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Abstract. We propose to extend an existing framework combining ab-
stract interpretation and continuous constraint programming for numer-
ical invariant synthesis, by using more expressive underlying abstract
domains, such as zonotopes. The original method, which relies on itera-
tive refinement, splitting and tightening a collection of abstract elements
until reaching an inductive set, was initially presented in combination
with simple underlying abstract elements: boxes and octagons. The nov-
elty of our work is to use zonotopes, a sub-polyhedric domain that shows
a good compromise between cost and precision. As zonotopes are not
closed under intersection, we had to extend the existing framework, in
addition to designing new operations on zonotopes, such as a novel split-
ting algorithm based on paving zonotopes by sub-zonotopes and paral-
lelotopes. We implemented this method on top of the APRON library,
and tested it on programs with non-linear loops that present complex,
possibly non-convex, invariants. We present some results demonstrating
both the interest of this splitting-based algorithm to synthesize invari-
ants on such programs, and the good compromise presented by its use
in combination with zonotopes with respect to its use with both simpler
domains such as boxes and octagons, and more expressive domains such
as polyhedra.

1 Introduction

Proving loop invariants is a key ingredient in the verification of safety properties
on programs. The classic method to prove that a set is indeed an invariant is
to look for an inductive invariant which implies it, i.e., a state property that is
stable by an iteration of the loop. Notably, the set of program states reachable
from the initial states is the least (i.e. most precise) inductive invariant. Gener-
ally, this set is difficult to compute, so that we settle for an over-approximation,
as any such over-approximation is also an invariant. Inductive invariants play a
special role in program verification because they can be checked by running a
single loop iteration and checking its stability, even for unbounded loops. A key
issue is that not all invariants are inductive, and it is often necessary, given a tar-
get invariant property to prove, to first strengthen it into an inductive invariant.
We illustrate the main results of this work on the program (taken from online
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x=[0.9,1.1];y=[0.9,1.1];

while (True) {

xnew=2x/(0.2 + x^2 + y^2 +

1.53x^2y^2);

ynew=2y/(0.2 + x^2 + y^2 +

1.53x^2y^2);

x=xnew;y=ynew;

}

G=[-2.1,2.1]X[-2.1,2.1]

I=[0.9,1.1]X[0.9,1.1]
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Fig. 1. (a) Example program; (b) Non-inductive invariants for the program.

additional material of [1]) in Fig. 1(a), with initial values of variables (x, y) in

the box I
def
= [0.9, 1.1]

2
and the effect of a loop iteration on a set X of possible

variable values (x, y) ∈ X given by the function F : P(R2) → P(R2) defined as

the loop body of Fig. 1(a). The box T = [−2.1, 2.1]
2
, shown in blue in Fig. 1(b),

is a valid invariant: T includes all the states reachable at the loop head, i.e.,⋃
n∈N

Fn(I) ⊆ T . However, T is not an inductive invariant as F (T ) 6⊆ T : indeed,

F maps the box T to a circle, that goes a bit outside the box T . Consider the
four-petal flower shape towards the center shown in Fig. 1(b): its interior is not
reachable from the initial box I, and it contains the four small circles in white
which are the inverse image by F of the four parts of the circle that go beyond
box T . To prove that T is an invariant for executions beginning in I, we need to
infer an inductive invariant G that is included in T , and precise enough to express
that the small circles inside each petal of T are not reachable states. But all such
invariants have a complex shape, that cannot be represented in classical abstract
domains. The idea of [1], inspired from contraint programming approaches, is
to synthetize an inductive invariant as a collection of abstract elements, that
are iteratively split and refined. In set-based constraint programming, these el-
ements are generally boxes. Previous work [1] was limited to abstract domains
that are closed by intersection (such as polyhedra or octagons) and required
a non-standard operation: split. In this article, we extend this work to other
abstract domains such as zonotopes. We show that their use in this context
provides an interesting trade-off between expressiveness and efficiency, by com-
paring their use with that of boxes, octagons, and polyhedra. For example, on
the program of Fig. 1, Figs. 2(a)–2(d) show the inductive invariant G within T
as found by our algorithm in combination with box, octagon, polyhedron and
zonotope abstract domains. Inference with intervals (resp. octagons, polyhedra,
and zonotopes) takes 646.8 (resp. 8850.8, 126.8, and 35.6) seconds and produces
an inductive invariant composed of 129781 (resp. 129767, 2368, and 488) parts.
Less expressive domains such as boxes and octagons rely heavily on splitting,
hence output a large set of elements and are slower in total, in spite of a smaller
cost of manipulating a single abstract element. In particular, in polyhedra and
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Fig. 2. Inductive invariant obtained by our algorithm using (a) boxes; (b) octagons; (c) polyhedra
and (d) zonotopes.

zonotopes, the image by the loop body in the abstract domain, of a box on the
left corner in Figure 2(c)-2(d) is within the collection of elements, thus proven
invariant, whereas it will not be the case in the box or octagon abstract domains,
ultimately leading by splitting to the refinement of Figures 2(a)-2(b).

Zonotopes are a cost-effective, versatile, and precise abstract domain [2] that
can represent restricted forms of polyhedra as Minkowski sums of line segments.
They feature more lightweight algorithms than general polyhedra, while being
more expressive than other sub-polyhedra domains (e.g., octagons). They are
particularly well suited to approximate non-linear functions. Yet, zonotopes do
not form a lattice and do not enjoy an exact intersection, which is required in
[1]. We thus need to adapt this approach, in addition to defining split and meet
operators, intersection tests, and inclusion tests specifically for zonotopes.

Related work. Garg et al. [3] developed a learning paradigm for loop in-
variant synthesis known as ICE, where the learner synthesizes invariants and
the teacher verifies them using a constraint solver such as SMT. Thakur et al.
[4] discussed a method based on abstract interpretation and SMT solving for
searching inductive invariants. Essentially, the recent line of work dedicated to
synthesizing invariants combines abstract interpretation and constraint-based
techniques (SAT/SMT solvers). The idea of using SAT/SMT is similar to ours,
except that we focus on other classes of algorithms, those used in continuous
constraint programming, and we work on geometric entities, such as boxes and
zonotopes, instead of logical formulas.

Contribution. Our contributions are as follows: firstly, we extend the method
of [1] to domains not closed under intersection; secondly, we introduce new zono-
tope operators: split, inclusion and intersection tests; finally, we present a proto-
type, extending the Taylor1+ zonotope abstract domain [5] in the Apron library
[6], and adapting the algorithm of [1]. Section 2 recalls the algorithm from [1];
Sect. 3 recalls the zonotope domain, introduces our new operators, and discusses
how to handle domains that are not intersection-closed; Sect. 4 presents our ex-
perimental evaluation; Sect. 5 concludes and discusses future works.
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2 Refinement-based inductive invariant inference

We now recall the algorithm from [1] to tighten an invariant into an inductive
invariant, by splitting and tightening a collection of abstract elements.

We assume without loss of generality that variables are real-valued (which in-
cludes integers and non-special float values). A program environment is a subset
of Rn, where n is the number of variables. The concrete semantics of a program
is the collecting semantics of [7]: it is given as the least fixpoint of a function
F : P(Rn)→ P(Rn) over an initial environment I ⊆ Rn; typically, when a pro-
gram consists of just one loop, F is the transfer function for one loop iteration.

We also assume here that we are given a target invariant T ⊆ Rn. The goal
of this article is to infer an inductive invariant G ⊆ Rn that proves that T is
indeed an invariant. This requires finding G such that: I ⊆ G (G includes the
initial states), F (G) ⊆ G (induction), and G ⊆ T (invariant entailment).

As a first step, we replace computations in P(Rn) with computations in
an abstract domain D] ⊆ P(Rn) of tractable subsets of Rn, such as boxes,
octagons, polyhedra, or zonotopes. The abstract version of F , overapproximating
the concrete semantics, is denoted by F ] : D] → D].

Instead of generating an inductive invariant in D], as classically done in
abstract interpretation based analyzers, we are going to look for one in the much
more expressive disjunctive completion of D], i.e. in P(D]). More precisely, we
are going to synthetize finite collections G] ⊆ D] of abstract elements, G] =
{S1, . . . , Sn} that satisfies: I ⊆ ∪

i
Si, ∀k : F ](Sk) ⊆ ∪

i
Si, and ∪

i
Si ⊆ T , which

implies that ∪
i
Si is an inductive invariant. To simplify, we assume that both the

initial state I and the target invariant T are exactly expressible in D].

Search algorithm. The algorithm of [1] we are building upon in this article main-
tains a finite collection G] ⊆ D] that forms a candidate inductive invariant. It
is initialized with the (non-inductive) target invariant: G] = {T}. We ensure at
all times that I ⊆ ∪

i
Si ⊆ T , and iteratively refine G] until it becomes inductive,

i.e., until ∀k : F ](Sk) ⊆ ∪
i
Si. While G] is not inductive, we iterate the following

steps, adding, removing, and updating elements in G]:
– pick an element Sk ∈ G] with F ](Sk) 6⊆ ∪

i
Si, i.e., preventing inductiveness;

– either discard Sk from G], split it into two elements that are added back to
G], or tighten (i.e., shrink) it.

To decide the action to perform, it is useful to classify an abstract element Sk in
relation to the other elements in G] and their image by F ]. We say that Sk is:

– doomed if F ](Sk) ∩ (∪
i
Si) = ∅; such an element will always prevent induc-

tiveness and must be discarded;
– benign if F ](Sk) ⊆ ∪

i
Si, i.e., it does not prevent inductiveness and does not

need to be changed;
– necessary if Sk ∩ I 6= ∅, i.e., it cannot be discarded, to keep ensuring that
I ⊆ ∪

i
Si always holds;
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– useful if Sk ∩ (∪
i
F ](Si)) 6= ∅, i.e., at least an element from G] relies on Sk

to be benign.

Remark 1. Note that, to decide if an abstract element is necessary or useful, the
algorithm requires a test for checking intersection. This test must be an exact
one because discarding a necessary or useful element can result in a failure.

The algorithm first selects a non-benign element Sk. It is discarded if it is either
doomed or not useful, unless it is necessary. Otherwise, it is generally split. By
spliting Sk, we can hope to isolate the part that is doomed, and is ultimately
discarded, from the part that is benign, and kept in the final inductive invariant.
To guide our choice, a useful quantitative measure is that of coverage:

coverage(Sk) :=
vol(F ](Sk) ∩ (∪

i
Si))

vol(F ](Sk))
(1)

where vol(X) is the volume of a set X. Intuitively, the coverage measure denotes
how much the image of Sk lies in the candidate invariant, i.e., how much it is
inductive. Note that, for this to make sense, it is important to rely on the fact
that the Si do not overlap (except maybe on common borders that have a null
volume). The algorithm systematically picks the element Sk ∈ G] with least
coverage in priority, as it requires the most urgent action.

Remark 2. In [1], elements with a very low coverage are systematically discarded,
as unlikely to become benign. However, it is possible that an abstract element
may intersect every inductive invariant, in which case discarding this element
will result in a failure. So, in the current work, we only discard an abstract
element if it has a coverage of 0, i.e., it is doomed.

Tightening. Any part of an Sk that does not intersect any F ](Si) is not useful
and can safely be discarded, improving the likelihood that Sk becomes benign,
without making other benign elements non-benign. An additional tightening step
can help the search algorithm by replacing Sk with: ∪

i
(Sk ∩ F ](Si)) ∪ (Sk ∩ I)

suitably overapproximated to an element representable in the abstract domain.

Data structure. To compute the coverage, and in particular vol(F ](Sk)∩(∪
i
Si)),

it is useful to identify which elements Si ∈ G] each image F ](Sk) may intersect.
To do this efficiently, we maintain a partition B] ⊆ D] of the target space T , as
well as a map post : G]→P(B]) to denote which parts ofB] intersect the image of
each abstract element Sk∈G]: post(Sk):=

{
P∈B] | F ](Sk)∩P 6=∅

}
. Moreover, we

ensure that any element in B] completely contains at most one element in G]. We
maintain a contents-of function cnt : B]→(G]∪

{
∅
}

) indicating which abstract
element of G], if any, is contained in each element of B]: ∀Si ∈ G],∃!Bj ∈
B], cnt(Bj) = Si; moreover, Si ⊆ Bj . Assuming that B] is available, then the
coverage function can be optimized by only considering the relevant parts from
B]:

coverage(Sk) :=

∑{
vol(F ](Sk) ∩ cnt(P )) | P ∈ post(Sk)

}
vol(F ](Sk))

(2)
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B] is initialized to {T} (as G]) and it is split the same way G] is. However,
elements in B] are not tightened, so that B] remains a partition of T . The maps
cnt and post can be efficiently maintained when the elements from B] and G]

are split, removed, or tightened, as detailed in [1].

Remark 3. The coverage information is first used to decide which Si inG] require
urgent action. Then, it is used to decide whether to split or discard. As this
is only a heuristic, an exact volume computation is not mandatory to ensure
correctness. [1] relies on the volume of bounding boxes as it is easy to compute
for the domains considered there. As bounding boxes and volume computations
are expensive for zonotopes, we will introduce another heuristic that does not
rely on computing volumes.

Testing whether an abstract element is benign, i.e. maintains inductiveness, re-
quires inclusion checking: Sk is benign if, whenever F ](Sk) intersects some par-
tition P ∈ B], the intersection is included in cnt(P ) ∈ G]. We also need to check
that F ](Sk) is included within the candidate invariant T . Formally:

Sk is benign ⇐⇒ ∀P ∈ post(Sk) : P ∩ F ](Sk) ⊆ cnt(P ) ∧ F ](Sk) ⊆ T (3)

Unlike coverage computation, this inclusion check must be exact to ensure that
we indeed have an inductive invariant, i.e., that our method is sound.

The algorithm is parameterized by a choice of abstract domain D]. In addi-
tion to an abstract version F ] of F , already provided by abstract interpretation,
it requires a split operator, a meet operator for tightening, tests to check inter-
section and inclusion. Such operators have been proposed for boxes and octagons
in [1]. In the following, we will provide these operators for zonotopes and also
adapt the coverage operation from [1] by replacing the volume operator.

3 Zonotope abstraction and constraint solving

We now adapt the algorithm introduced in Section 2 to use in combination with
the abstract domain of zonotopes. We first introduce zonotopes as a classical
abstract domain, then describe the new operations that were designed for the
specific use here.

3.1 Affine forms and zonotopes

Zonotopes are based on affine arithmetic [8], an extension of interval arithmetic
expressing dependencies between variables. More precisely, the set of values of a
program variable x is abstracted by an affine expression of the form x̂:=α0

x +
n∑
i=1

αi
xεi, where εi are symbolic variables, called noise symbols, whose values

are restricted to [−1, 1]. Linear dependencies between program variables can be
expressed by sharing noise symbols. The set of possible values of all the variables
xk when the noise symbols vary in [−1, 1] is a zonotope, i.e., a center-symmetric
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polytope (a bounded polyhedron) with center-symmetric faces. Compared to
other restrictions of polyhedra, such as octagons or templates, the directions of
zonotopic faces are not fixed a priori, providing some flexibility in the analysis.
Zonotopes have already proved to be a simple and tractable set representation
for program analysis [2, 5].

Consider a tuple of affine forms x̂i for p variables xi over n noise symbols εj ,

x̂i=α0
xi +

n∑
k=1

αk
xiεk. This defines a matrix A ∈M(n+ 1, p) whose (j, i) entry,

for i=1, . . . , p, j=0, . . . , n is Aj,i = αxi
j . The zonotope concretization is

γ(A) =

{
AT

(
1
e

)
|e ∈ Rn, ||e||∞ ≤ 1

}
⊆ Rp (4)

For n=3 and p=2, the zonotope (the center symmetric polygon in blue) in
Fig. 3(a) is the concretisation (joint range) of the affine forms X=(x̂, ŷ) with

x̂=18 + 2ε1 + 1ε2 + 3ε3, ŷ=12 + 1ε2 + 5ε3, that is, AT=

(
18 2 1 3
12 0 1 5

)
. In what

follows, we note A+ ∈ M(n, p) the submatrix of A ∈ M(n + 1, p), without its
first column, that corresponds to the center of the zonotope. Each column of
A+ defines a generator of the zonotope, and we also represent zonotope A as
(c, g1, . . . gn), i.e., as its center c and its collection of generators g1, . . . , gn. For the
example above, we would write A=((18, 12), (2, 0), (1, 1), (3, 5)). This zonotope
is spanned by the generators drawn in its center in Fig. 3(a). The Minkowski
sum of the line segments described by those vectors is the zonotope itself.

3.2 Zonotope operators

Inclusion. The best known methods for inclusion tests are known to have
exponential time (in terms of the number of generators) for zonotopes [2]. Lemma
1 below is an extension of Lemma 4 from [2], which transforms the inclusion test
into an infinite number of simple inequalities, that in turn translate into an
exponential number of linear programs to be solved. We show below how to
further decrease the number of linear programs to solve, so as to go from an
exponential to a polynomial number.

Lemma 1. For two zonotopes given by matrices X ∈ M(nX + 1, p) and Y ∈
M(nY + 1, p), let u=

{
u1, . . . , uk

}
be vectors in Rp such that each face in γ(Y )

has a vector in u that is normal to it. Then γ(X) ⊆ γ(Y ) if and only if∣∣∣〈ui, cx − cy〉∣∣∣ ≤ ||Y+ui||1 − ||X+ui||1,∀i = 1, . . . , k (5)

where cx, cy are the centers of the zonotopes γ(X), γ(Y ) respectively

Remark 4. For a zonotope of dimension p with n generators, the upper bound
on the number of faces, and thus on vectors ui, is 2

(
n
p−1

)
. Thus, the complexity

of the inclusion test is 2
(
n
p−1

)
×O(np) which improves on the exponential bound
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of [2]. Indeed, the authors proved in [2] that γ(X) ⊆ γ(Y ), if and only if (5) is
satisfied for all u ∈ Rp. Lemma 1 shows that it is sufficient to check the inequality
(5) for only a finite (polynomial in p) number of u. We can use singular value
decomposition to compute the vectors u.

Meet. As observed in [2], zonotopes are closed under linear transformation
and under the Minkowski sum, but the set-theoretic intersection of zonotopes
is not always a zonotope [2]. Inspired from previous works in [9, 10] on zono-
tope and polyhedron intersection, a zonotope-zonotope intersection can be over-
approximated by sequential computation of intersection of the zonotope and the
half-spaces.

Several methods have been proposed to compute an over-approximation (e.g.,
in [11, 12, 10]) of the intersection of a zonotope and a linear space geometrically.
Ghorbal et al. [13] proposed a method based on functional interpretation of the
intersection of a zonotope with a guard. It computes a simple yet sufficiently
precise over-approximation by using constrained affine sets: the constraints pro-
duced by the tests in a program are interpreted over the noise symbols of the
affine forms.

Computing the meet of a zonotope with another one as the sequence of
meet of the zonotope with the faces of the other can be imprecise, as the meet
with linear space is an over-approximation, and imprecision will accumulate
quickly. Hence, the need for a zonotope meet that can take into account all faces
of the second argument at once. There are methods which directly focus on
meets between zonotopes by set representations based on collections of sets. For
instance, Althoff et al. [14] and Tommaso et al. [15] introduced zonotope bundles,
defined as the intersection of a set of zonotopes. Note that the intersection is not
computed explicitely. Rather the zonotopes are stored in a list and all operations
are performed on individual zonotopes. These methods can be accurate, but the
related cost increases with the number of sets required, which can be large.

Here we introduce a new geometric meet operation on zonotopes based on
the following observation. Let Z1 (resp. Z2) be a zonotope represented by matrix
M1 (resp. M2) and let x be a point in the intersection of Z1 and Z2. Then, there

exists e∈[−1, 1]p (resp. e′∈[−1, 1]p) such that x=MT
1

(
1
e

)
and x=MT

2

(
1
e′

)
.

For any α∈[0, 1], trivially, x=αx+ (1− α)x, therefore:

Z1 ∩ Z2 ⊆

{
αMT

1

(
1
e

)
+ (1− α)MT

2

(
1
e′

)
, ||e||∞ ≤ 1, ||e′||∞ ≤ 1

}
.

The right hand side of the inclusion above is the zonotope obtained as the
Minkowski sum of zonotope Z1 (scaled by coefficient α) with zonotope Z2 (scaled
by coefficient 1−α), up to some translation.

Note that the meet operator introduces new directions of faces. As we will
see, this gives more flexibility to our splitting operator, that uses a tiling to
pave the zonotope obtained after the meet into sub-zonotopes. This approach
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only provides an over-approximation of the intersection. Therefore, when using
the algorithm of [1], we will not apply the tightening at each step, but only at
the initial step. While this does not prevent the convergence of the algorithm,
the resulting invariant set may be larger than with tightening at each step.
The aim of the method being to prove efficiently that an initial target region is
actually invariant by computing an inner inductive invariant, we did not consider
tightening at each step a key feature.

Intersection test. In the generic algorithm of Sect. 2, we need to know when
two abstract elements intersect. Consider a zonotope Z1 given by its center c1
and generators g1, . . . , gk, and Z2 given by c2 and h1, . . . , hm. As observed in [16],
Z1∩Z2 6=∅ if and only if the point c1−c2 is included in the zonotope centered at the
origin, with generators g1, . . . , gk, h1, . . . , hm. This is a simple linear satisfiability
problem.

Splitting. A zonotope can be viewed as the affine projection of a n-dimensional
unit cube, n being the number of noise symbols, onto a p-dimensional space, p
being the number of variables. Our first idea was thus to use a split operation
on the unit cube in order to define a splitting operation on the resulting zono-
tope. However, this splitting method does produce overlapping zonotopes. The
resulting algorithm was cumbersome and inefficient.

Another natural way to split zonotopes, without overlapping this time, is to
use the property that zonotopes can be tiled, using generally more than 2 sub-
zonotopes. These tiles are more precisely parallelotopes, as we describe below.

Consider a zonotope Z(V ) on a set of generators V=(v1, . . . , vn) ∈ Rp.n. A
zonotopal tiling of Z(V ) is a set of tiles

{
Z1, Z2, . . . , ZM

}
constructed from the

vectors in V such that
M
∪
i=1

Zi=Z(V ). Provided with a sign vector σ ∈
{

+,−, 0
}n

we can define a zonotope:

Z(σ) :=
∑

{i| σi=0}

[−vi,+vi] +
∑

{i| σi=+}

vi −
∑

{i| σi=−}

vi (6)

where Z((0, 0, . . . , 0)) is the largest zonotope obtainable, i.e., Z(V ) and for all
other sign vectors we obtain zonotopes which are contained in Z(V ). The zero
entries of σ characterize the shape of Z(σ) and the non-zero entries describe
how Z(σ) will be translated with respect to the origin. Thus, given a set of
vectors V ∈Rp.n, which generates Z:=Z(V ), we can associate a zonotopal tiling
Z(σ) ⊆ Z(V ) with every sign vector σ ∈

{
+,−, 0

}n
. One such special kind of

tiling is known as a parallelotope tiling, i.e., a tiling formed from all linearly
independent subsets of {v1, v2, . . . , vn}.

In total, there are 2n vertices in an n-dimensional hypercube, which can be
projected with the generator matrix into the zonotope. All the extremal points
of the zonotopes are projected hypercube vertices, but not all projected ver-
tices are extremal in the zonotope. The parallelotopes in our tiling also have,
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Fig. 3. (a) Zonotope concretization γ(A); (b) Arrangement of hyperplanes; (c) Sign vectors; (d)
Sign vectors after fixing the first generator to ‘-’; (e) All parallelotopic tiles.

as extremal points, projected vertices from the hypercube, some of which are
internal points in the zonotope. Enumerating the parallelotopes tiles reduces to
an enumeration of a set of hyper-cube vertices. We develop below an algorithm
for tiling, which enumerate only the vertices characterizing the sub-zonotopes
tiling a given zonotope. We use ideas issued from matroid theory established by
Bohne-Dress theorem [17, 18], i.e., there is a close connection between a zono-
tope and the signs of its vectors since they abstract combinatorial facts about
the structure of the zonotope. Thus, the key objective of the algorithm is to
enumerate the vertices of the tiles as sign vectors of the so-called hyperplane
arrangement [19] corresponding to a zonotope, that we are going to define now.

Hyperplane arrangements. A finite family A=
{
hj : j=1, . . . ,m

}
of hyper-

planes in Rp is called an arrangement of hyperplanes. Any hyperplane parti-
tions the space Rp into three sets: h+

j =
{
x | vT

j x>bj
}

, h0
j=
{
x | vT

j x=bj
}

and

h−j =
{
x | vT

j x<bj
}

. For each point x in Rp, there is a sign vector σ(x)∈
{

+,−, 0
}n

giving its relative location with respect to the hyperplane arrangement, defined
as follows:

σ(x)j = +, if x ∈ h+
j or −, if x ∈ h−j or 0, if x ∈ h0

j (7)

The set of points with a given sign vector is an open polyhedron, whose faces of
every dimension (including full dimensional p-dimensional cells partitioning the
polyhedron) are determined by the intersection of some sets of the form h0

j , h
−
j

and h+
j , hence are in one to one correspondence with sign vectors. Such a set

is a cell if the corresponding sign vectors do not have zero entries. For a zono-
tope Z=Z(V ) generated by the columns of V , we define the associated central
arrangement A=A(V ) of n hyperplanes in Rp, each having vj as its normal vec-
tor : A(V )=

{
h0
j | j=1, 2, . . . , n

}
where h0

j=
{
x ∈ Rp | vT

j x=0
}

for j=1, 2, . . . , n.
There is a duality relation between a zonotope and its corresponding hyperplane
arrangement. Every d-dimensional open polyhedron in A determined by its sign
vectors corresponds to a p−d-dimensional region of a zonotope where d ≤ p; e.g.,
a full-dimensional open polyhedron corresponds to the vertices of the zonotope.

We denote by Σ=Σ(V ) a set of sign vectors of cells of the arrangement
where each vector corresponds to a cell. For example, Fig. 3(b) illustrates an
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arrangement of 3 hyperplanes in R2 for the vectors that define the generators of
the zonotope in Fig. 3(a). Each cell (region between two adjacent hyperplanes)
is represented by a sign vector of dimension 3 and corresponds to an extremal
point of the zonotope as shown in Fig. 3(c). Furthermore, two extreme points
in Z are adjacent in Z if and only if the associated cells are adjacent, i.e., if and
only if their sign vectors are different in exactly one component. Finding the sign
vectors is a cell enumeration problem. We use here a reverse search algorithm
[19] that has a time complexity of O(n p LP (n, p) |Σ|) to compute Σ=Σ(V ) for
any given rational p× n matrix V , where LP (n, p) is the time to solve a linear
programming problem with n inequalities in p variables.

Definition 1. Let σ ∈
{

+,−, 0
}n

a sign vector. Fixing a single-element j ∈
1, . . . , n means setting σj ∈ {+,−} and defines a sub-zonotope

Z(V \ j{+,−}) :=
∑

{i 6=j| σi=0}

[−vi,+vi] +
∑

{i 6=j| σi=+}

vi−
∑

{i 6=j| σi=−}

vi + σjvj (8)

Freeing a single-element j ∈ 1, . . . , n means setting σj = 0 and defines a larger
zonotope

Z(V̂ /j{+,−}) :=
∑

{i 6=j| σi=0}

[−vi,+vi] +
∑

{i6=j| σi=+}

vi −
∑

{i 6=j| σi=−}

vi + [−vj ,+vj ]

(9)

By Definition 1, we know that a sub-zonotope is obtained by fixing the sign of
any one of the generators of a zonotope. Thus a parallelotopic tile is a zonotope
with p free generators and n−p fixed generators (p is the number of variables and
n is the number of generators). Note that a sub-zonotope has some of its vertices
in common with the vertices of the original zonotope and some inner vertices.
Incrementally, if we keep fixing the sign of the generators until we enumerate
the first parallelotopic tile then we have enumerated a sufficient number of inner
vertices corresponding to the extremal points of each sub-zonotope to construct
the remaining parallelotopic tiles. This is true by induction.

Algorithm. Fig. 4 illustrates a recursive algorithm for computing all the parallelo-
topic tiles characterizing a given p dimensional zonotope Z=Z(c, v1, v2, . . . , vn).
First, it checks if the input is already a tile i.e., n = p, then it returns the
singleton containing the zonotope itself, otherwise it arbitrarily chooses a sign
to fix the first generator. Fixing v1 will produce a sub-zonotope defined by:
Zsub=Z((σ1, 0, . . . , 0)) computed according to (6) where σ1 is either ‘+’ or ‘-’.
Then we make a recursive call of the tiling function on Zsub which computes its
tiling and stores the result in T . The remaining step consist in finding all the
adjacent parallelotopic tiles of Zsub. First, we compute the sign vectors (Σ′) of
Zsub and prepend to them the sign of the first generator (σ1) and add all the
non-existent sign vectors to Σ. This corresponds to the extremal points of Zsub
which are not extremal points of Z. We know that the first generator was fixed
by computing Zsub. Now, we free it and for each subset of generators v2 . . . vn of
length p−1 we compute the parallelotopes for the p free generators {1} ∪ S.
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procedure Tilings(Z)
if n = p then

return {Z}
else

Compute Σ = Σ(V )
Compute Zsub = Z((σ1, 0, . . . , 0))
T = TILINGS(Zsub)
Σ′ = Σ(V ′) where V ′ are the generators of Zsub

Prepend σ1 to Σ′, and add to Σ
// Find all tiles adjacent to Zsub

for S in 2{2,...,n} of length p− 1 do
Find parallelotopic tiles for S in Σ
Add to T

return T

Fig. 4. Algorithm to compute the tilings of the zonotope Z=Z(c, v1, v2, . . . , vn) defined
by center c and the generators v1, v2, . . . , vn=V .

Example 1. Fixing to ‘-’ the first generator of the zonotope Z(V ) of Fig-
ure 3(c), defined by V=((2, 0), (1, 1), (3, 5)) and center (18, 12), we ob-
tain the parallelotopic tile Z(V \ 1−) shown in Fig. 3(d), where the ex-
tremal points are marked in red. The center of this tile is computed as(

18, 12
)

+(−1)
(

2, 0
)

+0
(

1, 1
)

+0
(

3, 5
)
. Now, we shall be using this tile to

generate the others.
The generator

(
2, 0

)
was fixed in order to generate the parallelotopic tile.

Now, we free this generator (v1) and for each subset of generators v2, v3 of length
p−1 we compute the parallelotopes. Consider the free generator combination
(v1, v2) with the vector v3 fixed. We search for the sign vectors of Z(V ) in which
each individual fixed generator has the same sign. For instance the sign vectors:
(+,−,−), (−.−,−), (−,+,−), (+,+,−) characterize a parallelotope as shown in
Fig. 3(e). Similarly, we can find the tile with vectors (v1, v3) free and v2 fixed.

3.3 Coverage operation

Consider a set of zonotopes G] in Fig. 5(a) partitioning an inductive invariant.
Fig. 5(b) illustrates the set of partitions B] which covers the whole invariant
space. Consider the zonotope partition noted P in Fig. 5(b). Recall from Sec-
tion 2 that the contents-of function corresponding to P (i.e., cnt(P )) will return
the parallelotope Sk marked in Fig. 5(a). The image of the zonotopes in Fig. 5(a)
by a loop iteration is shown in edgeform color red in Fig. 5(c). We superimposed
the images and the partitions to show which parts of B] intersect the image of
a zonotope Sk ∈ G]. That is the map post.

As discussed in Section 2 in the current work we only apply tightening during
the first iteration. So, the benign test in Equation (3) can be reduced to

Skis benign ⇐⇒ ∀P ∈ post(Sk) : cnt(P ) 6= ∅ ∧ F ](Sk) ⊆ T (10)
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Fig. 5. (a) Set of zonotopes G] partitioning an inductive invariant; (b) Partitions B]; (c) Map post

i.e., a zonotope Sk is benign if F ](Sk) is included within the candidate invariant,
and if, when F ](Sk) intersects some zonotope P ∈ B], we have that cnt(P ) is
not the emptyset. For instance, consider the zonotope Sk shown in Fig. 5(a)
(the parallelotope labeled as Sk) and its image under F ], the zonotope labeled
as F ](Sk) shown in Fig. 5(c). The sub-parallelotopes numbered 1, 2, up to 5 in
Fig. 5(c) are thus in post(Sk). Thus, the benign test for Sk consists in checking
whether these partitions contain zonotopes from G], and whether the image of
Sk is entailed within the initial invariant, which are true here.

Recall that, to compute coverage, we actually only need some approxima-
tion (with bounded ratio), so we use an heuristic measure instead of computing
volume: we count the number of zonotopes P ∈ B] which intersect F ](Sk),
i.e., #{P |P ∈ post(Sk)} and then, among these zonotopes, we count the ones
for which cnt(P ) 6= ∅, i.e., we compute #{P |cnt(P ) 6= ∅, P ∈ post(Sk)}. Our
heuristic measure is thus:

coverage(Sk) :=
#{P |cnt(P ) 6= ∅, P ∈ post(Sk)}

#{P |P ∈ post(Sk)}
(11)

4 Experiments

A prototype analyzer was written in OCaml for the algorithm of [1] using the
box and octagon abstract domains available in the Apron library [6]. We adapted
this prototype analyzer, as described in Section 3, in order to use the zonotopic
abstract domain implementation Taylor1+ [5] and polyhedra abstract domain
New Polka from Apron. We added the operations split, intersection, coverage
measure and the new inclusion test of Section 3 in Taylor1+3. This adapted
version is available online4.

We have chosen hard non-linear problems5 from various articles on non-
linear numeric invariant inference. Most of these examples belong to SV-COMP

3 https://github.com/bibekkabi/taylor1plus
4 https://github.com/bibekkabi/Prototype_analyzerwithApron
5 https://github.com/bibekkabi/Prototype_analyzerwithApron/tree/master/

NSV_files
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Table 1. Experimental results with tightening applied only during first iteration.

Program Boxes Octagons Zonotopes Polyhedra

#elems. #iters. time(s) #elems. #iters. time(s) #elems. #iters. time(s) #elems. #iters. time(s)

Octagon 752 2621 0.1042 752 2756 0.6115 1 1 0.0001 1 1 0.0001

Filter 238 1310 0.1029 74 736 0.2105 38 222 0.5020 42 312 0.2554

Filter2 14 58 0.0034 7 13 0.0013 8 16 0.0045 1 1 0.0009

Arrow-Hurwicz 1784 1643 0.4033 369 931 0.5147 15 38 0.0235 134 484 1.0059

Harm 87 438 0.0112 88 448 0.0647 60 254 0.5143 53 243 0.2442

Harm-reset 87 438 0.0204 88 446 0.1478 60 268 0.9717 53 253 0.3867

Harm-saturated 23 15 0.0011 24 16 0.0112 9 14 0.0157 5 9 0.0124

Sine 240 1448 0.4395 154 348 0.1102 21 33 0.0547 136 286 1.1145

Square root 7 10 0.0005 4 4 0.0016 1 1 0.0001 4 4 0.0066

Newton 200 102 0.1097 158 76 0.1785 11 17 0.0197 64 26 2.0660

Newton2 1806 499 6.6861 709 430 2.2207 8 6 0.0193 12 12 2.7498

Corner 129781 1847 646.8494 129767 1847 8850.8766 488 999 35.6245 2368 4248 126.7980
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Fig. 6. Inductive invariant for Filter example (a) 238 boxes 1310 iterations, 0.1029 s; (b) 74 oc-
tagons, 736 iterations, 0.2105 s; (c) 42 polyhedra, 312 iterations, 0.2554 s; (d) 38 zonotopes, 222
iterations, 0.5020 s.

benchmarks6, e.g., Sine, Square root, Newton, Newton2, Filter. In Table 1, we
compare on some small but challenging loops the results of the algorithm applied
to boxes, octagons, polyhedra and zonotopes. For each abstract domain, we give
the number of iterations and time until a first inductive invariant is found,
and the number of elements that compose this invariant. For each example, we
highlight in bold in Table 1 the entries corresponding to the smallest number of
elements, iterations, or execution time.

Example Octagon in Table 1 corresponds to the motivational example from
[1]. Its loop body performs a 45-degree rotation around the origin, with a slight
inward scaling. The initial element obtained after the first tightening step is
already inductive with zonotopes. The classical abstract semantics for addition
and subtraction on octagons is too coarse to prove this is an inductive invariant,
explaining why the analyzer had to iterate a lot, contrarily to the zonotopic case.

Filter is a second-order digital filter taken from [1]. The candidate invariant
provided to the algorithm is [−4, 4] which is not inductive. Figs. 6(a), 6(b), 6(c),
and 6(d) compare the result of the algorithm on the Filter program using in-
tervals, octagons, polyhedra and zonotopes. The natural inductive invariants for
such filters are ellipsoids. The inductive invariant found within each abstraction
is indeed an approximation of an ellipsoid. It is composed of fewer zonotopes

6 https://github.com/sosy-lab/sv-benchmarks/tree/master/c/floats-cdfpl
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and polyhedra than boxes and, to a lesser extent, octagons, and requires fewer
iterations to be synthesized. For Filter2 from [20], our inductive invariant shows
that x and y remain within [−0.2, 1]2.

We analyzed the Arrow-Hurwicz loop taken from [20] as a two variable pro-
gram. The algorithm with boxes, octagons, polyhedra and zonotopes was able
to verify that the variables remain within the bound [−1.73, 1.73]2. The analysis
with zonotopes was faster and generated far fewer abstract elements compared
to other domains.

Harm is an harmonic oscillator program from [20]. Its loop body is close
to the identity. The programs Harm-reset and Harm-saturated add some non-
determinism in the loop body. The polyhedra require fewer elements and itera-
tions, but more time, compared to boxes and octagons. On simple cases, the use
of complicated abstractions is not competitive, as expected.

For the lead-lag controllers (programs Lead-lag, Lead-lag-reset and Lead-lag-
saturated from [21]), none of the abstract domains could find an inductive in-
variant before timeout. The case of the dampened oscillators [21] fails similarly.

Sine, Square root, Newton, Newton2 (taken from [22]) and Corner (Fig. 1(a))
are programs with non-linear loop bodies. Sine and Square root compute the cor-
responding mathematical functions through Taylor expansions, while Newton
and Newton2 perform one step and two steps of Newton solving respectively.
Zonotopes are the fastest on all these examples: they require much fewer itera-
tions and elements compared to intervals, octagons and polyhedra.

For example, Figure 7(a), 7(b), 7(c) and 7(d) compare the result of the algo-
rithm on the Sine program using intervals, octagons, polyhedras and zonotopes.
Our zonotope-based method is better when aiming to prove as fast as possible
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Fig. 7. Inductive invariant for Sine example (a) 240 boxes 1448 iterations, 0.4395 s; (b) 154 oc-
tagons, 348 iterations, 0.1102 s; (c) 136 polyhedras, 286 iterations, 1.1145 s; (d) 21 zonotopes, 33
iterations, 0.0547 s.

that the initial invariant holds, strengthening it into an inductive invariant. In-
deed, with a better interpretation of non affine operations, less splitting steps are
needed before getting an inductive invariant. For example, zonotopes enabled us
to prove the initial invariant as inductive for the Square root program.

These experiments confirm that zonotopes provide a very interesting trade-off
between a general purpose abstraction, that stand the comparison with simpler
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abstractions on basic linear examples, but are also faster and more flexible for the
abstraction of more complex, non affine behaviors. In particular, the fact that
they allow representing inductive invariants with fewer elements will be even
more crucial for the scalability of the approach to higher dimension programs.

5 Conclusion and future work

In this paper, we investigated the use of constraint-solving inspired algorithms for
inferring inductive invariants. The algorithm works by iteratively splitting and
tightening a set of abstract elements until an inductive invariant is found. Our
main contribution was to extend the type of abstract elements this algorithm can
rely on, in particular when there is no natural bisection method. We instantiated
it to the case of zonotopes, and demonstrated that they provide a good trade
off, in particular on non-linear programs, and scale up much better than the
same algorithm based on simpler domains, such as boxes. Future work includes
the use of such techniques to infer invariants of continuous systems and higher
dimensional programs.
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0002-01 COVERIF
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