
A Reduced Product of Absolute and Relative
Error Bounds for Floating-point Analysis

Maxime Jacquemin1, Sylvie Putot2, and Franck Védrine1

1 CEA, List, Software Reliability and Security Laboratory, PC 174
91191 Gif-Sur-Yvette France
firstname.lastname@cea.fr

2 LIX, CNRS and École Polytechnique, Palaiseau, France.
putot@lix.polytechnique.fr

Abstract. Rigorous estimation of bounds on errors in finite precision
computation has become a key point of many formal verification tools.
The primary interest of the use of such tools is generally to obtain worst-
case bounds on the absolute errors. However, the natural bound on the
elementary error committed by each floating-point arithmetic operation
is a bound on the relative error, which suggests that relative error bounds
could also play a role in the process of computing tight error estimations.
In this work, we introduce a very simple interval-based abstraction, com-
bining absolute and relative error propagations. We demonstrate with
a prototype implementation how this simple product allows us in many
cases to improve absolute error bounds, and even to often favorably com-
pare with state-of-the art tools, that rely on much more costly relational
abstractions or optimization-based estimations.

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 S
A

S
 *

 A

rtif
act * A

E
C

1 Introduction

Computing worst-case bounds on the potential loss of accuracy in numerical
programs due to the use of floating-point arithmetic is of utmost importance
in many fields of application, such as embedded systems or numerical simula-
tion. Several analyzes for the computation of sound error bounds have been
proposed in the last 15 years, and generally implemented in academic proto-
types. Most of them rely on abstractions of the value and absolute errors of
program variables. An additional output of such analyses is sometimes bounds
on the relative errors, but they are mostly computed a posteriori, from the values
and absolute errors. Still, the natural bound on the elementary error commit-
ted by each floating-point arithmetic operation is a bound on the relative error.
This strongly suggests that relative error bounds can also play a role in the
process of computing tight error estimates. This is what this work proposes to
explore. We indeed note that on some patterns, abstraction relying only on ab-
solute error yields unreasonably conservative error bounds, and that a simple

product with relative error bounds can bring a drastic improvement. One such
pattern is a conditional statement that tests a quantity subject to a round-
ing error. We consider the very simple piece of code introduced in Example 1.

x = i ∗ i ;
i f (x <= 2 . 0)

y = x ;
else

y = 2 . 0 ;

Example 1. Variables i, x, y are double precision
floating-point numbers, and input i is given with-
out error in range [1, 100]: The multiplication x:=i*i

results in variable x in [1,10000] with an ele-
mentary absolute rounding error Ea(x) bounded in
[−9.09e−13, 9.09e−13]. If evaluated directly by using
the fact that the elementary error in floating-point
arithmetic is bounded in relative error, we obtain a
relative error Er(x) bounded in [−1.11e−16, 1.11e−16]. It is clear that some
information is lost if the error is abstracted by bounds on the absolute er-
ror only, especially on a non-relational abstraction like intervals (and the
wider the intervals, the more so). Take for instance constraint x <= 2.0 on
our variable x. Using the relative error bound allows us to compute a much
tighter absolute error bound in the true branch of the conditional. Indeed,
the value of x knowing that the constraint is satisfied can be reduced in [1,2].
Thus, a new absolute error bound for x in this branch can be computed by
Ea(x) = Ea(x) ∩ xEr(x) = [−9.09e−13, 9.09e−13] ∩ [1, 2][−1.11e−16, 1.11e−16] =
[−2.22e−16, 2.22e−16]. Therefore, the absolute error on variable y will be bounded
in [−2.22e−16, 2.22e−16]. Whereas if not using this reduced product, the error
on x simply propagates as an error on y, and the absolute error bound on y will
be [−9.09e−13, 9.09e−13].

Another simple example, that focuses on arithmetic operations, is taken from
the introduction of [16]:

Example 2. We consider expression t/(t + 1), where t is a double precision
floating-point value in [0,999]. An error is committed when computing t + 1:
the absolute error of t+ 1 is bounded by Ea(t+ 1) = [−5.68e−14, 5.68e−14], the
relative error by Er(t+1) = [−1.1e−16, 1.1e−16]. For comparison, the a posteriori
evaluation of the relative error bounds from the absolute error bounds is

Ea(t+ 1)

t+ 1
=

[−5.68e−14, 5.68e−14]

[1, 1000]
= [−5.68e−14, 5.68e−14]

thus 500 times larger than the direct estimate Er(t + 1). Thus, if the relative
error is not explicitely propagated, some information is lost.

And indeed, as we will develop in Section 3.2, it is natural to express the abso-
lute error on the division x÷y using the relative error on y. Actually, the bounds
on the absolute error of t/(t + 1) using this product are [−1.67e−13, 1.67e−13],
340 times tighter compared to the bounds [−5.68e−11, 5.68e−11] that would be
obtained by classical error propagation relying only on absolute error. On this
example, the method of [16], that relies on optimisation of the error globally on
subexpressions, is more accurate than our improved bounds. This is because we

still suffer here from the conservativeness of interval abstraction in the evalu-
ation of our expressions. But their results come at the expense of much more
expensive computations.

In both cases, we note that this conjunction of the propagation of the relative
error and the absolute error, in the end, helps us improve sometimes dramatically
the absolute error bound, while maintaining a very cheap analysis. It is indeed
the center idea of this work to observe that the information contained in the
absolute and the relative error bounds are complementary, and to propose an
interval-based analysis computing an inexpensive reduced product that combines
the information for the best final estimations of error bounds. The idea has been
experimented here on a reduced set of operators, and ignoring the possibility of
control flow divergences between the floating-point and the corresponding real
computations, as a proof of concept. But the approach can naturally be extended
to more operators, as well as to relational abstractions of values and error, in
order to enhance many existing error analyzes. Additionally, using relational
abstractions is necessary to handle with reasonable accuracy errors due to control
flow divergences.

Contents After some background on floating-point arithmetic in Section 2, we
introduce our abstraction in Section 3. In Section 4, we demonstrate that our
analysis, implemented in the Frama-C platform, while being very efficient in
time, often also favorably compares in accuracy to the generally much more
expensive existing appproaches of the state of the art [16, 11]. We use for this
a set of benchmarks classically used to compare error analyses, extracted from
FPBench3.

Related Work Abstract interpretation [2] is widely used for the analysis of
floating-point computations. Most analyses dedicated to the propagation of error
bounds in floating-point computations focus on absolute roundoff error bounds.
Existing abstraction for rounding errors often are based on intervals [13, 8], affine
forms [1, 9, 10, 4] as implemented in the analyzer Fluctuat [7]. The tool Gappa [6]
relies on interval arithmetic and expression rewriting. It additionally generates
a proof of the bounds it computes, that can be automatically checked with a
proof assistant such as Coq. Some approaches combine these abstractions with
some optimization techniques to enhance bounds on values and errors. The tool
PRECiSA [17], relies on intervals, combined with branch-and-bound optimiza-
tion and symbolic error computations using the Bernstein basis. It also generates
proof certificates on the error bounds. Rosa [5] combines affine arithmetic with
some SMT solving. Real2float [12] also bounds absolute rounding errors using
optimization techniques relying on semidefinite programming and sparse sums
of squares certificates.

Some of the tools based on these methods provide the user with relative error
bounds, but they are often a posteriori bounds, computed from the bounds on
the absolute error. Direct relative error bounds are computed by FPTaylor [16],

3 http://fpbench.org

which formulates the problem of bounding errors as an optimization problem,
using first-order Taylor approximations of arithmetic expressions. The optimiza-
tion based approach of FPTaylor has been extended in Daisy [11], which also
relies on some of the techniques already present in Rosa [5] for value and absolute
error estimate. In the present work, we propose a much less costly alternative to
the direct estimate of relative error, which we show still behaves very well on a
number of classical benchmarks, and demonstrate how this error can be used to
also improve absolute error bounds. Compared to the related work which uses
optimization somewhat blindly, we demonstrate the interplay between the two
types of errors.

2 Floating-point Arithmetic and Rounding Errors

2.1 Floating-point numbers and rounding errors.

The floating-point representation of a real number x is defined by the IEEE 754
standard as the triple (sgn, sig, exp). In this triple, sgn corresponds to the sign
of x, the significand sig has fixed size p, and, for normalized numbers, is such
that 1 ≤ sig < 2, and exp is the exponent. This representation is evaluated as
(−1)

sgn × sig × 2exp. Denormalized numbers allow gradual underflow to zero.
Their exponent is fixed equal to emin, and the significand is such that sig < 1.

Because of the finite size of the significand, a real value is represented by a
rounded value. This rounding can be represented through the operator rnd : R→
F that returns the closest floating-point number with respect to the rounding
mode. Common rounding modes defined by the standard are rounding to nearest
(ties to even), toward zero and toward ±∞. In this work, we consider the classical
case of rounding to nearest. The rounding operator is often modeled as:

rnd(x) = x(1 + ex) + dx (1)

where |ex| ≤ εM , |dx| ≤ δM , ex × dx = 0 and (εM , δM) are parameters fixed by
the format (simple, double or quad precision). Constant εM is often called the
machine epsilon and depends of the precision p of the floating-point numbers
used. It is equal to the distance 21−p between 1 and its floating-point successor,
with p = 24 for float and p = 53 for double numbers. Constant δM is the small-
est denormalized number, equal to 2emin+1−p, with emin = −127 for float and
emin = −1023 for double numbers. In this model, dx represents the absolute error
committed when rounding to a denormalized floating-point number while ex is
the relative error committed when rounding to a normalized floating-point num-
ber. They cannot be present at the same time, which is expressed by condition
ex × dx = 0.

This model can be refined. The normalized floating-point rounding error xex
in (1) is actually bounded by the distance between two consecutive floating-point
numbers around x. This distance can be expressed as ufp(x) εM , using the notion

of unit in the first place ufp() introduced in [15] and defined by:

ufp(x) =

{
0 if x = 0

2blog2|x|c if x 6= 0
(2)

Function ufp() is piecewise constant: the result of ufp(x) for |x| ∈ [2n, 2n+1)
is the constant 2n. Using this definition, the gap xex between the real and its
floating-point representation can be rewritten as ufp(x) ex and the rounding
operator is now:

rnd(x) = x+ ufp(x) ex + dx (3)

Absolute and relative elementary rounding errors. We now define Γa(x) and
Γr(x) the elementary absolute and relative rounding errors which occur when a
real number x is rounded to its floating-point approximation x̃ = rnd(x):

Γa(x) = rnd(x)− x = ufp(x) ex + dx (4)

The relative error is defined only when x 6= 0:

Γr(x) =
rnd(x)− x

x
=

ufp(x) ex + dx
x

(5)

2.2 Arithmetic operations

The IEEE-754 norm standardises some operations that are required to be exactly
rounded (addition, subtraction, multiplication, division and square root): the
result of the floating-point operation on real operands is the same as if the
operation was performed in real numbers on the given inputs, then rounded.
For every operation op : Rk → R defined as exactly rounded, the corresponding
floating-point operation õp can be expressed as:

õp(x1, . . . , xk) = rnd(op(x1, . . . , xk)) (6)

The IEEE754-2008 revision additionally recommends that fifty additional oper-
ators are correctly rounded. We do not handle these operations in this work, but
the approach developed here can be extended.

We now consider the propagation of errors through successive operations. We
denote by x̃ the approximation of an idealized computation x. We thus define
the absolute error due to the approximation by:

Ea(x) = x̃− x

and the relative error, for x 6= 0, by:

Er(x) =
x̃− x
x

The absolute error on the result of an operation op on values x̃1, . . . , x̃k which
are already the approximations of some idealized values x1, . . . , xk is defined by:

Ea(op(x1, . . . , xk)) = õp(x̃1, . . . , x̃k)− op(x1, . . . , xk)

where for all i = 1, . . . , k, the approximated value x̃i is such that x̃i = xi +
Ea(xi) = xi(1 + Er(xi)).

Using Equations (6) and (4), this can be rewritten:

Ea(op(x1, . . . , xk)) = op(x̃1, . . . , x̃k) + Γa(op(x̃1, . . . , x̃k))− op(x1, . . . , xk) (7)

The relative error is derived, when op(x1, . . . , xk) 6= 0:

Er(op(x1, . . . , xk)) =
Ea(op(x1, . . . , xk))

op(x1, . . . , xk)
(8)

2.3 Concrete semantics

The concrete model is that of traditional numerical error analyzes, and in partic-
ular the static analysis [9], which describe the difference of behavior between the
execution of a program in real numbers and in floating-point numbers, along the
floating-point execution flow. We consider in this work the analysis of a language
with the operations {+,−,×,÷,√}, which are required to be exactly rounded
in the IEEE-754 standard, conditional statements and loops. The concrete value
that we will compute for all program variables and control points of a program
in this language, is (x, x̃, Ea(x), Er(x)), where:
– x̃ is the result of the execution of the program in a floating-point semantics,

until the control point of interest,
– x is the result of the execution of the same sequence of arithmetic operations

in a real semantics, ignoring the possibility of a control flow divergence due
to rounding errors,

– the errors between the real execution and the floating-point executions Ea(x)
and Er(x) are defined by Equations (7) and (8).

Conditional statements and unstable tests. In this work, the path conditions are
those of the floating-point executions. We thus ignore the possibility of unstable
tests, when for same input values, the floating-point and the real-valued exe-
cutions can take different branches of a conditional statement. We simply issue
a warning when this possibility is detected, as in for instance early versions of
Fluctuat [7, 9]. In case an unstable test actually occurs, the analysis is possibly
unsound, as the discontinuity error between the computations performed in the
two branches should be considered as an additional error. Relational analyzes
are needed to estimate such discontinuity errors in a not overly conservative way,
and this has been studied and implemented for instance in [10, 5]. But the prob-
lem is somewhat orthogonal to the interplay between relative and absolute error
considered here, and is also not considered in the most closely related work [16,
11], to which we compare our analysis in the section dedicated to experiments.
But we intend to handle unstable tests in the future, in a relational version of
the present analysis.

3 Interval-based Abstraction

Intervals [13] are used in many situations to rigorously compute with interval
domains instead of reals. Throughout the paper, intervals are typeset in boldface
letters. Let x = [x, x] be such an interval, with its bounds x ≤ x where x ∈
R∪ {−∞} and x∪ {+∞}. Interval arithmetic computes a bounding interval for
each elementary operation by x ◦ y = [minx∈x,y∈y{x ◦ y},maxx∈x,y∈y{x ◦ y}],
where ◦ ∈ {+,−,×,÷}, and analogously for the square root. Intervals are the
basis of one of the first and most widely used numerical abstract domains, the
lattice of intervals [3].

In what follows, we propose an abstraction which relies on the lattice of
intervals: we abstract with intervals (x̃,Ea(x),Er(x)), the floating-point range,
absolute and relative errors. The errors are computed, on each control-flow path,
under the assumption for the error estimation that the real and floating-point
executions follow the same path. We deduce bounds for the value in real-valued
semantics by x = x̃−Ea(x). The abstract domain forms a complete lattice, fully
relying on the lattice of intervals, with a join operator performed componentwise
on the value and errors using the classical join operator on intervals.

The rounding mode for computing the interval extremities on the intervals
bounding the floating-point range will be the rounding mode of the computation
we analyse (rounding to the nearest). The other terms, that bound the errors
and the real-valued range, will be computed with outward rounding, in order to
ensure a sound implementation.

3.1 Abstraction of the elementary rounding errors.

In this section, we define the abstraction Γa(x) and Γr(x) of the elementary
rounding errors defined by (4) and (5). They will be used for the abstraction of
transfer functions in Section 3.2.

Terms ex and dx that appear in the elementary rounding errors are bounded
respectively in [−εM , εM] and [−δM , δM]. Additionally, we know that ex and dx
cannot be both non-zero for the same x. If x is rounded to a normalized number,
then dx = 0 and if x is rounded to a denormalized number, then ex = 0. We can
thus compute the abstraction of the elementary absolute rounding error over an
interval of real numbers as the union of the two cases:

Γa(x) = ufp(x) ε(x) ∪ δ(x) (9)

where ε (resp. δ) returns the interval [−εM , εM] (resp. [−δM , δM]) if its parameter
contains at least a normalized (resp. denormalized) number and [0, 0] otherwise.
Moreover, as ufp() is increasing in the absolute value of its argument, we can
abstract the rounding error on normalized numbers by

ufp(x) ε(x) ⊆ ufp(max(|x|, |x|)) ε(x).

Let us define norm(x) and denorm(x) that return respectively the subsets
of normalized and denormalized numbers from interval x. We can define the

abstraction Γr(x) of the elementary relative error, for any interval x, as:

Γr(x) = max
x∈norm(x),x 6=0

∣∣∣∣ufp(x)

x

∣∣∣∣ [−εM , εM] ∪ max
x∈denorm(x)

[−δM , δM]

|x|
(10)

Equation (10) will be used to derive in Section 3.2 relative error bounds also when
interval x possibly contains zero. These error bounds will be valid whenever the
relative error is defined, that is for all non zero value in x.

Let us first evaluate in (10) the error due to the rounding of normalized
numbers. Consider x strictly positive (the negative case is symmetric), then we
can write: ∣∣∣∣ufp(x)

x

∣∣∣∣ =
2exp

sig × 2exp
=

1

sig
(11)

Given sig ∈ [1, 2), a simple abstraction of
∣∣∣ufp(x)

x

∣∣∣ is the interval
(

1
2 , 1
]
, and its

maximum is always bounded by 1. However, we can slightly refine this estimate
when there exists n such that |x| ⊆ [2n, 2n+1). This gives, when x does not
contain 0:

max
x∈x

∣∣∣∣ufp(x)

x

∣∣∣∣ =

{
1/sigmin(|x|,|x|) if ∃n ∈ Z, |x| ⊆ [2n, 2n+1)

1 otherwise
(12)

Let us now consider the error due to denormalized numbers if x contains
any. Let us consider again x strictly positive. A positive denormalized number
can be expressed as a multiple of δM , i.e x = nδM with n ∈ Z, and an absolute
error of magnitude at most δM can be committed, we thus abstract the relative
error on denormalized numbers by:

max
x∈denorm(x)

[−δM , δM]

|x|
⊆ [−1, 1] (13)

3.2 Transfer Functions for Arithmetic Operations

Let us now study the transfer functions for each operation in {+,−,×,÷,
√
}.

First, the floating-point range x̃ is abstracted classcially in interval arith-
metic. Then the absolute and relative error bounds are computed as described
in this section, by an interval abstraction of (7) and (8). Finally, bounds for the
value in real-valued semantics are deduced by x = x̃− Ea(x).

Let us first state that after each operation, which yields a result z = op(x,y),
we perform a reduced product of the absolute and relative errors:

Reduction Ea(z) = Ea(z) ∩ Er(z)z

Er(z) = Er(z) ∩ Ea(z)

z
whenever 0 /∈ z

(14)

We will see that, in particular for the division and the square root, the two
types of errors are more tightly coupled than by the only use of this reduction.

Indeed, some formulations which are equivalent on real numbers, yield different
levels of conservativeness when computed abstracted. It is thus important to
carefully state the precise expression of the propagation of errors through arith-
metic operations. We detail below, for each arithmetic operation, propagation
rules that provide a sound abstraction, while reducing the wrapping effect due
to the use of intervals:

Lemma 1 (Addition and Subtraction).

Ea(x± y) = (Ea(x)± Ea(y)) + Γa(x̃± ỹ) (15)

The relative error is defined only when 0 /∈ x± y. In this case, we have:

Er(x± y) =

(
Er(x)− Er(y)

1± y/x
+ Er(y)

)
(1 + Γr(x̃± ỹ)) + Γr(x̃± ỹ) if 0 /∈ x(

Er(y)− Er(x)

1± x/y
+ Er(x)

)
(1 + Γr(x̃± ỹ)) + Γr(x̃± ỹ) if 0 /∈ y

(16)
When x and y both do not include zero, then the relative error can be computed
as the intersection of the 2 estimates in (16).

Proof. The propagation of the absolute error corresponds to a classical absolute
rounding error analysis, starting from Equation (7) instantiated for the addition
and subtraction: for all x ∈ x, y ∈ y, x̃ = x+ Ea(x) ∈ x̃, ỹ = x+ Ea(y) ∈ ỹ,

Ea(x± y) = (x̃± ỹ) + Γa(x̃± ỹ)− (x± y)

= ((x+ Ea(x))± (y + Ea(y))) + Γa(x̃± ỹ)− (x± y)

= (Ea(x)± Ea(y)) + Γa(x̃± ỹ)

Abstracting this result in intervals, we get Equation (15), which defines Ea(x±y)
as an interval over-approximation of {Ea(x± y), x ∈ x, y ∈ y}.

Note that we would naturally also get a sound over-approximation of Ea(x±
y) by directly computing in intervals (x̃± ỹ)+Γa(x̃± ỹ)−(x±y). However, the
result would be very conservative in general, because interval arithmetic does
not handle correlations. We thus derive, for each arithmetic operation, error
formulas in real numbers by reorganizing terms in an equivalent expression but
reducing variable repetitions. We then abstract the final expression in intervals.

For any binary operation ◦, for all x ∈ x, y ∈ y such that x ◦ y 6= 0, for all
x̃ = x+ Ea(x), ỹ = y + Ea(y), we can compute the relative error as

Er(x ◦ y) =
(x̃ ◦ ỹ) + Γa(x̃ ◦ ỹ)− (x ◦ y)

x ◦ y

=
(x̃ ◦ ỹ) + (x̃ ◦ ỹ)Γr(x̃ ◦ ỹ)− (x ◦ y)

x ◦ y

from which we have:

Er(x ◦ y) =
x̃ ◦ ỹ
x ◦ y

(1 + Γr(x̃ ◦ ỹ))− 1 (17)

We can deduce:

Er(x± y) =
x(Er(x) + 1)± y(1 + Er(y))

x± y
(1 + Γr(x̃± ỹ))− 1

=
xEr(x)± yEr(y)

x± y
(1 + Γr(x̃± ỹ)) + Γr(x̃± ỹ)

It is interesting to reformulate this expression in order to suppress as much as
possible variable repetitions. This will reduce the loss of correlation when the
expression will be evaluated in interval arithmetic. For x 6= 0, we can write:

Er(x± y) =

(
xEr(x)− xEr(y)

x± y
+
xEr(y)± yEr(y)

x± y

)
(1 + Γr(x̃± ỹ)) + Γr(x̃± ỹ)

=

(
Er(x)− Er(y)

1± y
x

+ Er(y)

)
(1 + Γr(x̃± ỹ)) + Γr(x̃± ỹ)

A symmetric transformation can be done, exchanging x and y, which allows us
to conclude with Equations (16), after abstraction in intervals.

We note that the addition is the operation for which propagating relative error
is less natural, and thus some accuracy loss can be expected.

Lemma 2 (Multiplication).

Ea(x× y) = xEa(y) + yEa(x) + Ea(x)Ea(y) + Γa(x̃× ỹ) (18)

Er(x× y) = (Er(x) + 1)(Er(y) + 1)(1 + Γr(x̃× ỹ))− 1 (19)

Proof. As for the addition, the expression of the propagated absolute error by the
multiplication is quite natural, and corresponds to a classical absolute rounding
error analysis: for all x ∈ x, y ∈ y, x̃ = x+ Ea(x), ỹ = y + Ea(y),

Ea(x× y) = (x̃× ỹ) + Γa(x̃× ỹ)− (x× y)

= (x+ Ea(x))(y + Ea(y)) + Γa(x̃× ỹ)− (x× y)

= xEa(y) + yEa(x) + Ea(x)Ea(y) + Γa(x̃× ỹ)

Starting from Equation (17), we obtain an expression of the propagated relative
error that naturally involves the relative errors on the operands:

Er(x× y) =
x̃× ỹ
x× y

(1 + Γr(x̃× ỹ))− 1

=
x(Er(x) + 1)× y(Er(y) + 1)

x× y
(1 + Γr(x̃× ỹ))− 1

= (Er(x) + 1)(Er(y) + 1)(1 + Γr(x̃× ỹ))− 1

This propagation of relative errors should be quite accurate, as we could remove
correlations to values of x and y.

x = a + 3 * b ;

y = c + 3 * d ;

z = x * y ;

Example 3. We consider a very simple example to ex-
amplify our analysis. We have 4 input floating-point
variables a, b, c, d given respectively in the ranges
[0,1], [1,2], [0,1], and [1,2]. All these inputs are sup-
posed to be known exactly, with no rounding error, i.e.
∀v ∈ {a, b, c,d}, Ea(v) = Er(v) = [0, 0]. We now consider the errors committed
on the computations that define floating-point variables x, y, z. For the sake of
demonstration, we explicit here the computation of errors in term of the machine
epsilon εM . In order to evaluate the error on variable x, we first evaluate 3b: its
range of value is 3b = [3, 6], and the errors are Er(3b) = Γr(3b) = [−εM ,+εM]
and Ea(3b) = Γa(3b) = [−4εM ,+4εM] The errors on x that results from the
addition are obtained using (15) and (16):

Ea(x) = Ea(3b) + Γa([3, 7]) = [−8εM ,+8εM]

Er(x) =

(
Er(3b)− Er(a)

1 + a/3b
+ Er(a)

)
(Γr([3, 7]) + 1) + Γr([3, 7])

=
[−εM ,+εM]

[1, 4/3]
([−εM ,+εM] + 1) + [−εM ,+εM] = [−2εM ,+2εM] +O(ε2M)

Note that the bounds for the relative errors are 4
3 times better than the a posteri-

ori estimate Ea(x)/x =
[
− 8

3εM ,+
8
3εM

]
. The errors on y are computed similarly.

Finally, we can deduce absolute error bounds for z using (18):

Ea(z) = xEa(y) + yEa(x) + Ea(x)Ea(y) + Γa(x× y)

= 2× [3, 7] [−8εM ,+8εM] + [−8εM ,+8εM] [−8εM ,+8εM] + Γa([9, 49])

= [−144εM ,+144εM] +O(ε2M)

and relative error bounds using (19):

Er(z) = (Er(x) + 1)(Er(y) + 1)(Γr(x× y) + 1)− 1

= ([−2εM ,+2εM] + 1)([−2εM ,+2εM] + 1)(Γr([9, 49]) + 1)− 1 +O(ε2M)

= [−5εM ,+5εM] +O(ε2M)

Neglecting here for simplicity the second order errors, the reduced product yields
an estimate for the relative error approximately 3.2 times better than the a
posteriori estimate Ea(z)/[9, 49].

Lemma 3 (Division). The division is defined whenever 0 /∈ y, by:

Ea(x÷ y) =
Ea(x)− xEr(y)

ỹ
+ Γa(x̃÷ ỹ) (20)

Er(x÷ y) =
Er(x) + 1

Er(y) + 1
(1 + Γr(x̃÷ ỹ))− 1 (21)

Proof. The division is a case where the coupling between the computation of two
errors is integrated: the absolute error on x ÷ y naturally involves the absolute
error on x and the relative error on y:

Ea(x÷ y) = (x̃÷ ỹ) + Γa(x̃÷ ỹ)− (x÷ y)

=
yx̃− ỹx
yỹ

+ Γa(x̃÷ ỹ)

=
y(x+ Ea(x))− (y + Ea(y))x

yỹ
+ Γa(x̃÷ ỹ)

=
Ea(x)− xEr(y)

ỹ
+ Γa(x̃÷ ỹ)

This is thus an operation where propagating tight relative error bounds on the
operands proves useful to tighten the absolute error bounds on the result.

Er(x÷ y) =
x̃÷ ỹ
x÷ y

(1 + Γr(x̃÷ ỹ))− 1

=
x(Er(x) + 1)

y(Er(y) + 1)
× y

x
× (1 + Γr(x̃÷ ỹ))− 1

=
Er(x) + 1

Er(y) + 1
(1 + Γr(x̃÷ ỹ))− 1

As for the multiplication, we note that the propagation of relative errors should
be generally quite accurate. Note also that as for the multiplication as well, the
relative error bounds are defined even when 0 ∈ x ÷ y , as long as they are
defined for x and y. The bound will be valid for all nonzero values in x ÷ y.
This is exemplified in Example 4.

Example 4. Let us come back to Example 2 of the introduction. An error is
committed when computing t+1, the absolute error of t+1 is bounded by Ea(t+
1) = [−5.68e−14, 5.68e−14], the relative error by Er(t+ 1) = [−1.1e−16, 1.1e−16].
Using Equation (20) to bound the absolute error of the division, we obtain:

Ea
(

t

t + 1

)
= −tEr(t + 1)

t̃ + 1
+ Γa

(
t̃

t̃ + 1

)

=
[0, 900][−1.1e−16, 1.1e−16]

[1, 1000]
+ [−5.68e−14, 5.68e−14]

= [−1.67e−13, 1.67e−13]

If only absolute error bounds were available, we would replace xEr(y) by
xEa(y)/y in Equation (20) and obtain the absolute error analysis used classically.
We would then obtain as absolute error bound on t/(t+ 1):

[0, 999]× [−5.68e−14, 5.68e−14]

[1, 1000]
2 + [−5.68e−14, 5.68e−14] = [−5.68e−11, 5.68e−11]

which is 340 times larger than the absolute error bound computed using our
reduced product.

The relative error on t/(t+ 1) is bounded where it is defined, that if for all
t 6= 0, by:

Er
(

t

t + 1

)
=

Er(t) + 1

Er(t+ 1) + 1

(
1 + Γr

(
t̃

t̃+ 1

))
− 1

=
1

[−1.1e−16, 1.1e−16] + 1

(
1 + Γr

(
t̃

t̃+ 1

))
− 1

For t = [0, 999] , t and t/(t+1) contain zero. As t is an input, its relative error
Er(t) is zero when it is defined, that is for all t 6= 0. The elementary relative
error Γr is also defined for all t 6= 0, and is bounded by the maximum relative
error when using denormalized floating-point numbers around 0, given by (13):
for all t 6= 0, Γr(

t
t+1) ⊆ [−1, 1]. Thus

Er
(

t

t + 1

)
=

1

[−1.1e−16, 1.1e−16] + 1
(1 + [−1, 1])− 1 ⊆ 1 + [−1, 1]− 1 = [−1, 1]

The square root is an operation where the relative error on the operand
naturally appears in the propagation:

Lemma 4 (Square root).

Ea(
√
x) =

√
x(
√

1 + Er(x)− 1) + Γa(
√
x̃) (22)

Er(
√
x) =

√
1 + Er(x)(Γr(

√
x̃) + 1)− 1 (23)

Proof. In order to avoid the loss of correlation, it is natural to factorize
√
x:

Ea(
√
x) =

√
x̃+ Γa(

√
x̃)−

√
x

=
√
x(
√

1 + Er(x)− 1) + Γa(
√
x̃)

The expression of the relative error is deduced immediately.

Er(
√
x) =

√
x̃√
x

(Γr(
√
x̃) + 1)− 1

=

√
x(Er(x) + 1)

x
(Γr(
√
x̃) + 1)− 1

=
√
Er(x) + 1(Γr(

√
x̃) + 1)− 1

Using similar developments, it is possible to handle more functions. We chose
in this work to focus on the main arithmetic operations which error bounds have
long been specified by the IEEE 754 norm.

3.3 Handling conditional statements

Interpretation of Conditional expressions. Let γ(x1, . . . , xn) a conditional ex-
pression defined by f(x1, . . . , xn) � b, with � ∈ {<,>,=,≤,≥}. Let us denote
by x̃γ the interval abstraction of the floating-point value of variable x, after
transformation by the interpretation of conditional γ. It is computed by the
classical backward constraint propagation on intervals which filters out values
of x̃ that do not satisfy the constraint. Note that as already discussed in the
section devoted to the concrete semantics, we consider the path condition only
on the floating-point value. The bound on the relative error is left unchanged by
the interpretation of constraints:

Er(xγ) = Er(x) (24)

In a classical error analysis, that is, with no information about the relative error,
the absolute error bounds are also left unchanged by the interpretation of this
conditional: Ea(xγ) = Ea(x). When available, the relative error bounds can be
used to reduce the absolute error in the case the range of values xγ has been
reduced compared to x by the constraint propagation:

Ea(xγ) = Ea(x) ∩ xγEr(x). (25)

Example 5. In Example 1 of the introduction, the multiplication x:=i*i re-
sults in x = [1, 10000] with an elementary absolute rounding error Ea(x) =
[−9.09e−13, 9.09e−13], and a relative error bound Er(x) = [−1.11e−16, 1.11e−16].
The constraint x <=2 yields x(x≤2) = [1, 2] in the true branch. We can then
reduce the absolute error bound on x in this branch (and thus on y), by Ea(y) =
[1, 2][−1.11e−16, 1.11e−16], as already stated in this introductory example.

Join and widening Joining values coming from different branches of the program
analyzed supposes to define a join or upper bound operator on abstract values.
The join can be performed componentwise on the value, relative and absolute
errors, relying on the classical join on intervals. Naturally, this relies on the
hypothesis that there is no unstable test. Similarly, a widening can be defined
componentwise relying on any widening operator on intervals.

4 Implementation and Experimental Evaluation

We have implemented this approach as a new abstract domain called Numerors
in the Abstract Interpretion plug-in Eva of the verification platform Frama-C4.
Frama-C provides a collection of plug-ins that perform static analysis, deductive
verification, and testing, for safety- and security-critical software. Those plug-
ins can cooperate thanks to their integration on top of a shared kernel and data
structures along with their compliance to a common specification language.

4 Our abstract domain should be included in an upcoming release of Frama-C/Eva
(https://frama-c.com/value.html)

In what follows, we evaluate our approach by comparing the error bounds
obtained by our tool against the state of the art tools Fluctuat [9], Daisy [11]
and FPTaylor [16], on a set of representative benchmark examples.

Name Under- Numerors Fluctuat Fluctuat Daisy Daisy FPTaylor
Appprox Intervals Affine 1 2

log approx – 6.25e-14 3.56e-11 3.56e-11 – – –
conditional ex – 2.22e-16 9.09e-13 9.09e-13 – – 9.09e-13
conditional 1 – 8.43e-13 6.82e-12 6.82e-12 – – 2.09e-11
sqrt 1 2.11e-16 5.51e-15 3.72e-14 3.38e-14 3.72e-14 4.52e-16 2.75e-16
complex sqrt 5.00e-16 1.29e-15 3.93e-15 2.52e-15 3.92e-15 1.89e-15 5.70e-16
kepler0 2.42e-13 3.63e-13 3.63e-13 3.63e-13 3.63e-13 7.15e-13 3.18e-13
intro example 1.65e-16 1.68e-13 5.68e-11 5.67e-11 5.68e-11 2.52e-16 1.67e-16
sec4 example 3.25e-15 6.35e-11 1.16e-09 1.16e-09 1.16e-09 7.00e-14 3.73e-13
test01 sum3 8.88e-16 3.33e-15 3.33e-15 2.89e-15 3.33e-15 4.11e-15 2.89e-15
test02 sum8 4.00e-15 6.22e-15 6.22e-15 6.22e-15 6.22e-15 9.55e-15 6.22e-15
test03 nonlin2 1.64e-16 3.11e-15 2.42e-14 2.28e-14 2.42e-14 4.45e-16 3.47e-16
test04 dqmom9 5.87e-12 8.64e-05 8.64e-05 8.64e-05 8.64e-05 1.78e-09 1.85e-05
test05 nonlin1 r4 1.32e-12 2.78e-07 1.67e-06 1.67e-06 1.67e-06 5.93e-11 2.21e-09
test05 nonlin1 test2 8.29e-17 8.33e-17 8.33e-17 8.33e-17 8.33e-17 1.39e-16 8.33e-17
doppler1 6.13e-14 1.62e-13 3.45e-13 3.45e-13 3.91e-13 1.74e-13 9.91e-14
doppler2 1.14e-13 3.27e-13 8.78e-13 8.78e-13 9.78e-13 3.18e-13 1.84e-13
doppler3 4.16e-14 8.50e-14 1.36e-13 1.36e-13 1.60e-13 9.13e-14 5.70e-14
rigidBody1 1.79e-13 2.40e-13 2.40e-13 2.40e-13 2.40e-13 5.08e-13 2.13e-13
rigidBody2 1.81e-11 2.31e-11 2.31e-11 2.31e-11 2.31e-11 6.32e-11 2.27e-11
turbine1 4.30e-15 4.73e-14 6.04e-14 5.76e-14 6.04e-14 2.80e-14 1.24e-14
turbine2 4.41e-15 8.57e-15 8.57e-15 8.54e-15 8.57e-15 1.71e-14 7.38e-15
turbine3 3.22e-15 3.85e-14 4.72e-14 4.54e-14 4.72e-14 1.65e-14 7.15e-15
verhulst 1.70e-16 3.77e-16 3.77e-16 3.00e-16 3.80e-16 4.21e-16 1.79e-16
predatorPrey 8.79e-17 1.40e-16 1.40e-16 1.38e-16 1.41e-16 2.27e-16 1.01e-16
carbonGas 3.13e-09 2.00e-08 2.00e-08 1.58e-08 2.06e-08 1.03e-08 4.96e-09
sine 2.71e-16 5.18e-16 5.18e-16 5.18e-16 5.18e-16 6.55e-16 4.38e-16
sqroot 4.41e-16 5.62e-16 5.62e-16 5.62e-16 5.62e-16 7.89e-16 4.86e-16
sineOrder3 3.11e-16 5.91e-16 5.96e-16 5.86e-16 7.84e-16 7.99e-16 5.28e-16

Table 1. Tools Comparison on the Absolute Errors

Selection and description of the benchmarks. The examples are mostly extracted
from the FPBench5 suite for comparing verification tools on floating-point pro-
grams, to which we have added 4 examples of our own. Our selection has been
guided by the will to keep a reasonably small set of examples, while including
most classes of examples which were previously studied with the tools of the
related work, Daisy and FPTaylor. We excluded the examples containing calls
to mathematical functions like transcendentals that we do not handle, variations
of the same examples that did not show a different behavior, and examples for
which the inputs were not fully specified. Finally, we modified6 the inputs of
some examples so that all tools compute a non trivial relative error bounds.

The first four examples were written to highlight some features that were
not well represented in FPBench, and in particular programs that include some

5 http://fpbench.org
6 http://www.lix.polytechnique.fr/Labo/Maxime.Jacquemin/numerors.c for the ex-

amples.

conditional statements (the first three examples), and a program with square
roots (the fourth). Benchmark log approx computes an approximation of the
logarithm of the square of its input, using a loop and a Taylor expansion. Bench-
mark conditional ex is Example 1, and conditional 1 is similar but with more
computation. Finally, sqrt 1 computes the function

√
2x+ 3/(2

√
x+ 3). The re-

maining examples come from the FPbench suite. Example complex sqrt belongs
to the Herbie [14] suite. Examples from intro example to test05 nonlin1 test2
come from the FPTaylor test suite, and intro example and sec4 example are
specifically used in [16] to introduce their technique. The remaining examples
come either from the Rosa [5] or the FPTaylor test suites, and have already been
used as benchmarks for both absolute and relative errors [16, 11].

Name Under- Numerors Posteriori Daisy Daisy Daisy FPTaylor
Approx 1 2 3

log approx – ∞ ∞ – – – –
conditional ex – 1.11e-16 9.09e-13 – – – 1.13e-16
conditional 1 – 8.94e-16 3.41e-12 – – – 7.22e-16
sqrt 1 3.42e-16 6.61e-16 6.83e-12 1.10e-12 1.02e-15 ∞ 4.26e-16
complex sqrt 2.04e-16 4.98e-16 8.64e-14 4.01e-15 1.94e-15 ∞ 2.64e-16
kepler0 3.65e-16 1.20e-15 1.20e-15 1.20e-15 2.13e-15 1.06e-15 5.71e-16
intro example 1.87e-16 1.00 ∞ ∞ ∞ ∞ ∞
sec4 example 6.52e-15 1.40e-13 8.71e-06 8.71e-06 3.60e-13 2.34e-13 6.65e-12
test01 sum3 2.78e-16 ∞ ∞ ∞ 1.37e-15 ∞ 5.05e-16
test02 sum8 3.42e-16 5.94e-16 7.77e-16 7.77e-16 1.19e-15 7.73e-16 4.82e-16
test03 nonlin2 2.17e-16 ∞ ∞ ∞ ∞ ∞ ∞
test04 dqmom9 1.46e-12 ∞ ∞ ∞ ∞ ∞ ∞
test05 nonlin1 r4 2.63e-12 5.55e-12 5.00e-01 5.00e-01 2.07e-10 1.68e-05 3.46e-06
test05 nonlin1 test2 1.66e-16 2.26e-16 2.50e-16 2.50e-16 4.17e-16 2.96e-16 1.69e-16
doppler1 6.70e-16 1.10e-15 1.17e-11 1.33e-11 5.91e-12 1.26e-15 9.69e-16
doppler2 7.17e-16 1.21e-15 4.62e-11 5.14e-11 1.67e-11 1.37e-15 9.13e-16
doppler3 5.63e-16 9.75e-16 3.11e-13 3.65e-13 1.82e-13 1.14e-15 7.36e-16
rigidBody1 3.44e-16 7.79e-16 1.04e-12 1.04e-12 2.21e-12 9.76e-16 4.39e-16
rigidBody2 4.84e-16 9.65e-16 1.32e-15 1.32e-15 3.50e-15 1.17e-15 6.27e-16
turbine1 4.21e-16 3.05e-14 3.90e-14 3.90e-14 1.41e-14 1.75e-15 7.95e-16
turbine2 2.30e-16 4.98e-16 4.98e-16 4.98e-16 9.23e-16 6.92e-16 3.97e-16
turbine3 3.53e-16 7.50e-14 1.01e-13 1.01e-13 2.91e-14 6.51e-15 2.40e-15
verhulst 2.26e-16 3.75e-16 1.20e-15 1.21e-15 1.16e-15 4.59e-16 2.41e-16
predatorPrey 3.12e-16 4.82e-16 3.76e-15 3.77e-15 6.09e-15 6.87e-16 3.58e-16
carbonGas 3.39e-16 7.16e-16 9.52e-15 9.80e-15 2.40e-15 8.11e-16 7.67e-16
sine 2.71e-16 1.75e-15 2.27e-15 2.27e-15 8.56e-16 6.31e-16 4.41e-16
sqroot 3.99e-16 6.72e-16 6.72e-16 6.72e-16 7.91e-16 5.66e-16 4.44e-16
sineOrder3 3.53e-16 1.13e-14 1.41e-14 1.86e-14 9.11e-16 8.94e-16 6.06e-16

Table 2. Tools Comparison on the Relative Errors

Methodology of comparison. For each example, absolute error bounds on the out-
put of interest are presented in Table 1, relative error bounds in Table 2. Table 3
presents the running times for each tool, on the complete set of benchmarks.

In Tables 1 and 2, underestimates of the errors are given in the first column
denoted Under-Approx. They are obtained with Daisy, computing the maximum
of errors obtained for runs on 100000 random input values. The second column
denoted Numerors in all result tables presents the results of the approach pre-
sented in our work. Fluctuat in its Intervals mode is used in third column of

Table 1 as a witness of the results obtained with a classical interval absolute
error analysis. The results of the corresponding a posteriori computation of the
relative error are presented in third column of Table 2. This also corresponds to
the results of our tool Numerors on absolute error, without the reducted prod-
uct. In the fourth column of Table 1, we give the results of Fluctuat in its affine
arithmetic based relational mode. We do not report results in Table 2, as the
error is only computed a posteriori, and does not bring much new information.
Finally, Daisy and FPTaylor are state on the art references for the computa-
tion of relative error bounds, relying on optimisation techniques. Daisy provides
many possible options, with different evaluation modes both for values and er-
rors, that combine interval and affine arithmetic based estimates with SMT. We
included a representative set, providing different trade-offs between efficiency
and accuracy. Mode Daisy 1 is:

daisy --analysis=dataflow --rangeMethod=intervals --errorMethod=interval

Mode Daisy 2 is

daisy --analysis=opt --rangeMethod=smt --errorMethod=affine.

Finally, mode Daisy 3, which is dedicated to relative error (and provides to
absolute error bound, hence is not included in Table 1), is:

daisy --analysis=relative --rel-rangeMethod=smtcomplete.

Our understanding is that Daisy 3 corresponds to [11]. Note that Daisy does
not currently handle conditional statements, so that we give no estimate for these
examples. We can specify conditionals as constraints to FPTaylor, however this
is unconvenient for loops, so that we do not give any estimate for log approx.

Results. Let us first comment the timings results presented in Table 3, that
correspond, for each tool, to the sum of times spent for each of the examples that
could be analyzed. Fluctuat, which is dedicated to error analysis, is the fastest,
even in its affine mode: the examples here being all quite simple, affine forms scale
well. While our abstract domain should theoretically be comparable to Fluctuat
Intervals, it is here 10 times slower, partially due to the less specialization of
the frama-C core on which we rely. Finally and most importantly, we want to
stress that Numerors is drastically more efficient than Daisy in any of its modes
or than FPTaylor, which rely on SMT or optimization. We compare ourselves
to the results given by these tools, not because we aim at being more accurate,
but in order to demonstrate that we manage to often come close, or even beat
in precision these more costly approaches, while keeping very low analysis costs.

Numerors Fluctuat Fluctuat Daisy Daisy Daisy FPTaylor
Intervals Affine 1 2 3

0.271 0.059 0.049 4.220 652.062 16056.987 197.774

Table 3. Times Comparison

On each line, the result in boldface letters corresponds to the best estimate,
the one in italic one corresponds to the second best one.

Numerors does not manage to bound the relative error on four examples:
(log approx, test01 sum3, test03 nonlin2 and test04 dqmom9. The reason is that
it finds that the range of the variable of interest includes zero for all these exam-
ples, and some addition and subtraction where involved with a result including
zero. Daisy and FPTaylor also cannot bound the relative error on three of these
examples, for the same reason. On the fourth (test01 sum3), Daisy and FPTay-
lor get finite bounds. This is because the actual range does not include zero, but
a relational analysis is needed to infer this. Note that the reduced product would
allow us to compute again relative error bounds on further computations (if they
do not include zero in their result range). Finally, on example intro example,
which corresponds to Example 2, the range of the result also contains zero, and
Numerors produces an error bound of 1 while Daisy and FPTaylor do not pro-
duce relative error bounds. This bound of 1 is valid for all non-zero values of the
range, and corresponds to the maximum error bounds on denormalized numbers,
as detailed in Example 4.

One obvious strength of our analysis concerns the interpretation of condi-
tional statements. This is highlighted by the first three examples, where we are
much better on absolute errors than FPTaylor, and comparable in relative error.

On the remaining benchmarks, our experiments often demonstrate that FP-
Taylor obtains the most accurate results, both in absolute and relative errors.
However, for the absolute error, Numerors is still the best for 2 cases out of 25,
and it is second best in more 10 cases. For the relative error, considering only
the 23 examples for which at least one tool finds a finite bound, it is best on
4 examples, and sometimes even spectacularly so, and second best in 12 exam-
ples. Naturally, it is also always at least - and often considerably - better than
Fluctuat in its interval mode. But it is also often better also than Fluctuat in its
affine mode, when the loss of correlation due to intervals is not too important.

5 Conclusion and Future Work

We have demonstrated how a simple interval-based reduced product of abso-
lute and relative error bounds greatly enhanced the absolute error bounds, at
a very low additional cost. A possible additional interest of such analysis, is to
further valorize these relative error bounds: indeed, some undesired phenomena
of floating-point arithmetic, such as catastrophic cancellation, are best detected
using relative error bounds.

Another possibility offered by this analyis is to refine error bounds by local
subdivisions of the range of variables. Partitioning the range of some well chosen
program variables is an approach used in most tools, that often allows them to
considerably narrow value and error estimation. But this approach is costly, and
it usually has to be performed globally on the program. We believe that relative
error bounds can be used to enhance the quality of results using much cheaper
local subdivisions, using an idea similar to the interpretation of conditional: the

relative error bounds can be used to reduce the absolute error bounds, given
some aditional constraint on the value that corresponds to a local subdivision of
the range. This refinement can be used to improve locally an error estimation, on
demand. An additional advantage of the local compared to the global subdivision
is that it can be realized on any quantity and not only on input variables.

Finally, a natural extension of this work, that we intend to investigate in
the future, is its combination with relational abstractions such as affine forms.
A simple way to do this is to simply adapt the analysis presented here, using a
relational abstraction to bound the values and errors. But we expect that more
refined interactions would improve the strength of the analysis. Using a relational
abstraction will also allow us to accurately compute discontinuity errors between
branches, and thus handle possible control flow divergences.

Acknowledgments

The work was partially supported by ANR project ANR-15-CE25-0002. We also
gratefully acknowledge the help of the anonymous reviewers and Jérôme Féret,
in improving the presentation of this work.

References

1. J. L. D. Comba and J. Stolfi. Affine arithmetic and its applications to computer
graphics. SEBGRAPI’93, 1993.

2. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages 106–
130. Dunod, Paris, France, 1976.

3. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. ISOP’76, pages 106–130. Dunod, Paris, France, 1976.

4. Eva Darulova and Viktor Kuncak. Trustworthy numerical computation in Scala.
In OOPSLA, 2011.

5. Eva Darulova and Viktor Kuncak. Sound compilation of reals. POPL ’14, pages
235–248, New York, NY, USA, 2014. ACM.

6. Marc Daumas and Guillaume Melquiond. Certification of bounds on expressions
involving rounded operators. ACM Trans. Math. Softw., 2010.

7. D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine. Towards
an industrial use of Fluctuat on safety-critical avionics software. In 14th FMICS,
volume 5825 of LNCS, 2009.

8. E. Goubault. Static analyses of the precision of floating-point operations. In 8th
Static Analysis International Symposium SAS’01, volume 2126 of Lecture Notes in
Computer Science, pages 234–259, 2001.

9. Eric Goubault and Sylvie Putot. Static analysis of finite precision computations.
In VMCAI, volume 6538 of Lecture Notes in Computer Science, pages 232–247.
Springer, 2011.

10. Eric Goubault and Sylvie Putot. Robustness analysis of finite precision implemen-
tations. In APLAS, pages 50–57, 2013.

11. Anastasiia Izycheva and Eva Darulova. On sound relative error bounds for floating-
point arithmetic. In Proceedings of the 17th Conference on Formal Methods in
Computer-Aided Design, FMCAD ’17, pages 15–22, 2017.

12. Victor Magron, George Constantinides, and Alastair Donaldson. Certified roundoff
error bounds using semidefinite programming. Submitted.

13. Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to Interval
Analysis. 2009.

14. J.-R. Wilcox P. Panchekha, A. Sanchez-Stern and Z. Tatlock. Automatically im-
proving accuracy for floating point expressions. In D. Grove and S. Blackburn,
editors, PLDI’15, pages 1–11. ACM, 2015.

15. S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part i:
Faithful rounding. SIAM Journal on Scientific Computing, 31(1), 2008.

16. Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamarić, and Ganesh Gopalakrish-
nan. Rigorous estimation of floating-point round-off errors with symbolic Taylor
expansions. In Nikolaj Bjørner and Frank de Boer, editors, FM 2015: Formal
Methods, 2015.

17. Laura Titolo, Marco A. Feliú, Mariano Moscato, and César A. Muñoz. An ab-
stract interpretation framework for the round-off error analysis of floating-point
programs. In VMCAI, 2018.

