Forward inner-approximated reachability of non-linear continuous systems

Eric Goubault ¹ Sylvie Putot ¹

¹LIX, Ecole Polytechnique - CNRS, Université Paris-Saclay

HSCC, Pittsburgh, April 18, 2017

- Computing reachable sets is central to program analysis, control theory
 - including discretization/roundoff errors, parameters and data uncertainty

- Computing reachable sets is central to program analysis, control theory
 - including discretization/roundoff errors, parameters and data uncertainty
- Classically: compute guaranteed (over ou outer-approximated) enclosures

- Computing reachable sets is central to program analysis, control theory
 - including discretization/roundoff errors, parameters and data uncertainty
- Classically: compute guaranteed (over ou outer-approximated) enclosures
- But: outer approximations provide safety proof but are conservative ("false alarms")

- Computing reachable sets is central to program analysis, control theory
 - including discretization/roundoff errors, parameters and data uncertainty
- Classically: compute guaranteed (over ou outer-approximated) enclosures
- But: outer approximations provide safety proof but are conservative ("false alarms")
- Here: compute under or inner-approximated flowpipes = sets of values that are guaranteed to be reached, for some value of the uncertain parameters

- Computing reachable sets is central to program analysis, control theory
 - including discretization/roundoff errors, parameters and data uncertainty
- Classically: compute guaranteed (over ou outer-approximated) enclosures
- But: outer approximations provide safety proof but are conservative ("false alarms")
- Here: compute under or inner-approximated flowpipes = sets of values that are guaranteed to be reached, for some value of the uncertain parameters
 - falsification of safety properties

- Computing reachable sets is central to program analysis, control theory
 - including discretization/roundoff errors, parameters and data uncertainty
- Classically: compute guaranteed (over ou outer-approximated) enclosures
- But: outer approximations provide safety proof but are conservative ("false alarms")
- Here: compute under or inner-approximated flowpipes = sets of values that are guaranteed to be reached, for some value of the uncertain parameters
 - falsification of safety properties
 - when inconclusive, Hausdorff distance between inner and outer tubes gives precision estimates

- Computing reachable sets is central to program analysis, control theory
 - including discretization/roundoff errors, parameters and data uncertainty
- Classically: compute guaranteed (over ou outer-approximated) enclosures
- But: outer approximations provide safety proof but are conservative ("false alarms")
- Here: compute under or inner-approximated flowpipes = sets of values that are guaranteed to be reached, for some value of the uncertain parameters
 - falsification of safety properties
 - when inconclusive, Hausdorff distance between inner and outer tubes gives precision estimates
 - property verification: reach-avoid

- Computing reachable sets is central to program analysis, control theory
 - including discretization/roundoff errors, parameters and data uncertainty
- Classically: compute guaranteed (over ou outer-approximated) enclosures
- But: outer approximations provide safety proof but are conservative ("false alarms")
- Here: compute under or inner-approximated flowpipes = sets of values that are guaranteed to be reached, for some value of the uncertain parameters
 - falsification of safety properties
 - when inconclusive, Hausdorff distance between inner and outer tubes gives precision estimates
 - property verification: reach-avoid, sweep-avoid; parameter synthesis,

In this talk: inner-approximated flowpipes for uncertain dynamical systems

Inner approximation of the range of $f : \mathbb{R}^n \to \mathbb{R}^p$ on a set [x] using ([HSCC'14])

- modal intervals and Kaucher arithmetic $(f: \mathbb{R}^n \to \mathbb{R})$
- generalized mean value theorem: relies on outer-approximation of f and its Jacobian on [x]

Inner approximation of the solution of an uncertain dynamical system $\dot{z}(t) = f(z), \ z(t_0) \in [z_0] \ ([HSCC'17])$

- solution $z_0 \mapsto z(t,z_0)$ of this system is a function $z: \mathbb{R}^n \to \mathbb{R}^n$
- we want to compute inner-approximated flowpipe on this function
- we need an outer-approximated flowpipe for z and its Jacobian with respect to z₀: "classical" Taylor model based outer-approximated flowpipes
- then we can apply generalized mean value theorem on z

Implementation and experimental results

Intervals, outer and inner approximations

Intervals: closed connected subsets of \mathbb{R} , noted $[x] \in I$; by extension $[x] \in I^n$ n-dim boxes For $f : \mathbb{R}^n \to \mathbb{R}^p$, we would like to compute range $(f, [x]) = \{f(x), x \in [x]\}$.

Outer (or over) approximation

• An outer approximating extension of $f : \mathbb{R}^n \to \mathbb{R}$ over intervals is $[f] : I^n \to I$ such that

$$\forall [x] \in I^n, \mathsf{range}(f, [x]) \subseteq [z] = [f]([x])$$

• Natural interval extension: replacing real by interval operations in function f.

Example: the extension of $f(x) = x^2 - x$ on [2,3] is $[f]([2,3]) = [2,3]^2 - [2,3] = [1,7]$, and can be interpreted as

$$(\forall x \in [2,3]) (\exists z \in [1,7]) (f(x) = z).$$

Inner (or under) approximation

An interval inner approximation $[z] \in I$ satisfies $[z] \subseteq range(f, [x])$ of the range of f over [x], and can be interpreted as

$$(\forall z \in [z]) (\exists x \in [x]) (f(x) = z).$$

Generalized intervals for outer and inner approximations

Generalized intervals

- Intervals whose bounds are not ordered $\mathcal{K} = \{[a,b], a \in \mathbb{R}, b \in \mathbb{R}\}$
- Called proper if $a \leq b$, else improper

Definition (Following Goldsztejn et al. 2005)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function and $[x] \in K^n$, decomposed in $[x]_{\mathcal{A}} \in I^p$ and $[x]_{\mathcal{E}} \in (\text{dual } I)^q$ with p + q = n. A generalized interval $[z] \in K$ is (f, [x])-interpretable if $(\forall x_{\mathcal{A}} \in [x]_{\mathcal{A}}) (Q_z z \in \text{pro } [z]) (\exists x_{\mathcal{E}} \in \text{pro } [x]_{\mathcal{E}}), (f(x) = z)$

where $Q_z = \exists$ if [z] is proper, and $Q_z = \forall$ if [z] is improper.

• When all intervals are proper, we get an outer approximation of range(f, [x])

$$(\forall x \in [x]) (\exists z \in [z]) (f(x) = z).$$

• When all intervals are improper, we get an inner approximation of range(f, [x])

$$(\forall z \in \mathsf{pro}\ [z]) (\exists x \in \mathsf{pro}\ [x]) (f(x) = z).$$

Kaucher arithmetic [Kaucher 1980] on generalized intervals

Kaucher addition extends addition on classical intervals: $[x] + [y] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}]$ and $[x] - [y] = [\underline{x} - \overline{y}, \overline{x} - \underline{y}].$

Kaucher multiplication

Let
$$\mathcal{P} = \{ [x] = [\underline{x}, \overline{x}], \ \underline{x} \ge 0 \land \overline{x} \ge 0 \}, \ -\mathcal{P} = \{ [x] = [\underline{x}, \overline{x}], \ \underline{x} \le 0 \land \overline{x} \le 0 \}, \ \mathcal{Z} = \{ [x] = [\underline{x}, \overline{x}], \ \underline{x} \le 0 \land \overline{x} \le 0 \}, \ \mathcal{Z} = \{ [x] = [\underline{x}, \overline{x}], \ \underline{x} \ge 0 \ge \overline{x} \}.$$

$[x] \times [y]$	$[y] \in \mathcal{P}$	\mathcal{Z}	$-\mathcal{P}$	$dual\mathcal{Z}$
$[x] \in \mathcal{P}$	$[\underline{x}\underline{y}, \overline{x}\overline{y}]$	$[\overline{x}\underline{y},\overline{xy}]$	$[\overline{x}\underline{y},\underline{x}\overline{y}]$	$[\underline{x}\underline{y}, \underline{x}\overline{y}]$
Z	$[\underline{x}\overline{y},\overline{xy}]$	$[\min(\underline{x}\overline{y},\overline{x}\underline{y}),\\\max(\underline{x}y,\overline{x}\overline{y})]$	$[\overline{x}\underline{y}, \underline{x}\underline{y}]$	0
$-\mathcal{P}$	$[\underline{x}\overline{y},\overline{x}\underline{y}]$	$[\underline{x}\overline{y}, \underline{x}\underline{y}]$	$[\overline{xy}, \underline{xy}]$	$[\overline{xy}, \overline{x}\underline{y}]$
$dual\mathcal{Z}$	$[\underline{x}\underline{y}, \overline{x}\underline{y}]$	0	$[\overline{xy}, \underline{x}\overline{y}]$	$[\max(\underline{x}\underline{y},\overline{x}\overline{y}),\\\min(\underline{x}\overline{y},\overline{x}\underline{y})]$

Interpretation of Kaucher arithmetic, Goldsztejn et al. 2005

Let $f : \mathbb{R}^n \to \mathbb{R}$ be given by an arithmetic expression with single occurrences of variables. Then for $[x] \in K^n$, f([x]), computed using Kaucher arithmetic, is (f, [x])-interpretable.

Limitations of Kaucher and interval arithmetic

Kaucher arithmetic defines a generalized interval natural extension :

- Interpretable as outer approximation when all intervals are proper (interval arithmetic), but may be insufficiently accurate because of *dependency problem*
- Interpretable as inner approximation when all intervals are improper and *f* is given by an arithmetic expression *with single occurences of variables*

Example

Let $f(x) = x^2 - x$ that we want to evaluate on [2,3]. Exact range is range(f, [2,3]) = [2,6].

- dependency problem in outer-approximation: accuracy loss [f]([2,3]) = [2,3] * [2,3] [2,3] = [1,7]
- single-occurence limitation in inner-approximation: not interpretable [f]([3,2]) computed with Kaucher arithmetic is [7,1], not an inner-approximation.

A solution: mean-value theorem (and inductive construction of a zonotopic outer-approximation)

Generalized mean-value theorem (Goldsztejn 2005)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable, $[x] \in K^n$, and suppose that for each $i \in \{1, \ldots, n\}$, we can compute $[\mathbf{\Delta}_i] \in I$ such that $\left\{ \frac{\partial f}{\partial x_i}(x), x \in \text{pro } [x] \right\} \subseteq [\mathbf{\Delta}_i]$. Then, for any $\tilde{x} \in \text{pro } [x]$,

$$\tilde{f}([x]) = f(\tilde{x}) + \sum_{i=1}^{n} [\mathbf{\Delta}_i]([x_i] - \tilde{x}_i),$$

evaluated with Kaucher interval arithmetic, is (f, [x])-interpretable. In particular,

- if *f*(dual pro [x]), computed with Kaucher arithmetic, is improper, then pro *f*(dual pro [x]) is an inner approximation of {*f*(*x*), *x* ∈ pro [x]} = range(*f*, [x]).
- $\tilde{f}(\text{pro}[x])$ is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example $f(x) = x^2 - x$ for $2 \le x \le 3$) $\tilde{f}([x]) = f(2.5) + [f'([2,3])]([x] - 2.5) = 3.75 + [3,5]([x] - 2.5)$ is (f, [x])-interpretable:

Generalized mean-value theorem (Goldsztejn 2005)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable, $[x] \in K^n$, and suppose that for each $i \in \{1, \ldots, n\}$, we can compute $[\mathbf{\Delta}_i] \in I$ such that $\left\{ \frac{\partial f}{\partial x_i}(x), x \in \text{pro } [x] \right\} \subseteq [\mathbf{\Delta}_i]$. Then, for any $\tilde{x} \in \text{pro } [x]$,

$$\tilde{f}([x]) = f(\tilde{x}) + \sum_{i=1}^{n} [\mathbf{\Delta}_i]([x_i] - \tilde{x}_i),$$

evaluated with Kaucher interval arithmetic, is (f, [x])-interpretable. In particular,

- if $\tilde{f}(\text{dual pro }[x])$, computed with Kaucher arithmetic, is improper, then pro $\tilde{f}(\text{dual pro }[x])$ is an inner approximation of $\{f(x), x \in \text{pro }[x]\} = \text{range}(f, [x])$.
- $\tilde{f}(\text{pro }[x])$ is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example $f(x) = x^2 - x$ for $2 \le x \le 3$) $\tilde{f}([x]) = f(2.5) + [f'([2,3])]([x] - 2.5) = 3.75 + [3,5]([x] - 2.5)$ is (f, [x])-interpretable: $pro(3.75 + [3,5]([3,2] - 2.5) \subseteq range(f, [2,3]) \subseteq 3.75 + [3,5]([2,3] - 2.5)$

Generalized mean-value theorem (Goldsztejn 2005)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable, $[x] \in K^n$, and suppose that for each $i \in \{1, \ldots, n\}$, we can compute $[\mathbf{\Delta}_i] \in I$ such that $\left\{ \frac{\partial f}{\partial x_i}(x), x \in \text{pro } [x] \right\} \subseteq [\mathbf{\Delta}_i]$. Then, for any $\tilde{x} \in \text{pro } [x]$,

$$\tilde{f}([x]) = f(\tilde{x}) + \sum_{i=1}^{n} [\mathbf{\Delta}_i]([x_i] - \tilde{x}_i),$$

evaluated with Kaucher interval arithmetic, is (f, [x])-interpretable. In particular,

- if $\tilde{f}(\text{dual pro }[x])$, computed with Kaucher arithmetic, is improper, then pro $\tilde{f}(\text{dual pro }[x])$ is an inner approximation of $\{f(x), x \in \text{pro }[x]\} = \text{range}(f, [x])$.
- $\tilde{f}(\text{pro }[x])$ is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example $f(x) = x^2 - x$ for $2 \le x \le 3$) $\tilde{f}([x]) = f(2.5) + [f'([2,3])]([x] - 2.5) = 3.75 + [3,5]([x] - 2.5)$ is (f, [x])-interpretable: $pro(3.75 + [3,5]([0.5, -0.5]) \subseteq range(f, [2,3]) \subseteq 3.75 + [3,5]([-0.5, 0.5])$

Generalized mean-value theorem (Goldsztejn 2005)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable, $[x] \in K^n$, and suppose that for each $i \in \{1, \ldots, n\}$, we can compute $[\mathbf{\Delta}_i] \in I$ such that $\left\{ \frac{\partial f}{\partial x_i}(x), x \in \text{pro } [x] \right\} \subseteq [\mathbf{\Delta}_i]$. Then, for any $\tilde{x} \in \text{pro } [x]$,

$$\tilde{f}([x]) = f(\tilde{x}) + \sum_{i=1}^{n} [\mathbf{\Delta}_i]([x_i] - \tilde{x}_i),$$

evaluated with Kaucher interval arithmetic, is (f, [x])-interpretable. In particular,

- if $\tilde{f}(\text{dual pro}[x])$, computed with Kaucher arithmetic, is improper, then pro $\tilde{f}(\text{dual pro}[x])$ is an inner approximation of $\{f(x), x \in \text{pro}[x]\} = \text{range}(f, [x])$.
- $\tilde{f}(\text{pro }[x])$ is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example $f(x) = x^2 - x$ for $2 \le x \le 3$) $\tilde{f}([x]) = f(2.5) + [f'([2,3])]([x] - 2.5) = 3.75 + [3,5]([x] - 2.5)$ is (f, [x])-interpretable: $pro(3.75 + [1.5, -1.5]) \subseteq range(f, [2,3]) \subseteq 3.75 + [-2.5, 2.5]$

Generalized mean-value theorem (Goldsztejn 2005)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable, $[x] \in K^n$, and suppose that for each $i \in \{1, \ldots, n\}$, we can compute $[\mathbf{\Delta}_i] \in I$ such that $\left\{ \frac{\partial f}{\partial x_i}(x), x \in \text{pro } [x] \right\} \subseteq [\mathbf{\Delta}_i]$. Then, for any $\tilde{x} \in \text{pro } [x]$,

$$\tilde{f}([x]) = f(\tilde{x}) + \sum_{i=1}^{n} [\mathbf{\Delta}_i]([x_i] - \tilde{x}_i),$$

evaluated with Kaucher interval arithmetic, is (f, [x])-interpretable. In particular,

- if $\tilde{f}(\text{dual pro }[x])$, computed with Kaucher arithmetic, is improper, then pro $\tilde{f}(\text{dual pro }[x])$ is an inner approximation of $\{f(x), x \in \text{pro }[x]\} = \text{range}(f, [x])$.
- $\tilde{f}(\text{pro }[x])$ is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example $f(x) = x^2 - x$ for $2 \le x \le 3$) $\tilde{f}([x]) = f(2.5) + [f'([2,3])]([x] - 2.5) = 3.75 + [3,5]([x] - 2.5)$ is (f, [x])-interpretable:

 $pro([5.25, 2.25]) \subseteq range(f, [2, 3]) \subseteq [1.25, 6.25]$

Generalized mean-value theorem (Goldsztejn 2005)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable, $[x] \in K^n$, and suppose that for each $i \in \{1, \ldots, n\}$, we can compute $[\mathbf{\Delta}_i] \in I$ such that $\left\{ \frac{\partial f}{\partial x_i}(x), x \in \text{pro } [x] \right\} \subseteq [\mathbf{\Delta}_i]$. Then, for any $\tilde{x} \in \text{pro } [x]$,

$$\tilde{f}([x]) = f(\tilde{x}) + \sum_{i=1}^{n} [\mathbf{\Delta}_i]([x_i] - \tilde{x}_i),$$

evaluated with Kaucher interval arithmetic, is (f, [x])-interpretable. In particular,

- if $\tilde{f}(\text{dual pro}[x])$, computed with Kaucher arithmetic, is improper, then pro $\tilde{f}(\text{dual pro}[x])$ is an inner approximation of $\{f(x), x \in \text{pro}[x]\} = \text{range}(f, [x])$.
- $\tilde{f}(\text{pro }[x])$ is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example $f(x) = x^2 - x$ for $2 \le x \le 3$) $\tilde{f}([x]) = f(2.5) + [f'([2,3])]([x] - 2.5) = 3.75 + [3,5]([x] - 2.5)$ is (f, [x])-interpretable:

 $[2.25, 5.25] \subseteq \operatorname{range}(f, [2, 3]) \subseteq [1.25, 6.25]$

Generalized mean-value theorem (Goldsztejn 2005)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable, $[x] \in K^n$, and suppose that for each $i \in \{1, \ldots, n\}$, we can compute $[\mathbf{\Delta}_i] \in I$ such that $\left\{ \frac{\partial f}{\partial x_i}(x), x \in \text{pro } [x] \right\} \subseteq [\mathbf{\Delta}_i]$. Then, for any $\tilde{x} \in \text{pro } [x]$,

$$\tilde{f}([x]) = f(\tilde{x}) + \sum_{i=1}^{n} [\mathbf{\Delta}_i]([x_i] - \tilde{x}_i),$$

evaluated with Kaucher interval arithmetic, is (f, [x])-interpretable. In particular,

- if $\tilde{f}(\text{dual pro}[x])$, computed with Kaucher arithmetic, is improper, then pro $\tilde{f}(\text{dual pro}[x])$ is an inner approximation of $\{f(x), x \in \text{pro}[x]\} = \text{range}(f, [x])$.
- $\tilde{f}(\text{pro }[x])$ is proper and it is an outer approximation of range(f, [x]).

Example (Mean-value theorem for same example $f(x) = x^2 - x$ for $2 \le x \le 3$) $\tilde{f}([x]) = f(2.5) + [f'([2,3])]([x] - 2.5) = 3.75 + [3,5]([x] - 2.5)$ is (f, [x])-interpretable:

$$[2.25, 5.25] \subseteq \mathsf{range}(f, [2, 3]) \subseteq [1.25, 6.25]$$

solves the single-occurence limitation

Taylor models for outer-approximated flowpipes of ODEs (Berz & Makino)

For uncertain dynamical system $\dot{z}(t) = f(z), \ z(t_0) \in [z_0]$ with $f : \mathbb{R}^n \to \mathbb{R}^n$, given a time grid $t_0 < t_1 < \ldots < t_N$, we use Taylor models at order k to outer-approximate the solution $(t, z_0) \mapsto z(t, z_0)$ on each time interval $[t_j, t_{j+1}]$:

$$[z](t, t_j, [z_j]) = [z_j] + \sum_{i=1}^{k-1} \frac{(t-t_j)^i}{i!} f^{[i]}([z_j]) + \frac{(t-t_j)^k}{k!} f^{[k]}([r_{j+1}]),$$

 the Taylor coefficients f^[i] are the i - 1th Lie derivative of f along vector field f: defined inductively as follows (can be computed by automatic differentiation)

$$f_k^{[1]} = f_k$$

$$f_k^{[i+1]} = \sum_{j=1}^n \frac{\partial f_k^{[i]}}{\partial z_j} f_k^{[i]}$$

• bounding the remainder needs to first compute a (rough) enclosure $[r_{j+1}]$ of solution $z(t, z_0)$ on $[t_j, t_{j+1}]$, classical by Picard iteration: find h_{j+1} , $[r_{j+1}]$ such that

$$[z_j] + [0, h_{j+1}]f([r_{j+1}]) \subseteq [r_{j+1}]$$

• initialization of next iterate $[z_{j+1}] = [z](t_{j+1}, t_j, [z_j])$

Inner-approximated flowpipes for uncertain ODEs

Generalized mean-value theorem on the solution $z_0 \mapsto z(t, z_0)$ of the ODE:

we need a guaranteed enclosure of $z(t, \tilde{z}_0)$ for some $\tilde{z}_0 \in \text{pro}[z_0]$ and $\left\{\frac{\partial z}{\partial z_{0,i}}(t, z_0), z_0 \in \text{pro}[z_0]\right\} \subseteq [J_i]$: Taylor models

Algorithm (Init: $j = 0, t_j = t_0, [z_j] = [z_0], [\tilde{z}_j] = \tilde{z}_0 \in [z_0], [J_j] = Id$)

- For each time interval $[t_j, t_{j+1}]$, build Taylor models for:
 - [ž](t, t_j, [ž_j]) outer enclosure of z(t, ž₀) valid on [t_j, t_{j+1}]
 - $[z](t, t_j, [z_j])$ outer enclosure of $z(t, [z_0])$
 - $[J](t, t_j, [z_j], [J_j])$ outer enclosure of Jacobian $\frac{\partial z}{\partial z_0}(t, [z_0])$ (can be derived from [z])
- Deduce an inner-approximation valid for t in $[t_j, t_{j+1}]$: if

$$]z[(t,t_j) = [\tilde{z}](t,t_j,[\tilde{z}_j]) + [J](t,t_j,[z_j]) * ([\overline{z_0},\underline{z_0}] - \tilde{z_0})$$

is an improper interval, then pro $]z[(t, t_j)$ is an inner-approximation of the set of solutions $\{z(t, z_0), z_0(t_0) \in z_0\}$, otherwise the inner-approximation is empty.

• $[z_{j+1}] = [z](t_{j+1}, t_j, [z_j]), \ [\tilde{z}_{j+1}] = [\tilde{z}](t_{j+1}, t_j, [\tilde{z}_j]), \ [J_{j+1}] = [J](t, t_j, [z_j], [J_j])$

• Init: $[z_0] = [0, 1]$, $\tilde{z}_0 = 0.5$, $[J_0] = 1$

• Init: $[z_0] = [0, 1]$, $\tilde{z}_0 = 0.5$, $[J_0] = 1$ • A priori enclosures: $\forall t \in [0, 0.5], \forall z_0 \in [0, 1], z(t, z_0) \in [0, 2]$ and $J(t, z_0) \in [1, 2]$

• Init: $[z_0] = [0, 1]$, $\tilde{z}_0 = 0.5$, $[J_0] = 1$ • A priori enclosures: $\forall t \in [0, 0.5]$, $\forall z_0 \in [0, 1]$, $z(t, z_0) \in [0, 2]$ and $J(t, z_0) \in [1, 2]$ • Taylor Model for the center $z(t, \tilde{z_0})$, $\tilde{z_0} \in [z_0] = [0, 1]$:

$$egin{array}{rll} z(t,z_0)&=&z(0,z_0)+z(0,z_0)t+rac{z(\xi,z_0)}{2}t^2,\ \xi\in[0,0.5]\ [z](t, ilde z_0)&=& ilde z_0+ ilde z_0t+[0,1]t^2 \end{array}$$

- Init: $[z_0] = [0, 1]$, $\tilde{z}_0 = 0.5$, $[J_0] = 1$ A priori enclosures: $\forall t \in [0, 0.5]$, $\forall z_0 \in [0, 1]$, $z(t, z_0) \in [0, 2]$ and $J(t, z_0) \in [1, 2]$ Taylor Model for the center $z(t, \tilde{z_0})$, $\tilde{z_0} \in [z_0] = [0, 1]$:

$$\begin{aligned} z(t,z_0) &= z(0,z_0) + z(0,z_0)t + \frac{z(\xi,z_0)}{2}t^2, \ \xi \in [0,0.5]\\ [z](t,\tilde{z_0}) &= \tilde{z_0} + \tilde{z_0}t + [0,1]t^2 \end{aligned}$$

• Taylor model for the Jacobian for all $z_0 \in [z_0] = [0, 1]$

$$\begin{array}{lll} J(t,z_0) & = & 1+J(0,z_0)t+\frac{J(\xi,z_0)}{2}t^2, \ \xi\in[0,0.5]\\ \left[J\right](t,[z_0]) & = & = 1+t+[0.5,1]\,t^2 \end{array}$$

$$]z[(t,[z_0]) = [\tilde{z}](t,t_j,[\tilde{z}_j]) + [J](t,t_j,[z_j]) \times ([\overline{z_0},\underline{z_0}] - \tilde{z_0})$$

$$\begin{aligned} |z[(t, [z_0]) &= [\tilde{z}](t, t_j, [\tilde{z}_j]) + [J](t, t_j, [z_j]) \times ([\overline{z_0}, \underline{z_0}] - \tilde{z_0}) \\ &= [\tilde{z}](t, 0.5) + [J](t, [z_0]) * ([1, 0] - 0.5) \end{aligned}$$

$$\begin{aligned} |z[(t, [z_0]) &= [\tilde{z}](t, t_j, [\tilde{z}_j]) + [J](t, t_j, [z_j]) \times ([\overline{z_0}, \underline{z_0}] - \tilde{z_0}) \\ &= [\tilde{z}](t, 0.5) + [J](t, [z_0]) * ([1, 0] - 0.5) \\ &= \underbrace{0.5 + 0.5t + [0, 1]t^2}_{\text{proper}} + \underbrace{((1 + t + [0.5, 1]t^2) \times [0.5, -0.5]}_{\text{improper}} = \text{improper}? \end{aligned}$$

$$\begin{aligned} |z[(t, [z_0]) &= [\tilde{z}](t, t_j, [\tilde{z}_j]) + [J](t, t_j, [z_j]) \times ([\overline{z_0}, \underline{z_0}] - \tilde{z_0}) \\ &= [\tilde{z}](t, 0.5) + [J](t, [z_0]) * ([1, 0] - 0.5) \\ &= \underbrace{0.5 + 0.5t + [0, 1]t^2}_{\text{proper}} + \underbrace{[(1 + t + [0.5, 1]t^2) \times [0.5, -0.5]}_{\text{improper}} = \text{improper}? \\ &= [0.5 + 0.5t, 0.5 + 0.5t + t^2] + \underbrace{[1 + t + 0.5t^2, 1 + t + t^2]}_{\in \mathcal{P}} \times \underbrace{[0.5, -0.5]}_{\in \text{dual } \mathcal{Z}} \end{aligned}$$

$$\begin{aligned} |z[(t, [z_0]) &= [\tilde{z}](t, t_j, [\tilde{z}_j]) + [J](t, t_j, [z_j]) \times ([\overline{z_0}, \underline{z_0}] - \tilde{z_0}) \\ &= [\tilde{z}](t, 0.5) + [J](t, [z_0]) * ([1, 0] - 0.5) \\ &= \underbrace{0.5 + 0.5t + [0, 1]t^2}_{\text{proper}} + \underbrace{[(1 + t + [0.5, 1]t^2) \times [0.5, -0.5]}_{\text{improper}} = \\ &= [0.5 + 0.5t, 0.5 + 0.5t + t^2] + \underbrace{[1 + t + 0.5t^2, 1 + t + t^2]}_{\in \mathcal{P}} \times \underbrace{[0.5, -0.5]}_{\in \text{dual } z} \\ &= \underbrace{[0.5 + 0.5t, 0.5 + 0.5t + t^2]}_{\text{proper} \times 1} + \underbrace{[0.5 + 0.5t + 0.25t^2, -0.5 - 0.5t - 0.25t^2]}_{\times 2 \text{ improper}} \\ &= \underbrace{[0.5 + 0.5t, 0.5 + 0.5t + t^2]}_{\text{proper} \times 1} + \underbrace{[0.5 + 0.5t + 0.25t^2, -0.5 - 0.5t - 0.25t^2]}_{\times 2 \text{ improper}} \end{aligned}$$

$$\begin{aligned} |z[(t, [z_0]) &= [\tilde{z}](t, t_j, [\tilde{z}_j]) + [J](t, t_j, [z_j]) \times ([\overline{z_0}, \underline{z_0}] - \tilde{z_0}) \\ &= [\tilde{z}](t, 0.5) + [J](t, [z_0]) * ([1, 0] - 0.5) \\ &= \underbrace{0.5 + 0.5t + [0, 1]t^2}_{\text{proper}} + \underbrace{[(1 + t + [0.5, 1]t^2) \times [0.5, -0.5]}_{\text{improper}} = \text{improper}? \\ &= [0.5 + 0.5t, 0.5 + 0.5t + t^2] + \underbrace{[1 + t + 0.5t^2, 1 + t + t^2]}_{\in \mathcal{P}} \times \underbrace{[0.5, -0.5]}_{\in \text{dual } \mathcal{Z}} \\ &= \underbrace{[0.5 + 0.5t, 0.5 + 0.5t + t^2]}_{\text{proper} \times 1} + \underbrace{[0.5 + 0.5t + 0.25t^2, -0.5 - 0.5t - 0.25t^2]}_{\times 2 \text{ improper}} (\text{iff } 0 \notin [J]) \\ &= [1 + t + 0.25t^2, 0.75t^2] \text{ is improper! (width }]z[= width \times 2 - width \times 1) \end{aligned}$$

Implementation and experiments

First prototype implementation in C++ (fixed stepsize, etc)

- relying on external packages (FILIB++ for intervals, FADBAD++ for automatic differentiation, aaflib for affine arithmetic)
- repeatibility package available from http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/software.html
- the library should evolve in the future (hybrid systems, property verification)

Comparison to the related work

- Chen, Sankaranarayanan, and Abraham, *Under-approximate flowpipes for non-linear continuous systems* [FMCAD'14]
- Xue, She, and Easwaran, Under-approx. backward reachable sets by polytopes [CAV'16]
- Our method is forward whereas the above are rather backward, and involve some constraint solving
- We study the range of each variable separately (but we can also characterize joint ranges, simply relying on the outer-approximated Jacobian)
- Fair comparison is not easy

Brusselator example: inner and outer reachable sets (Taylor Models order 4)

Goubault and S. Putot (LIX, Ecole Polytechnique Forward inner-approximated reachability of non-linear c

Comparison to Chen, Sankaranarayanan, and Abraham, *Under-approximate flowpipes for non-linear continuous systems* [FMCAD'14]

compare quality measure
$$\gamma_{\min} = \min \frac{\gamma_u(v)}{\gamma_o(v)}, v \in V$$
 a set of vectors (the axes here)

where $\gamma_u(v)$ and $\gamma_o(v)$ are the width of the inner/outer-approximation in direction $v \in V$.

	Brusselator (dim 2, order 4	Biological (dim 7, order 5, h=0.01)			
	time (sec)	$\gamma_{\min}(t=3)$	$\gamma_{\min}(t=4)$	time(sec)	$\gamma_{\min}(t=0.2)$
FMCAD	89	0.7	0.55	632	0.25
HSCC'17	3.2 (0.25 if h=0.1)	0.7	0.1	4.7	0.65

Comparison (on the biological system) to Xue, She, and Easwaran, Under-approximating backward reachable sets by polytopes [CAV'16]

Comparing upper bounds on inner and outer-approximations on the 7 variables:

Comparing quality measure γ on each of the 7 variables:

	time (sec)	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6	γ_7
CAV'16	0.67	0.85	0.86	0.22	0.84	0.84	0.85	0.85
HSCC'17	0.2	0.970	0.999	0.973	0.938	0.938	0.970	0.971

A simple and efficient (linear in the size of the Jacobian with respect to outer-approximated Taylor models) computation of inner tubes for continuous systems:

- The method extends quite naturally to hybrid systems, as it relies only on outer-approximations of the flow and its Jacobian with respect to initial conditions (the accuracy still remains to be experimented...)
- In our implementation, the Taylor Models are evaluated with affine arithmetic
 - prevents wrapping effect: only the inner-approximation relies on a pure Kaucher interval evaluation, and it is not propagated
 - allows in the future parameter synthesis: a noise symbol is associated to each uncertain input or parameter, which gives parametric models
- Towards property proof/falsification and parameter synthesis for hybrid systems

