
Under-approximations of computations in real

numbers based on generalized affine arithmetic

Eric Goubault and Sylvie Putot

CEA-LIST
Laboratory for ModEling and Analysis of Systems in Interaction,

91191 Gif-sur-Yvette Cedex, France
{eric.goubault,sylvie.putot}@cea.fr

Abstract. We build a new implicitly relational abstract domain which
gives accurate under-approximations of the set of real values that pro-
gram variables can take. This statement is demonstrated both on a the-
oretical basis and on non-trivial numerical examples. It is, we believe,
the first non-trivial under-approximating numerical domain in the static
analysis literature.

1 Introduction

Most abstract interpretation numerical domains construct over-approximations
of the range of program variables. This is the case for intervals [3], zones [12],
polyhedra [5] etc. Of course, such static analyzes are essentially Galois connec-
tion based, formalism which precisely expresses the over-approximation process.
One needs dual Galois connections, or dual concretization based frameworks, as
developed in e.g. [15], to express under-approximations.

In this paper, we develop an abstract interpretation domain for under-appro-
ximating the range of real values of program variables. It is based on a variant
of the affine form domain developed by the authors for over-approximations [9],
and on ideas from generalized interval arithmetic [7, 8].

Such under-approximations, when combined with over-approximations, give
an estimate of the quality of the result of a static analysis. But of course, our
work can also be applied to statically find run-time errors that are bound to
occur, from some given set of possible initial states. It can also be applied to the
analysis of temporal properties of reactive systems. The latter point was studied
in [6], and formalized through Galois and dual Galois connections in [14]. It is
also studied in abstract model-checking, see for instance [11, 13]. We believe that
these analyzes can also benefit from our approach.

Contents In section 2.1, we recall the main definitions and properties of gener-
alized interval arithmetic, and its potential interpretations as under-approxima-
tions. We then extend these ideas to affine forms. In section 2.3, we use a gen-
eralized mean-value theorem [8] to define an under-approximating semantics of
arithmetic expressions. We develop the order-theoretic apparatus needed for an
actual static analysis in section 2.4, and apply this analysis in section 3.

2 Eric Goubault and Sylvie Putot

Main contributions We describe a new numerical abstract domain that gives
accurate under-approximations of the values of program variables. The time and
space complexities of the primitive operations are small, as was the case with
the approach for over-approximations of [9], which bear interesting relationships
with the present work. Indeed, the interest of combining the two analyzes is
exemplified. Using the prototype we implemented, we demonstrate very good
precision of the analysis on non trivial numerical programs. On linear recursive
filters of any order (pervasive in all control programs, for which safety proofs are
important), we demonstrate how the analysis results for the output variable can
be made as close as we want to the real range, see lemma 1. We also demonstrate
in the case of linear recursive filters, how the abstract invariant discovered by
our method allows us to find a sequence of inputs over time that lead to a value
as close as we want to the maximal or minimal output value, allowing us to
produce witnesses of potentially bad behaviors. An even more general result
holds for arbitrary reactive programs, see lemma 2, and is exemplified on a
perturbed filter.

2 An under-approximating domain based on generalized

affine arithmetic

2.1 Generalized affine forms

We first introduce the principles of generalized interval arithmetic (following
[7, 8]) and their interpretation using quantifiers. We refer the reader to these
recent papers, that revisit the ideas of modal intervals, for more references on
generalized intervals, modal intervals and Kaucher arithmetic.

We then extend these ideas to generalized affine forms that can be interpreted
either as over or under-approximating forms for real values of variables.

Generalized interval arithmetic and notations Generalized intervals are
intervals whose bounds are not ordered. The set of classical intervals is denoted
by IR = {[a, b], a ∈ R, b ∈ R, a ≤ b}. The set of generalized intervals is denoted
by IK = {[a, b], a ∈ R, b ∈ R}. Intervals (classical or generalized) will be noted
with bold letters.

Related to a set of real numbers {x ∈ R, a ≤ x ≤ b}, one can con-
sider two generalized intervals, [a, b], which is called proper, and [b, a], which
is called improper. We define the operations dual [a, b] = [b, a] and pro [a, b] =
[min(a, b), max(a, b)].

The generalized intervals are partially ordered by inclusion which extends
inclusion of classical intervals. Intervals (classical or generalized) will be noted
with bold letters. Given two generalized intervals x = [x, x] and y = [y, y], the
inclusion is defined by

x ⊑ y ⇔ y ≤ x ∧ x ≤ y.

Under-approximations of computations in real numbers 3

The inclusion is then related to the dual operation by x ⊑ y ⇔ dual x ⊒ dual y.
Kaucher addition extends addition on classical intervals :

x + y = [x + y, x + y]

x− y = [x− y, x− y] = x + (−y) where − y = [−y,−y].

We let P = {x = [x, x], x ≥ 0 ∧ x ≥ 0}, −P = {x = [x, x], x ≤ 0 ∧ x ≤ 0},
Z = {x = [x, x], x ≤ 0 ≤ x}, and dual Z = {x = [x, x], x ≥ 0 ≥ x}. Kaucher
multiplication x×y is described in Table 1. Kaucher division is defined for all y
such that 0 /∈ pro y by x/y = x×[1/y, 1/y]. When restricted to proper intervals,

x × y y ∈ P y ∈ Z y ∈ −P y ∈ dualZ

x ∈ P [xy, xy] [xy, xy] [xy, xy] [xy, xy]

x ∈ Z [xy, xy]
[min(xy, xy),

max(xy, xy)]
[xy, xy] 0

x ∈ −P [xy, xy] [xy, xy] [xy, xy] [xy, xy]

x ∈ dualZ [xy, xy] 0 [xy, xy]
[max(xy, xy),

min(xy, xy)]

Table 1. Kaucher multiplication

these operations coincide with the classical interval operations. Kaucher arith-
metic has better algebraic properties than classical interval arithmetic: Kaucher
addition turns IK into a group, as x + (−dual x) = 0. Kaucher multiplication
turns IK restricted to generalized intervals whose products of bounds are strictly
positive into a group, as x× (1/dual x) = 1.

Interpretation of interval computations using quantifiers Classical inter-
val computations can be interpreted as quantified propositions. As an example,
take f to be the function defined by f(x) = x2 − x. Extended to interval arith-
metic, its value on x = [2, 3] is f([2, 3]) = [2, 3]2 − [2, 3] = [1, 7], which can be
interpreted as the proposition

(∀x ∈ [2, 3]) (∃z ∈ [1, 7]) (f(x) = z).

Modal intervals extend classical intervals by coupling a quantifier to them. Ex-
tensions of modal intervals were proposed (see [7]) in the framework of gen-
eralized intervals, and called AE extensions because universal quantifiers (All)
always precede existential ones (Exist) in the interpretations. They give rise to
a generalized interval arithmetic which coincides with Kaucher arithmetic. Let
f : R

n → R a function in which each variable appears only once. Let x ∈ IK
n,

which we can decompose in xA ∈ IR
p and xE ∈ (dual IR)q with p + q = n. We

consider the problem of computing a quantifier Qz and an interval z ∈ IK such
that

(∀xA ∈ xA) (Qzz ∈ pro z) (∃xE ∈ pro xE)(f(x) = z). (1)

4 Eric Goubault and Sylvie Putot

In these expressions, if z is proper then Qz = ∃, else Qz = ∀. When all intervals
are proper, we retrieve the interpretation of classical interval computation, which
gives an over-approximation of the range of f(x) :

(∀x ∈ x) (∃z ∈ z) (f(x) = z).

And when all intervals are improper, we get an under-approximation :

(∀z ∈ pro z) (∃x ∈ pro x) (f(x) = z).

Affine forms for over and under-approximation An affine form ([16]) is a
polynomial of degree one in a set of symbols εi called noise symbols :

x̂ = αx
0 + αx

1ε1 + . . . + αx
nεn, with αx

i ∈ R. (2)

Each noise symbol εi is a formal variable representing an independent component
of the total uncertainty on the quantity x, its value unknown but bounded in
[−1, 1]; the corresponding coefficient αx

i , called partial deviation, is a known real
value. Coefficient αx

0 is the center of the affine form. The idea is that the same
noise symbol can be shared by several quantities, expressing correlations between
them.

In [9], we defined a domain for over-approximation of real values based on
these forms with real coefficients. The concretization Γ̂ (x̂) of x̂ is a proper inter-
val obtained by the evaluation of expression (2) with proper intervals εi = [−1, 1]
and classical interval arithmetic :

Γ̂ (x̂) = αx
0 + αx

1ε1 + . . . + αx
nεn.

We define here a domain for under-approximation based on generalized affine
forms, where the αx

i coefficients are no longer real numbers but proper intervals :

x̌ = αx
0

+ αx
1
ε1 + . . . + αx

nεn, with αx
i ∈ IR. (3)

We define the concretization Γ̌ (x̌) of x̌ obtained by the evaluation of expression
(3) with improper intervals ε∗

i = [1,−1] and Kaucher interval arithmetic :

Γ̌ (x̌) = αx
0

+ αx
1
ε∗

1
+ . . . + αx

nε∗

n.

We will construct semantics of arithmetic operations on these forms such that
if Γ̌ (x̌) is an improper interval, then it gives an under-approximation of the
range of the real values taken by x. Otherwise, it cannot be interpreted as an
under-approximation. Note that if αx

0
is an interval with zero width (i.e. a real

number), then Γ̌ (x̌) is always an improper interval (strictly improper or with
zero width). The extension Γ̂ (x̌) of Γ̂ on x̌ will give an over-approximation of
the values of x, but most of the time less precise than Γ̂ (x̂).

Under-approximations of computations in real numbers 5

2.2 Semantics of affine operations

The result of linear operations on (generalized) affine forms can be exactly inter-
preted as an affine form, without additional under or over-approximation. For
two variables x and y defined by affine forms (3), and a real number r, we get:

x + y = (αx
0

+ α
y
0
) + (αx

1
+ α

y
1
)ε1 + . . . + (αx

n + αy
n)εn

x + r = (αx
0

+ r) + αx
1
ε1 + . . . + αx

nεn

r.x = rαx
0

+ rαx
1
ε1 + . . . + rαx

nεn

Thus, if for example the range of x and y are known exactly, i.e. x and y are
such that Γ̂ (x) = pro Γ̌ (x) and Γ̂ (y) = pro Γ̌ (y), then we also have Γ̂ (x +
y) = pro Γ̌ (x + y), i.e. the range of the real result x + y is known exactly
(under the assumption that we compute these forms in real numbers, see 3.1 for
implementation details).

2.3 Semantics of non affine arithmetic operations

We use for the under-approximation of the result of non affine arithmetic oper-
ations, an extension of the mean-value theorem to generalized intervals (see [7,
8]), which we extend to our generalized affine forms. We then derive two possible
semantics for the under-approximation of the multiplication.

Mean-value theorem for generalized affine forms Suppose we have an
affine model of variables x1, . . . , xk, described as affine combinations such as
(3) of noise symbols ε1, . . . , εn. For a differentiable function f : R

k → R, we
write fε : R

n → R the function induced by f on ε1 to εn. Suppose we have an
over-approximation ∆i of the partial derivatives

{
∂fε

∂εi

(ε), ε ∈ [−1, 1]n
}
⊆∆i. (4)

Then

f̃ε(ε1, . . . , εn) = fε(t1, . . . , tn) +

n∑

i=1

∆i(εi − ti), (5)

where (t1, . . . , tn) is any point in [−1, 1]n, is interpretable in particular in the
following sense :

– if f̃ε(ε∗

1
, . . . , ε∗

n), computed with Kaucher arithmetic, is an improper inter-

val, then pro f̃ε(ε∗

1
, . . . , ε∗

n) is an under-approximation of fε(ε1, . . . , εn).

– if f̃ε(ε1, . . . , εn) is a proper interval, then it is an over-approximation of
fε(ε1, . . . , εn).

Note that a tighter estimation of ∆i can also be used (see [7]) :
{

∂fε

∂εi

(ε1, . . . , εi, ti+1, . . . , tn), (ε1, . . . , εi) ∈ [−1, 1]i
}
⊆∆i. (6)

Also, this theorem can be of course used when we take the εi in sub-ranges of
[−1, 1], it will in fact be used in examples to improve the accuracy of the results.

6 Eric Goubault and Sylvie Putot

Application to the multiplication We derive two affine under-approximating
models for the multiplication. Model 1 is obtained using the Mean-Value Theo-
rem on the real function fε defined by the multiplication of the two real variables
x and y, which can be defined as real functions of the εi. Model 2 is obtained
using it on the approximate model gε, in which the approximation is due to pre-
vious under-approximation of variables x and y. As both models have advantages
and drawbacks, we use a combination.

1. Model 1, using (5) on the real function, with estimation (4) for ∆i. We
can easily prove by recurrence that, for all variables z whose real value is
a linear function of noise symbols ε1, . . . , εn, the coefficient αz

i of the affine
form obtained from our semantics is an over-approximation of ∂z

∂εi
. Then, for

f(x, y) = xy, we can over-approximate

∂fε

∂εi

(x, y) =
∂x

∂εi

y +
∂y

∂εi

x

by
∆i = αx

i y + α
y
i x, (7)

for any over-approximation x and y of the values taken by x and y. However,
the real value fε(t1, . . . , tn) has to be computed inductively, forbidding in
practice a dynamic choice of the ti. But the advantage is that it is computable
exactly for any values chosen a priori of the ti. Under the assumption that we
compute in real numbers, the center αz

0 of the generalized affine forms used
with this model is a real coefficient and not an interval. The concretization
Γ̌ (ž) is thus always interpretable as an under-approximation.

2. Model 2, using (5) on the approximate function, with improved estimation
(4) for ∆i. We consider affine forms x̌ and y̌ giving an under-approximation
when computed with improper ε∗i . The approximate function gε is given by

gε(ε) = x̌× y̌ = (αx
0

+ αx
1
ε1 . . . + αx

nεn)(αy
0

+ α
y
1
ε1 . . . + αy

nεn).

This allows a dynamic choice of t1, . . . , tn, as the evaluation of gε(t1, . . . , tn)
for any point (t1, . . . , tn) is straightforward. The affine form for the result of
the multiplication z = x× y is then

ž = (αx
0

+ αx
1
t1 . . . + αx

ntn)(αy
0

+ α
y
1
t1 . . . + αy

ntn) +

n∑

i=1

∆i(εi − ti) (8)

In the general case, the center gε(t1, . . . , tn) = (αx
0

+αx
1
t1 . . . +αx

ntn)(αy
0

+
α

y
1
t1 . . . + αy

ntn) of this form is a proper interval, which may lead to a ž
which is not interpretable as an under-approximation.
Let us now compute the ∆i. The partial derivatives over εi of this product
for any given real values
(ax

0 , ax
1 , . . . , ax

n, ay
0 , a

y
1 , . . . , a

y
n) ∈ (αx

0
, αx

1
, . . . , αx

n, αy
0
, αy

1
, . . . , αy

n), is :

∂gε

∂εi

(ε1, . . . , εi, ti+1, . . . , tn) = (ax
i ay

0 + ay
i ax

0) +
i∑

j=1

(ax
i ay

j + ay
i ax

j)εj

Under-approximations of computations in real numbers 7

+
n∑

j=i+1

(ax
i ay

j + ay
i a

x
j)tj

We deduce bounds for the partial derivatives on the whole range of under-
approximations for x and y by

∆i = (αx
i α

y
0
+α

y
i αx

0
)+

i∑

j=1

(αx
i α

y
j +α

y
i αx

j)εj+

n∑

j=i+1

(αx
i α

y
j +α

y
i αx

j)tj . (9)

Practical considerations. In both models, in order to obtain an under-appro-
ximation of the multiplication, the result of

∑n
i=1

∆i(ε
∗

i − ti) must be an im-
proper interval. Considering that the (ε∗

i − ti) are improper intervals containing
zero, and therefore are in dual Z, we then can deduce from Table 1 what kind
of intervals for ∆i lead to an improper interval for ∆i(ε

∗

i − ti). The interval ∆i

is proper, so it can be in P , −P or Z. If ∆i ∈ Z, then ∆i(ε
∗

i − ti) is zero. Thus
our interesting cases are ∆i ∈ P or ∆i ∈ −P , which is satisfied when the ∆i

intervals do not contain zero.
It is thus important to have the most accurate estimation of ∆i so that it

does not include zero. Otherwise, a solution is to bisect one or several of the

εi in such a way that on each bisection, our estimation for
{

∂fε

∂εi
(ε), ε ∈ pro ε

}

does not contain zero. With model 2, we also have to find a trade-off between
the width of gε(t1, . . . , tn) and the estimation of the corresponding ∆i.

Example. Consider x = 5

2
+ 1

2
ε1 and y = 9

2
+ 1

2
ε2. We compute an under-

approximation, with model 1 for the multiplication and (t1, t2) = (0, 0), and an
over-approximation, with a semantics given in ([9]), of z = y(x2 − 2y), respec-
tively noted as ž and ẑ :

ž = −12.375 + [8, 15]ε1 + [−8.125,−3.5]ε2

ẑ = −12.0625 + 11.25ε1 − 5.8125ε2 + 0.5625ε3 + 1.5ε4.

We obtain as estimates of the range, [−23.875,−0.875]⊑ z ⊑ [−31.1875, 7.0625].
Using model 2 for the multiplication gives a slightly better under-approximation

ž = −12.375 + [9, 13.5]ǫ1 + [−8.375,−3.375]ǫ2,

which concretizes as [−24.75, 0] ⊑ z.
One bisection of ε1 and ε2, with each ti taken as the center of εi, yields an

over-approximation z ⊑ [−31.1875, 5.8125], and as under-approximation
[−28.453125, 2.765625] ⊑ z for model 1 and [−28.453125, 2.90625] for model 2.
Using two bisections again improve the estimation, with same result for the two
models : [−29.611328125, 3.689453125]⊑ z ⊑ [−30.890625, 5.359375].

Link between under and over-approximation. We consider two variables x and
y, whose values are exactly described by affine forms with real coefficients (i.e.

8 Eric Goubault and Sylvie Putot

the under-approximation and over-approximation are equal), and we compute
the multiplication z = x× y.

Using model 1 with (t1, . . . , tn) = (0, . . . , 0), we write

ž = αx
0αy

0 +

n∑

i=1

(αx
i αy

0 + αy
i αx

0)εi +

n∑

j=1

(αx
i αy

j + αy
i αx

j)εj

 εi (10)

Computed with improper intervals for the εi, (10) gives an under-approximation
of z. We saw that, computed with proper intervals for the εi, it gives an over-
approximation, but better over-approximations can be obtained, as proposed in
[9], as variations of

ẑ = αx
0αy

0 +

n∑

i=1

(αx
i αy

0 + αy
i αx

0)εi + (

n∑

i=1

|αx
i |.|

n∑

i=1

|αy
i |)εn+1. (11)

where a new noise symbol εn+1 is introduced to take into account the non affine
part of the multiplication. We thus see that the part which is representable
as an affine form of the existing symbols is shared between (10) and (11). In
(10), the remaining part is expressed using the existing noise symbols εi to εn,
over-approximating existing relations. Whereas in (11), a new noise symbols is
created. Thus all relations between the non-linear term and the other terms are
lost, resulting in an over-approximation even if the range of this non linear term
could be bounded precisely.

2.4 Order-theoretic considerations

Let in what follows x̌ and y̌ be two under-approximating affine forms. Formally,
we need to lift this domain of generalized affine forms so as to represent the
empty set. Arithmetic operations are the lift of arithmetic operations defined in
sections 2.2 and 2.3. The operations below are also trivially lifted.

Order. We define the order by x̌ ⊑ y̌ if and only if ∀i ≥ 0, αx
i ⊑ α

y
i . If x̌ ⊑ y̌,

then we have on the concretization Γ̌ (x̌) ⊑ Γ̌ (y̌).
In the case Γ̌ (x̌) and Γ̌ (y̌) are improper intervals and thus can be inter-

preted as under-approximations of the ranges of x and y, this is equivalent to
pro Γ̌ (y̌) ⊑ pro Γ̌ (x̌). Inclusion x̌ ⊑ y̌ thus expresses that x̌ is a better under-
approximation that y̌, as it concretizes to an interval whose proper range is larger
than the one of y̌.

Example. Let x̌ = 1 + [2, 4]ε1 and y̌ = 1 + [1, 5]ε1, so that x̌ ⊑ y̌. Using Kaucher
arithmetic with improper ε∗

1
and ε∗

2
, we compute Γ̌ (x̌) = 1 + [2,−2] = [3,−1]

and Γ̌ (y̌) = 1+[1,−1] = [2, 0]. We indeed have [3,−1] ⊑ [2, 0], i.e. [0, 2] ⊑ [−1, 3].

This ensures even more: let Č be any mapping from program variables to affine

Under-approximations of computations in real numbers 9

forms (i.e. an abstract context), and let e be any arithmetic expression. We de-
note by Č[z ← x̌] the context in which we replace the mapping for variable
z so as to get Č(z) = x̌. We let [[e]]Č denote the semantics of the arithmetic
expression e in context Č as defined in section 2.3. Then x̌ ⊑ y̌ implies, for all
variables z,

Γ̌
(
[[e]]Č[z ← x̌]

)
⊑ Γ̌

(
[[e]]Č[z ← y̌]

)
(12)

(analogous to the order relation for over-approximations defined in [9]), meaning
that all future evaluations e using x̌ will concretize to a bigger interval than using
y̌. Hence, x̌, as an under-approximation, is more precise than y̌.

Join. The order-theoretic union is ž = x̌ ∪ y̌, defined by

ž = x̌ ∪ y̌ = (αx
0
∪α

y
0
) + (αx

1
∪α

y
1
)ε1 + . . . + (αx

n ∪αy
n)εn.

A practical alternative solution, which may be used for example in loops, is to
take for ž either x̌ or y̌.

Meet. When, for all i ≥ 0, αx
i ∩α

y
i 6= ∅, we can define an under-approximation

of the intersection by the order-theoretic intersection

ž = x̌ ∩ y̌ = (αx
0
∩α

y
0
) + (αx

1
∩α

y
1
)ε1 + . . . + (αx

n ∩αy
n)εn.

Otherwise, we can take the bottom element or enrich the abstract domain by
propagating in further computations the over-approximated1 constraints intro-
duced on the values of the symbolic variables ε :

(αx
0
−α

y
0
) + (αx

1
−α

y
1
)ε1 + . . . + (αx

n −αy
n)εn = 0.

In practice, a set of interval constraints is attached to all affine forms, and a form
of (interval) Gaussian elimination can be applied for normalizing the forms.

Example. Consider the following program, with independent inputs x ∈ [−1, 3]
and b ∈ [2, 4] :

y = 2x + b;

if (y == x) s = 0;

else s = 1;

Interpreting the test (y == x) amounts to computing the intersection x∩y. We
have here the exact bounds for x and y (neither over-approximation nor under-
approximation). With a computation in classical intervals, we have y ∈ [0, 11],
and we would find s ∈ [0, 1]. With affine forms, we have x = 1 + 2ε1, b = 3 + ε2,
y = 5 + 4ε1 + ε2. For the intersection, we have to find values of ε1 and ε2 in
[−1, 1] satisfying constraint 5+4ε1 +ε2 = 1+2ε1. It simplifies to ε2 = −4−2ε1,
with no solution. We deduce that the intersection is void, and s = 1.

1 See the remark about the link with gpre in section 2.4.

10 Eric Goubault and Sylvie Putot

Link with under-approximating abstractions Kaucher arithmetic provides
a sound under-approximating abstract interpretation in the sense of [15], as we
show now. Define as usual on intervals:

α+ : ℘(R)→ IR γ+ : IR→ ℘(R)
S → [inf S, sup S] [a, b]→ {x | a ≤ x ≤ b}

and on improper intervals (using the notation ℘(R)op to denote the set of subsets
of real numbers ordered with reverse inclusion ⊆op=⊇):

α− : ℘(R)→ dual IR γ− : dual IR→ ℘(R)op

S → [sup S, inf S] [a, b]→ {x | a ≥ x ≥ b}

Of course, (α+, γ+) is the classical Galois connection for the interval abstraction.
Now, whenever i ⊑ α−(Sop), we can prove that γ−(i) ⊆ Sop, hence (α−, γ−)
is a dual Galois connection, hence under-approximating in the sense of [15].
Note that the logical interpretation of the four predicate transformers given
in [15] is linked in the case of generalized interval arithmetic, to the logical
interpretation of proper and improper intervals given in section 2.1: our forward
under-approximating semantics for a functional f is an abstraction of postf (S)
(for S a set of initial states.) By the equality postf (S) = p̃ref−1(S), which in turn

is best under-approximated by p̃ref−1♯(S) (f−1♯
is the best over-approximation

of the inverse of f , see [15]), we explain why in section 2.4 we needed to over-
approximate the constraint to solve (by p̃re) to get an under-approximation of
the intersection with this constraint.

Note that the least fixed point in improper intervals, of a functional F defin-
ing the abstract loop invariants, corresponds to the greatest fixed point of pro F ,
thus demonstrating that these under-approximating invariants are valid for all
iterations of loops.

For affine forms, both over-approximating and under-approximating, we un-
fortunately do not have a best abstraction; hence correctness of our abstract
semantics follows the generalized framework of [4]: for all variables x of the pro-
gram, the under-approximating form computed by our semantics is such that
Sx ⊆op γ− ◦ Γ̌ (x̌) in ℘(R)op, where Sx is the set of values that x can take. In
fact, letting [[e]]c stand for the concrete semantics of a term e,

Γ̌
(
[[e]]Č

)
⊑ [[e]]cγ

− ◦ Γ̌ (Č).

All further evaluations of a set of under-approximating affine forms will give an
under-approximation of the real set of results. In particular, the dependencies are
well encoded in the semantics. Note also that one can replace, for any variable x,
x̌ by any x̌′ with x̌ ⊑ x̌′ and the same property will hold with the newly defined
context thanks to relation (12).

Under-approximations of computations in real numbers 11

3 Applications and experiments

3.1 Implementation

A C library implementing the different under-approximating semantics of this
paper has been implemented. Of course, it does not have access to exact real
arithmetic. However, computing the interval coefficients αx

i using outer rounding
(i.e. rounding towards +∞ for the upper bound of the interval and towards −∞
for the lower bound) ensures correctness of the result. Also, using a multiple
precision library such as MPFR to compute the bounds of these intervals can
improve the accuracy.

3.2 Combination of under and over-approximations

We consider, for some given A, the (non-linear) iteration of the Newton algorithm
xi+1 = 2xi − Ax2

i . If we take x0 not too far away from the inverse of A, this
iteration converges to the inverse of A. As an example, we take A ∈ [1.99, 2.01],
i.e. Ǎ = 2+ .01ǫ1, x0 = .5 and ask to iterate this scheme until |xi+1−xi| < 5e−6.
To obtain sharper results, we use what we call a regular subdivision of this
affine interval into 32 sub-intervals: we propagate in the analysis simultaneously
32 affine forms, starting with 32 sub-intervals Ǎ0, . . . , Ǎ31 of Ǎ, defined for ǫ1 =[

i−16

16
, i−15

16

]
, centered at ti =

i− 31

2

16
; hence Ǎi = 2+0.001ti+

0.01
32

ǫ1 by an obvious
change of variable, with ǫ1 still in [−1, 1].

We get the concretizations of lower and upper forms shown in Figure 1.
After 6 iterations, we already get stable concretizations, for both lower and
over-approximations, of xi, and they are very close to the exact range :

[0.497589799, 0.502433663]⊑ xi ⊑ [0.497509414, 0.502514073].

The difference between successive iterates xi+1 − xi is under-approximated
by [1.2206e−8, 1.2476e−5] at iterate i = 0 (respectively over-approximated by
[−9.773e−8, 1.407e−5]), by [0, 2.765e−10] (respectively, [−4.5409e−6, 4.5416e−6])
at iterate i = 1 , at iterate i = 2 by [0,0] (respectively [−4.5415e−6, 4.5415−6])
and stays stable ever after.

If we look at the exit value of the iterative scheme given by the exit criterion
|xi+1 − xi| < 5e−6, we can conclude automatically, by the simultaneity of our
over-approximation and under-approximation, that the iteration scheme exits
after iteration i = 1, with the following results :

[0.497512498, 0.502512476]⊑ xi ⊑ [0.497509414, 0.502514073]

Of course, this is a general fact: the combination of under and over approxima-
tions gives in general a very powerful method to determine the invariants of a
program.

12 Eric Goubault and Sylvie Putot

Fig. 1. Estimation of the maximum value of result xi in the Newton algorithm.

3.3 Filters, perturbations and worst case scenario

Linear scheme. Consider the following filter of order 2:

Si = 0.7Ei − 1.3Ei−1 + 1.1Ei−2 + 1.4Si−1 − 0.7Si−2

where Ei are independent inputs between 0 and 1, so that Ěi = Êi = 1

2
+ 1

2
ǫi+1,

and S0 = S1 = 0. We first consider the output Si of this filter for a fixed number
of unfoldings, e.g. i = 99. Using the over-approximating semantics of [9], our
prototype gives us

Ŝ99 = Š99 = 0.83 + 7.81e−9ε1 − 2.1e−8ε2 − 1.58e−8ε3 + . . .− 0.16ε99 + 0.35ε100

whose concretization gives (a few more significant digits printed) as an exact
enclosure of S99 :

[−1.0907188500, 2.7573854753]⊑ S99 ⊑ [−1.0907188500, 2.7573854753].

Also, the affine form gives the sequence of inputs Ei that maximizes S99 : Ei = 1
if the corresponding coefficient multiplying εi+1 is positive, Ei = −1 otherwise.

Note that the exact enclosure actually converges to

S∞ = [−1.09071884989..., 2.75738551656...],

and therefore the signal (sequence of inputs of size 99) leading to the maximal
value of S99 is a very good estimate of the signal leading to the maximal value of
Si, for any i ≥ 99. This can be used to find bad-case scenarios of a program : for
a specification of the filter forbidding an output greater than 2.5, this sequence
of inputs provides a counter-example.

This generalizes to linear recursive filters of any order :

Under-approximations of computations in real numbers 13

Lemma 1. Consider the output sn, n ≥ N of a linear recursive filter of order N

sn =
N−1∑

k=0

aksn−k−1 +
N∑

k=0

bken−k

where sk is the output at iterate k, and ek is the input at iterate k. Then:

(1) When unfolding k times, under and over approximating forms are equal, and
their concretization gives the exact range for sk, up to rounding errors due
to the implementation of the abstract domains

(2) The under-approximating form after k unfoldings provides the sequence of
inputs that lead to the maximum range of the kth output.

(3) When the filter is stable, we can make the under-approximation of the output
arbitrarily close to the real range s∞, by unfolding k times for large enough k.

Perturbation by a non linear term. We now perturb this linear scheme by
adding a non-linear term 0.005EiEi−1, obtaining

Si = 0.7Ei − 1.3Ei−1 + 1.1Ei−2 + 1.4Si−1 − 0.7Si−2 + 0.005EiEi−1.

Again, we analyze Si for a fixed number i = 99 of unfoldings. Using the
over-approximating semantics of [9], we get

Ŝ99 = 0.837 + 7.81e−9ε1 − 2.09e−8ε2 − 1.58e−8ε3 + . . .− 0.157ε99 + 0.351ε100

+1.77e−11ε101 − 2.66e−11ε102 + . . . + 0.00175ε197 + 0.00125ε198,

in which terms from ε101 to ε198 account for the over-approximation of non-linear
computations, and do not correspond to inputs. A sequence of inputs leading to
a bad-case scenario is thus not given directly by the sign of the ε1, . . . , ε100 as in
the linear case. Hence one cannot use the same technique as before, to be sure to
reach the supremum of the range for S99. One can get a plausible worst-case sce-
nario by choosing the E0, . . . , E99 that maximize the sub affine form containing
only these ǫk, but one has no assurance that this might be even close to the real
supremum of S99. But we will show that the under-approximating form allows
us to choose at least part of the inputs.

Using the under-approximating semantics that we have developed in this
paper, and model 2 for the multiplication, we get :

Š99 = 0.837 + 7.81e−9ε1 − 2.09e−8ε2 + . . . + [−0.0577, 0.0635]ε93

+[0.0705, 0.138]ε94 + [0.185, 0.223]ε95 + [0.25, 0.271]ε96 + [0.222, 0.234]ε97

+[0.081, 0.0876]ε98 + [−0.158,−0.155]ε99 + [0.35, 0.352]ε100

This gives the following estimates for the real enclosure of S99:

[−0.47655194955570, 2.1515519079]⊑ S99 ⊑ [−1.10177396494, 2.77677392330].

14 Eric Goubault and Sylvie Putot

Using model 1 for the multiplication, we get the slightly less precise under-
approximation [−0.435, 2.11]⊑ S99. But, when the interval coefficient αk corre-
sponding to εk does not contain zero, we know what is the good choice of input
Ek−1 (see lemma 2). This cannot be proved for the form obtained with model
2 of the multiplication. However in the general case it remains a good heuristic.
And in the particular case here, the interval coefficients have the same signs for
the two forms. We thus know that E93 = 1 - note that Ei corresponds to εi+1!
- E94 = 1, E95 = 1, E96 = 1, E97 = 1, E98 = 0 and E99 = 1 is the best depth
7 choice of inputs that will maximize S99. In order to get an estimate of the
supremum for S99, one can try any inputs for E0 to E92. Inputs E0, . . . , E92 = 0
give, for instance, S99 = 2.460374. As a heuristic, one can use the ε0, . . . , ε92 that
maximize the over-approximating term, giving S99 = 2.766383. A one hour sim-
ulation on a 2GHz PC for 109 random sequences of 100 entries gives as estimate
of the supremum 2.211418, trailing our estimate in both time and precision.

We can generalize again :

Lemma 2. Suppose we have x̌ = αx
0

+
∑n

i=1
αx

i εi (with model 1 of multiplica-
tion), giving an under-approximation for x = f(ε1, . . . , εn) on [−1, 1]n with f
continuous, and I+ = {i | 1 ≤ i ≤ n, αi ∈ P}, I− = {i | 1 ≤ i ≤ n, αi ∈ −P},
Iz = {i | 1 ≤ i ≤ n, αi ∈ Z}. Then the supremum of f on [−1, 1]n is reached
for some set of values ε1, . . . , εn ∈ [−1, 1] with ǫi = 1 for i ∈ I+, ǫi = −1 for
i ∈ I−. A similar result holds for the infimum of f .

And as with the linear scheme, the under and over-approximations converge
towards the following estimates, very close to the estimate of S99 :

[−0.4765519, 2.1515519]⊑ S∞ ⊑ [−1.10177396500, 2.77677396500]

Hence the previously found signal gives a scenario which is very close to the
worst-case scenario. Indeed S99 = 2.766383 for which we found a scenario with
our heuristics cannot be more than half a percent away from the true maximum.

4 Conclusion and related work

We have shown how to give a practical, tractable abstract semantics for under-
approximating the values of program variables. Combined with an over-approxi-
mating analysis such as the one of [9], it gives a good indication of the quality
of the static analysis performed. And the combination can sometimes be used
to improve the analysis results, as shown in section 3.2. We can also, as side
products of this analysis, give good estimations of worst-case scenarios, that
lead to maximal or minimal values of some variable.

This under-approximating abstract semantics is for the time being applied
to real-valued variables, and does not address yet floating-point variables. But
we believe that we should be able to extend the fully relational method of [9,
10] to under-approximations of floating-point and imprecision errors. Still, we
would only deliver under-approximated bounds, but not an accurate distribution

Under-approximations of computations in real numbers 15

of the floating-point numbers, which are discrete by nature. One can think of
adding information about the minimal size of the gaps between two floating-point
values in the resulting interval. We also hope to be able to have similar results
on worst-case scenarios in that context, in particular for producing executions
which maximize the imprecision error. This is left for future work.

Another direction we pursued was to extend the method of this paper to
higher-order Taylor forms. We can indeed give a semantics based on a Taylor
expansion of arbitrary degree to any program. But we do not know yet how to
conclude, except in particular cases, on under-approximated bounds, contrarily
to the case of over-approximations (see for instance [1] for a similar observation
on over-approximations and Taylor forms).

Finally, the order-theoretic join and meet rely directly on intervals, it is hence
most probable that policy iteration techniques [2] can be used on this domain.

References

1. A. Chapoutot and M. Martel. Différentiation automatique et formes de Taylor en
analyse statique de programmes numériques (in French). In AFADL’07, 2007.

2. A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy iteration
algorithm for computing fixed points in static analysis of programs. In CAV’05.

3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixed points. Principles

of Programming Languages 4, pages 238–252, 1977.
4. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic

and Computation, 2(4):511–547, 1992.
5. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In POPL’78, pages 84–97.
6. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.

ACM Trans. Prog. Lang. Systems, 19:253–291, 1997.
7. A. Goldsztejn. Modal intervals revisited. Submitted to Reliable Computing.
8. A. Goldsztejn, D. Daney, M. Rueher, and P. Taillibert. Modal intervals revisited:

a mean-value extension to generalized intervals. In QCP’05.
9. E. Goubault and S. Putot. Static analysis of numerical algorithms. In SAS’06,

Seoul, volume 4134 of LNCS, pages 18–34, 2006.
10. E. Goubault and S. Putot. Automatic analysis of imprecision errors in software,

http://www.di.ens.fr/˜goubault/papers/abstract.pdf, 2007.
11. O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided

underapproximation-widening for multi-process systems. In POPL, 2005.
12. A. Miné. A new numerical abstract domain based on difference-bound matrices.

In PADO II, volume 2053 of LNCS, pages 155–172, 2001.
13. C. S. Pasareanu, R. Pelánek, and W. Visser. Concrete model checking with abstract

matching and refinement. In CAV, pages 52–66, 2005.
14. D. A. Schmidt. A calculus of logical relations for over- and underapproximating

static analyses. Sci. Comput. Program., 64(1):29–53, 2007.
15. D.A. Schmidt. Underapproximating predicate transformers. In K. Yi, editor, Proc.

Static Analysis Symposium, pages 127–143. Springer LNCS 4134, 2006.
16. J. Stolfi and L.H. de Figueiredo. An introduction to affine arithmetic, TEMA 2003.

