec) γmin(t = 0.2)

FMCAD 89 0.7 0.55 632 0.25
HSCC’17 3.2 (0.25 if h=0.1) 0.7 0.1 4.7 0.65
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Comparison (on the biological system) to Xue, She, and Easwaran,
Under-approximating backward reachable sets by polytopes [CAV’16]

Comparing upper bounds on inner and outer-approximations on the 7 variables:

Comparing quality measure γ on each of the 7 variables:
time (sec) γ1 γ2 γ3 γ4 γ5 γ6 γ7

CAV’16 0.67 0.85 0.86 0.22 0.84 0.84 0.85 0.85
HSCC’17 0.2 0.970 0.999 0.973 0.938 0.938 0.970 0.971
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Conclusion and future work

A simple and efficient (linear in the size of the Jacobian with respect to
outer-approximated Taylor models) computation of inner tubes for continuous systems:

The method extends quite naturally to hybrid systems, as it relies only on
outer-approximations of the flow and its Jacobian with respect to initial conditions
(the accuracy still remains to be experimented...)

In our implementation, the Taylor Models are evaluated with affine arithmetic
prevents wrapping effect: only the inner-approximation relies on a pure Kaucher
interval evaluation, and it is not propagated
allows in the future parameter synthesis: a noise symbol is associated to each
uncertain input or parameter, which gives parametric models

Towards property proof/falsification and parameter synthesis for hybrid systems
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