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Motivation: bounded-time reachable sets for uncertain dynamical systems
z(t) = (), z(to) € [20]

o Computing reachable sets is central to program analysis, control theory
o including discretization/roundoff errors, parameters and data uncertainty
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Motivation: bounded-time reachable sets for uncertain dynamical systems
z(t) = (), z(to) € [20]

o Computing reachable sets is central to program analysis, control theory
o including discretization/roundoff errors, parameters and data uncertainty

o Classically: compute guaranteed (over ou outer-approximated) enclosures

@ But: outer approximations provide safety proof but are conservative (“false alarms”)
@ Here: compute under or inner-approximated flowpipes = sets of values that are
guaranteed to be reached, for some value of the uncertain parameters
o falsification of safety properties

o when inconclusive, Hausdorff distance between inner and outer tubes gives precision
estimates

o property verification: reach-avoid, sweep-avoid; parameter synthesis,
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In this talk: inner-approximated flowpipes for uncertain dynamical systems

Inner approximation of the range of f : R” — R” on a set [x] using ([HSCC'14])
@ modal intervals and Kaucher arithmetic (f : R” — R)

@ generalized mean value theorem: relies on outer-approximation of f and its Jacobian
on [x]

Inner approximation of the solution of an uncertain dynamical system
z(t) = f(2), z(t) € [z0] ([HSCC'17])

@ solution zp — z(t, zo) of this system is a function z : R” — R"

we want to compute inner-approximated flowpipe on this function

we need an outer-approximated flowpipe for z and its Jacobian with respect to z:
“classical” Taylor model based outer-approximated flowpipes

@ then we can apply generalized mean value theorem on z

Implementation and experimental results J
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Intervals, outer and inner approximations

Intervals: closed connected subsets of R, noted [x] € /; by extension [x] € /" n-dim boxes

For f : R"” — R”, we would like to compute range(f,[x]) = {f(x), x € [x]}.

Outer (or over) approximation

@ An outer approximating extension of f : R” — R over intervals is [f] : /" — | such
that
V[x] € 1", range(f, [x]) < [2] = [f]([x])
o Natural interval extension: replacing real by interval operations in function f.
Example: the extension of f(x) = x*> — x on [2,3] is [f]([2,3]) = [2,3]* — [2,3] = [1,7],

and can be interpreted as

(Vx €[2,3])(3z € [1,7]) (f(x) = 2).

Inner (or under) approximation

An interval inner approximation [z] € I satisfies [z] C range(f, [x]) of the range of f over
[x], and can be interpreted as

(Vz € [2]) (3x € [x]) (f(x) = 2). |
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Generalized intervals for outer and inner approximations

Generalized intervals

o Intervals whose bounds are not ordered K = {[a, b], a € R,b € R}

o Called proper if a < b, else improper

Definition (Following Goldsztejn et al. 2005)

Let f : R” — R be a continuous function and [x] € K", decomposed in [x]4 € I? and
[x]e € (dual 1T with p+ g = n. A generalized interval [z] € K is (f, [x])-interpretable if

(Vxa € [x]a) (Q:z € pro [2]) (Ixe € pro [x]¢), (f(x) = 2)

where Q, = 3 if [z] is proper, and Q, =V if [z] is improper.

o When all intervals are proper, we get an outer approximation of range(f,[x])
(vx € [x]) (3z € [2]) (f(x) = 2).
@ When all intervals are improper, we get an inner approximation of range(f, [x])

(Vz € pro [z]) (3x € pro [x]) (f(x) = z).

v
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I ——
Kaucher arithmetic [Kaucher 1980] on generalized intervals

Kaucher addition extends addition on classical intervals:
X+l=[x+y,Xx+yland [X] - [y] =[x =¥, X —y].

Kaucher multiplication

Let P={[x] =[x,X], x> 0AX >0}, =P ={[x] =[x,X], x <OAX <0},
Z={[x]=[x,x], x<0 < X}, and dual Z = {[x] = [x, %], x > 0 > X}.
x| eP z —P dualZ
x] € P | [xy,xy] [xy,xy] [Xy, xy] [xy, xy]
oo il
A 2 B A7 R s 5 B A T
dualZz | [xy,Xy] 0 [xv, xy] [rr:? nx((;%’;xy))]’

Interpretation of Kaucher arithmetic, Goldsztejn et al. 2005

Let f : R” — R be given by an arithmetic expression with single occurrences of variables.
Then for [x] € K", f([x]), computed using Kaucher arithmetic, is (f, [x])-interpretable.
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Limitations of Kaucher and interval arithmetic

Kaucher arithmetic defines a generalized interval natural extension :

o Interpretable as outer approximation when all intervals are proper (interval
arithmetic), but may be insufficiently accurate because of dependency problem

@ Interpretable as inner approximation when all intervals are improper and f is given
by an arithmetic expression with single occurences of variables

Example

Let f(x) = x* — x that we want to evaluate on [2,3]. Exact range is
range(f,[2,3]) = [2,6].
@ dependency problem in outer-approximation: accuracy loss
[F1(12,3]) = [2,3] * [2,3] = [2,3] = [1, 7]
@ single-occurence limitation in inner-approximation: not interpretable
[F1([3,2]) computed with Kaucher arithmetic is [7, 1], not an inner-approximation.

A solution: mean-value theorem (and inductive construction of a zonotopic
outer-approximation)
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Solving the single-occurence limitation

Generalized mean-value theorem (Goldsztejn 2005)

Let f : R" — R be differentiable, [x] € K", and suppose that for each i € {1,...,n}, we
can compute [Aj] € [ such that {g—:’_(x), X € pro [x]} C [A{]. Then, for any X € pro [x],

F(Ix)) = f(%) + Z[A,—]([x,—] - %i),

evaluated with Kaucher interval arithmetic, is (f, [x])-interpretable. In particular,
o if ?(QUaI pro [x]), computed with Kaucher arithmetic, is improper, then
pro f(dual pro [x]) is an inner approximation of {f(x), x € pro [x]} = range(f,[x]).
o f(pro [x]) is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example f(x) = x* — x for 2 < x < 3)

f([x]) = £(2.5) + [F'([2,3)]([x] — 2.5) = 3.75 + [3,5]([x] — 2.5) is (F, [x])-interpretable:
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v
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v
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Solving the single-occurence limitation

Generalized mean-value theorem (Goldsztejn 2005)

Let f : R" — R be differentiable, [x] € K", and suppose that for each i € {1,...,n}, we
can compute [A;] € | such that {%(XL X € pro [x]} C [Aj]. Then, for any X € pro [x],
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e f(pro [x]) is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example f(x) = x* — x for 2 < x < 3)
F([x]) = F(2.5) + [f'([2, 3D]([x] — 2.5) = 3.75 + [3, 5]([x] — 2.5) is (f, [x])-interpretable:
pro(3.75 + [1.5,—1.5]) C range(f, [2,3]) C 3.75 + [-2.5,2.5]

v
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Solving the single-occurence limitation

Generalized mean-value theorem (Goldsztejn 2005)

Let f : R" — R be differentiable, [x] € K", and suppose that for each i € {1,...,n}, we
can compute [Aj] € [ such that {%(XL X € pro [x]} C [Ai]. Then, for any X € pro [x],

F(Ix) = F(2) + > _[BA(x] - %),
i=1
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F(Ix]) = £(2.5) + [F(12, 3)]([x] — 2.5) = 3.75 + [3,5]([x] — 2.5) is (£, [x])-interpretable:

pro([5.25,2.25]) C range(f,[2,3]) C [1.25,6.25]

v
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Let f : R" — R be differentiable, [x] € K", and suppose that for each i € {1,...,n}, we
can compute [A;] € | such that {%(XL X € pro [x]} C [Aj]. Then, for any X € pro [x],
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o if ?(cNiuaI pro [x]), computed with Kaucher arithmetic, is improper, then
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e f(pro [x]) is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example f(x) = x* — x for 2 < x < 3)

F(Ix]) = £(2.5) + [F(12, 3)]([x] — 2.5) = 3.75 + [3,5]([x] — 2.5) is (£, [x])-interpretable:

[2.25,5.25] C range(f, [2,3]) C [1.25, 6.25]

solves the single-occurence limitation

v
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Taylor models for outer-approximated flowpipes of ODEs (Berz & Makino)

For uncertain dynamical system z(t) = f(z), z(to) € [z] with f:R" — R", given a
time grid tp < t; < ... < ty, we use Taylor models at order k to outer-approximate the
solution (t, zo) — z(t, z0) on each time interval [t;, tj1]:

[t 6. ) [z,1+Z ) gz + 8 ),

o the Taylor coefficients fI1 are the i — 1th Lie derivative of f along vector field f:
defined inductively as follows (can be computed by automatic differentiation)

£ fi
n [1
li+1] of,
j=1

@ bounding the remainder needs to first compute a (rough) enclosure [rj;1] of solution
z(t,z0) on [tj, tj11], classical by Picard iteration: find hj;1, [rj4+1] such that
[21] + [0, hja]f ([rj+1]) € [r44]
@ initialization of next iterate [zj;1] = [2](tj+1, 8, [2])
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Inner-approximated flowpipes for uncertain ODEs

Generalized mean-value theorem on the solution z — z(t, z) of the ODE:
we need a guaranteed enclosure of z(t, %) for some Z € pro [z)] and

{ 92z (¢t 7)), zo € pro [zo]} C [Ji] : Taylor models

8207,

Algorithm (Init: j =0, t; = to, [z;] = [z0], [Z] = 20 € [z0], [Jj] = Id)

@ For each time interval [t;, tj+1], build Taylor models for:
o [Z](t, tj,[Zj]) outer enclosure of z(t,Z) valid on [t;, tj41]
o [Z](t,t},[z]) outer enclosure of z(t, [z])
o [JI(t, tj, [z], [Jj]) outer enclosure of Jacobian g—zzo(t, [z0]) (can be derived from [z])

@ Deduce an inner-approximation valid for t in [tj, tj;1] @ if

12[(t, 5) = [21(¢, 4, [2)]) + [J1(t, 13, [2/]) * ([0, 20] — 20)

is an improper interval, then pro |z[(t, t;) is an inner-approximation of the set of
solutions {z(t, z), zo(to) € zo}, otherwise the inner-approximation is empty.

o [zj11] = [2)(tis1, £y, [2)]), [Z141] = [2(t1, 8, [25]), (i) = [I(2, 85, (2], [4])
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|
Example: simple ODE z = z with z € [z] = [0, 1], on t € [0, 0.5]

1.5

0.5

o.1 0.2 0.3 0.4 0.5

o Init: [z] =[0,1], 2 = 0.5, [h] =1
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-
Example: simple ODE z = z with zy € [z9] = [0, 1], on t € [0,0.5]

2

1.5 /
1

0.5 *//

o.1 0.2 0.3 0.4 0.5

o Init: [z] =[0,1], 2 =05, [h] =1
@ A priori enclosures: Vt € [0,0.5],Vz € [0,1], z(t,2) € [0,2] and J(t,2) € [1,2]
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|
Example: simple ODE z = z with z € [z] = [0, 1], on t € [0, 0.5]

2
1.5 /
1 |
0.5
o.1 0.2 0.3 0.4 0.5

o Init: [z] =1[0,1], 2 = 0.5, [] =1
e A priori enclosures: Vt € [0,0.5],Vz € [0,1], z(t, zo) € [0,2] and J(t,20) € [1,2]
o Taylor Model for the center z(t %), Z € [z20] =[0,1

t2, £€¢€[0,0.5]

Z(t,ZO) = 2(0720)+Z(0,20)t+ %

[2l(t,2) = Z+ Zt+[0,1]¢
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-
Example: simple ODE z = z with zy € [z9] = [0, 1], on t € [0,0.5]

2
1.5 /
1 |
0.5
o.1 0.2 0.3 0.4 0.5

o Init: [z] =1[0,1], 2 = 0.5, [] =1
e A priori enclosures: Vt € [0,0.5],Vz € [0,1], z(t, zo) € [0,2] and J(t,20) € [1,2]
o Taylor Model for the center z(t %), Z € [z20] =[0,1

2(t,z0) = z(0,2z0)+ 2(0,z)t + %tz, ¢ €1[0,0.5]
[2l(t, %) = 2+ Zt+[0,1]¢?
o Taylor model for the Jacobian for all zy € [z] = [0, 1]
Jt,z0) = 1+J(0,z)t+ 2] J(g’ 2) 2 ¢ c0,05]
[ (t, [z0]) = = 1+t+[0.5,1]t
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Mean-value theorem, with Z = mid([z]) = 0.5 for inner tube:

12[(t, [2]) = [2)(¢, 4, [Z]) + J1(t; 1, [2)]) % ([20, 20] — %)
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Mean-value theorem, with Z = mid([z]) = 0.5 for inner tube:

12[(t, [20]) (2](t, 1, [2)]) + (2, 17, [27]) x ([20, 20] — 20)
= [2](t,0.5) + [JI(¢, [z]) = ([1,0] — 0.5)
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Mean-value theorem, with Z = mid([z]) = 0.5 for inner tube:
12[(t; [20]) (2](t, 1, [2)]) + (2, 17, [27]) x ([20, 20] — 20)
[2](¢t,0.5) + [J](¢, [z0]) * ([1,0] — 0.5)
0.5+ 0.5t +[0,1]t* + [(1 + t +[0.5, 1]t?) x [0.5, —0.5] = improper?

proper improper
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- |
Mean-value theorem, with Z = mid([z]) = 0.5 for inner tube:
12[(t, [2]) = [2)(¢, 4, [Z]) + J1(t; 1, [2)]) % ([20, 20] — %)
= [2](t,0.5) + [JI(¢, [z]) = ([1,0] — 0.5)
0.5+ 0.5t +[0,1]t* + [(1 + t +[0.5, 1]t?) x [0.5, —0.5] = improper?

proper improper
= [0.5+40.5t,0.5+ 0.5t + t°] + [1 + t + 0.5¢t>,1 + t + t°] x [0.5, —0.5]
N——

EP edual z
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- |
Mean-value theorem, with Z = mid([z]) = 0.5 for inner tube:
12[(t, [2]) = [2)(¢, 4, [Z]) + J1(t; 1, [2)]) % ([20, 20] — %)
= [2](t,0.5) + [JI(¢, [z]) = ([1,0] — 0.5)
0.5+ 0.5t +[0,1]t* + [(1 + t +[0.5, 1]t?) x [0.5, —0.5] = improper?

proper improper
= [0.5+40.5t,0.5+ 0.5t + t°] + [1 + t + 0.5¢t7,1 4+ t + t°] x [0.5, —0.5]
N——

EP edual z

= [0.5+0.5t,0.5+ 0.5t + t] +[0.5 + 0.5t + 0.25¢°, —0.5 — 0.5t — 0.25¢°]

proper x1 x2 improper (iff og[J)

1.5 W///,f//
1

0.5

0.1 0.2 0.3 0.4 0.5

—o0.5 ,\
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Mean-value theorem, with Z = mid([z]) = 0.5 for inner tube:

12[(t, [20])

[2](t, 4, [Z]) + [J1(¢, 8, [2)]) * ([20, 20] — %)
[2](t,0.5) + [JI(t, [20]) * ([1,0] — 0.5)
0.5+ 0.5t + [0, 1]£* + [(1 + t + [0.5,1]¢%) x [0.5, —0.5] = improper?

proper improper
[0.5+0.5t,0.5 + 0.5t + t°] + [1 + t + 0.5¢°, 1 + t + t°] x [0.5, —0.5]
N——

EP edual z

[0.5+ 0.5t,0.5 + 0.5t + t2] 4+ [0.5 + 0.5t + 0.25t°, —0.5 — 0.5¢ — 0.25¢%]

proper x1 x2 improper (iff og[J)
[1+ t+0.25¢%,0.75¢°] is improper! (width ]z[ = width x2 - width x1)

1.5 :////

0.5

0.1 0.2 0.3 0.4 0.5

—o.5 —\
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Implementation and experiments

First prototype implementation in C++ (fixed stepsize, etc)

@ relying on external packages (FILIB++ for intervals, FADBAD++ for automatic
differentiation, aaflib for affine arithmetic)

@ repeatibility package available from
http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/software.html

o the library should evolve in the future (hybrid systems, property verification)

Comparison to the related work

@ Chen, Sankaranarayanan, and Abraham, Under-approximate flowpipes for non-linear
continuous systems [FMCAD'14]

@ Xue, She, and Easwaran, Under-approx. backward reachable sets by polytopes
[CAV'16]

@ Our method is forward whereas the above are rather backward, and involve some
constraint solving

o We study the range of each variable separately (but we can also characterize joint
ranges, simply relying on the outer-approximated Jacobian)

@ Fair comparison is not easy
v
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Brusselator example: inner and outer reachable sets (Taylor Models order 4)

2 T T T T
151
1
xi(t) : ) 2
sk /== ry = ].-|-331332—2.5£U1
/ Ty = 1.021 — w%mg
;’ .’171(0) € [09, 1],.’172(0) € [0,01]
0 I 1 1 1
0 2 4 6 8 10
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Comparison to Chen, Sankaranarayanan, and Abraham, Under-approximate
flowpipes for non-linear continuous systems [FMCAD'14]

’YU(V)
Yo(v)

where v,(v) and 7,(v) are the width of the inner/outer-approximation in direction v € V.

compare quality measure Ymin = min

,v € V a set of vectors (the axes here)

— Y0

— width of [x2]

=== width of /x2/

02 ‘\‘ /iyf

Y
width(xz)

0 2 “ seoonds) ° ° ¢ ‘ ® {(secondd)
Brusselator (dim 2, order 4 TM, step h=0.02) Biological (dim 7, order 5, h=0.01)
time (se0) YinE=3) | vmin(t = 8) | time(see) | vmimlt = 0.2)
FMCAD | 89 0.7 0.55 632 0.25
HSCC'17 3.2 (0.25 if h:O.l) 0.7 0.1 4.7 0.65
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Comparison (on the biological system) to Xue, She, and Easwaran,
Under-approximating backward reachable sets by polytopes [CAV'16]

Comparing upper bounds on inner and outer-approximations on the 7 variables:

s

107

Upper bound of the range

Comparing quality

I VHODE caster-apgrox

*x3
Component xi], i=1..7 of x vector

measure v on each of the 7 variables:

time (sec) | m V2 "3 Y4 Vs Y6 7
CAV'16 0.67 0.85 0.86 0.22 0.84 0.84 0.85 0.85
HSCC'17 | 0.2 0.970 | 0.999 | 0.973 | 0.938 | 0.938 | 0.970 | 0.971
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Conclusion and future work

A simple and efficient (linear in the size of the Jacobian with respect to
outer-approximated Taylor models) computation of inner tubes for continuous systems:

@ The method extends quite naturally to hybrid systems, as it relies only on
outer-approximations of the flow and its Jacobian with respect to initial conditions
(the accuracy still remains to be experimented...)

@ In our implementation, the Taylor Models are evaluated with affine arithmetic

o prevents wrapping effect: only the inner-approximation relies on a pure Kaucher
interval evaluation, and it is not propagated

o allows in the future parameter synthesis: a noise symbol is associated to each
uncertain input or parameter, which gives parametric models

@ Towards property proof/falsification and parameter synthesis for hybrid systems
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