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Abstract 

We propose a new approach for fast and accurate extraction of capacitance in multiconductor cells 
embedded in multiple dielectric media. We use the so-called fictitious domain method with 
Lagrange multipliers for the problem formulation. It leads to a coupled linear system which 
unknowns are the potential on a regular 3D grid of a simple-shaped domain, imbedding the 
dielectric media, and the charge on a mesh of the conductor surfaces. Thanks to the regular grid, 
the storage of information related to the volumic mesh is not necessary and we can use fast 
solvers. Numerical results on 3D complex structures show that the method is more efficient, both 
in time and memory, than a finite elements or a boundary elements method. 

1. INTRODUCTION 

An accurate computation of the parasitic capacitance requires the surfacic charge got by the 
normal derivative of the potential on the surface of conductors. The potential in the dielectric media is 
the solution of the Laplace equation with boundary conditions on the surfaces of conductors. For these 
simulations on a complex 3D domain, large computing resources, both in CPU time and memory, are 
needed. The finite elements (as in Clever from Silvaco) can take into account complicated geometries 
and inhomogeneous dielectrics, but with large CPU times and memory needs. The other methods 
(boundary integrals as in [ I ]  or Monte-Carlo methods as in [2]) are more efficient for some problems,' 
but less robust when the complexity increases, for instance in the case of multiple dielectric media. We 
propose to use the fictitious domain method, which combines advantages of volumic finite elements 
and boundary integral methods. In particular, we can easily take into account multiple dielectric 
media, while avoiding the meshing of a complex three-dimensional domain. 

The approach described in this paper is based on [3] : the potential calculation is extended inside 
the conductors, and the boundary condition is taken into account via the inFroduction of aLagrange 
multiplier that can be interpreted as the surfacic charge. The main idea of fictitious domain methods is 
to replace the problem on a domain of complex geometry by another one on a simple shape domain 
imbedding the initial domain. That allows the use of a regular grid on a simple shape domain, and 
therefore the use of fast solvers. 

The method was developed for complex 3D structures with multiple dielectric media, as it is 
shown in part 4. 

2. THE FICTITIOUS DOMAIN FORMULATION OF THE PROBLEM 

Let w the dielectric space between the conductors, of permittivity 
E ,  and y the union of the conductor surfaces. We denote by SZ 
the set constituted by the dielectric regions and the conductors, and 
by r the boundary of 0. 
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The potential U in w is the solution of 
V ( & V u ) =  0 in CO ( 1 )  

(PI  u = g  on y ( 2 )  1 +boundary conditions on r ( 3 )  

Considering tlie condition U = g on y as an equality constraint (potential set to a constant value), the 
solution U of problem (P) can also be seen as the restriction to w of the solution ii of the extended 
minimisation problem 

1 min - L&/V~I’CLY , 
yr=g 2 

where v is in tlie space X = v EH’ (Cl> ; verfiing ( 3 ) ]  . { 
We introduce the Lagrangian associated to that minimisation problem, defined by 

1 
2 L(v,,u) = - L&lVv1’dx - 4 p(v - g )  dy  , 

where ,u is the Lagrange multiplier associated to the constraint v - g . We denote by M the space 

of the Lagrange multiplier. Then we look for the saddie-point ( 2 , A )  E X  x M solution of 

Noting that the derivative of this Lagrangian is equal to zero at the optimum @,A), the extended 
potential ii is the first term of @,A) E X  x M solution of 

Iy - 

v v  EX, V p  E M ,  L(E,p) I L ( E , A )  I L(v,A) . 

The potential is the restriction of ii to the dielectric region w , and the surface’charge q is equal 
to tlie multiplier A . 

3. DISCRETIZATION AND SOLUTION 

We first present’ the classical approximation as proposed in [ 3 ] .  We introduce the finite 
dimensional spaces Xh c X and M,, c such that a volume variable vh E Xh is approached by 

Q, finite elements on a regular grid R, of parallelepipeds of the fictitious domain R , and a surface 
variable ,ull E M ,  is approached by Po finite elements on a set of triangles y ,  meshing the conductor 
surfaces y . We approximate the variational problem (Q)  by 

Find ( U h , A v )  EXh X M ,  such that 

(Qh, / l )  L E v u h  vvh dx = 5 A, vh dY vvh E X h  

(uh - g ) d y = o  vpq E M t ~  

Find and A,, such that 

I 
Denoting 

bases defining x h  and M,l, we can rewrite the discrete formulation of system (Q) as 

and A,, the vectors representing the decomposition of Uh and A,, on the finite element 

AhUh - Bh,vl\q = 0 I B l t l U h  = gh . 
(Q) / J , ,  

This can be reformulated as a symmetric and positive system in A , ,  
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B[qAi 'Bh , ,Aq  = g h .  
This approximation gives accurate results for the potential, but not for the charge. Consequently 

we improved the method by introducing non regular functions in the space of discretisation x h  . This 
leads to a system 

Find and A, such that 
AhUh - Bh,rlAq = 0 1 B:qUh -k =gh . 

We still haven't proved theoretically the convergence of this approximation, but practically the results 
for the charge are much more accurate, in particular for coarse volume grids. 

Classically, the existence of ( u h ,  /Iq), and the convergence of the method when h and 77 tend to 
zero are linked to the uniform discrete inf-sup condition 

jyPVdY 
There exists C independent of h such that inf sup =c>o. 

v G x h  lkll x ~~p~~ M 
In our case, this condition implies a compatibility relation between the dimensions of the two spaces 
X h  et M,, , that is between the discretization steps h and 77 of the two meshes : the surface mesh 
must not be too refined compared to the volume mesh. In the 2D case for example, it is proved 
theoretically (see [6]) that this condition holds if the volume grid step is less than three times smaller 
than the surface mesh step. However, numerical experiments show that for our improved 
approximation, this condition can be relaxed. 

The system in Aqcan then be solved efficiently by the conjugate gradient algorithm. The matrix 

A,J represents Poisson's equation on a regular 3D grid, and therefore doesn't need to be stored. 

Moreover, at each iteration of the gradient algorithm, the product A;' x can be computed efficiently 
with a fast Poisson solver using FFT ([4]). 
The matrix Blt,v is sparse -( = 20 N ,  elements are stored, where N ,  is the number of nodes on the 
surface mesh). Indeed, it can be interpreted as a discrete trace operator, and represents the coupling 
between the surface and the volume meshes. Therefore, its nonzero terms are, for every element of the 
surface mesh, those corresponding to the summits of the parallelepipeds having a nonzero intersection 
with this element. 

Treatment of dielectric layers : 
The dielectric permittivity is artificially extended inside the conductors by its value in the dielectric 
media in the horizontal layer. Introducing plane dielectric layers of differentpermittivities breaks the 
regularity of the matrix A ,  in the vertical direction. However we remark that the fast Poisson solver 
takes advantage of the regularity of the grid and equation only in two directions. This propriety allows 
us,to adapt the fast solver to the case of dielectric layers : we can in particular adapt the height of the 
parallelepipeds so that dielectric interfaces coincide with the grid, and that the dielectricpermittivity is 
constant on any parallelepiped of the grid. Thus, dielectric layers are taken into account at no extra 
cost or degree of approximation. 

4. RESULTS 

In the next table, we compare the CPU time and the memory (on a Sun Ultra 60) needed by the 
fictitious domain method with those needed by a finite element method (Clever), and a boundary 
integral method (Fastcap). For each of the 3 structures, we give its dimensions, the number of levels of 
metallic lines and the number of dielectric layers. We made sure the results were obtained with same 
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precision of 5% for all programs. We used the same surface meshes for Fastcap and Fictitious 
Domains simulations. Note also that in the Fastcap simulations, we used an homogeneous dielectric 
medium because the treatment of dielectric layers is very penalising with this method, therefore the 
results given'here for Fastcap are optimistic. 

35pm x 30pm Time (sec) 

20pm x 20pm Time (sec) 
5 levels ; 3 dielectrics Memory (MB) 

3 levels ; 2 dielectrics Memory (MB) 

2 levels ; 4 dielectrics 
125pm x 150pm Time (sec) 

Memory (MB) 

Clever Fastcap Fictitious Domain 
1389 500 43 
339 443 30 
311 58 12 
62 27 7 

1507 17 13 
387 18 6 
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