
An Accurate Join for Zonotopes, Preserving
Affine Input/Output Relations

Eric Goubault, Tristan Le Gall and Sylvie Putot

CEA, LIST, Laboratory for the Modelling and Analysis of Interacting Systems,
Point courrier 174, 91191 Gif-sur-Yvette, France.

Abstract

Zonotopes are a convenient abstract domain for the precise analysis of programs with numerical variables.
Compared to the domain of convex polyhedra, it is less expensive and may easily handle non-linear as-
signments. However, the classical join operator of this abstract domain does not always preserve linear
invariants, unlike the convex hull. We present a global join operator that preserves some affine relations.
We end up by showing some experiments conducted on the constrained Taylor1+ domain of Apron.

Keywords: Abstract interpretation, zonotopes, affine relations

1 Introduction

Zonotopic methods have proved useful in a number of contexts in computer science,

such as image processing [13], reachability analysis of hybrid systems [9,6] and static

analysis by abstract interpretation as implemented in FLUCTUAT [5,12]. Most

transfer functions (in particular, the interpretation of arithmetic expressions and

assignments) are precise and fast in zonotopes. But set-theoretic functions, such as

the meet and join operations, are difficult to characterize and compute, contrarily

to most of other sub-polyhedric domains (zones [15], linear templates [18], even

polyhedra [4]). Indeed, they are non canonical operations, and can only be over-

approximated in the general case.

In [8], we proposed a meet operation for our zonotopic abstract domains. In this

article, we propose an improvement of the time and space efficient upper bound

operators that we introduced in [10,11,7]. The problem of these upper bound op-

erators is that they forget a lot about the relations between values that program

variables can take. They are only proved optimal (that is, giving minimal upper

1 Email:firstname.lastname@cea.fr

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 287 (2012) 65–76

1571-0661/$ – see front matter © 2012 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2012.09.007

mailto:firstname.lastname@cea.fr
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2012.09.007
http://dx.doi.org/10.1016/j.entcs.2012.09.007
http://www.sciencedirect.com

bounds) in the case where only one variable differs in the joined states, which is

of course fairly disappointing. This paper constructs a much better “global” upper

bound, that is proved to be optimal in some situations, involving any number of

program variables.

Contributions of the paper

We prove in Section 3 that minimal upper bounds e for constrained affine sets e1
and e2 necessarily satisfy the affine relations between program variables and central

noise symbols (used to encode the inputs of the program) satisfied by both e1 and

e2. The main contribution of the article is then the definition of a more precise

global join operator, that uses the previous component-wise join of [10,11,7] only on

part of the variables, and these common affine relations to deduce an upper bound

on the other variables. We actually show in Proposition 3.3 that our join is optimal

in some important situations.

In Section 4, we show on some applications that problems that would normally

involve some form of disjunctive analysis or need some form of “clock domain” [3],

can be treated precisely using the zonotopic abstract domain with our new join op-

erator. Indeed, the implicit affine relations that may not be visible in the assignment

of arithmetic expressions, are explicited - and preserved - by the join operation. We

implemented this operation in the APRON [17] domain Taylor1+ [7]: some bench-

marks show that while the join is still efficient in terms of time and memory (the

abstract domain is unchanged, the sole join operation is modified), it is of similar

precision as the polyhedric join.

2 Previous results on zonotopic abstract domains

2.1 Affine arithmetic, zonotopes and affine sets

Affine arithmetic is an extension of interval arithmetic on affine forms, first intro-

duced in [2], that takes into account affine correlations between variables. An affine

form is a formal sum over a set of noise symbols εi

x̂
def
= αx

0 +

n∑
i=1

αx
i εi,

with αx
i ∈ R for all i. Each noise symbol εi stands for an independent component of

the total uncertainty on the quantity x̂, its value is unknown but bounded in [-1,1];

the corresponding coefficient αx
i is a known real value, which gives the magnitude

of that component. The same noise symbol can be shared by several quantities,

indicating correlations among them.

The semantics of affine operations is straightforward, they are exact in affine

arithmetic. Non affine operations are linearized, and new noise symbols are intro-

duced to handle the approximation term. These new noise symbols are indicated

as ηj noise symbols: the εi noise symbols model uncertainty in data or parame-

ters, while the ηj noise symbols model uncertainty coming from the analysis. For

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–7666

instance the multiplication of two affine forms defined on εi only (for simplicity of

presentation) introduces a new noise symbol, say η1:

x̂ŷ = αx
0α

y
0 +

n∑
i=1

(αx
i α

y
0 + αy

i α
x
0) εi +

⎛
⎝

n∑
i=1

|αx
i α

y
i |+

n∑
i<j

|αx
i α

y
j + αx

jα
y
i |
⎞
⎠ η1.

The coefficient of the new perturbation noise symbol η1 is an over-approximation

of the non-linear part of the multiplication.

In what follows, we introduce matrix notations to handle tuples of affine forms.

We noteM(n, p) the space of matrices with n lines and p columns of real coefficients.

A tuple of affine forms expressing the set of values taken by p variables over n

noise symbols εi, 1 ≤ i ≤ n, can be represented by a matrix A ∈ M(n + 1, p).

We note tA is the transpose of A, and for any vector e = (e1, . . . , en) ∈ R
n,

||e||∞ = max1≤i≤n |ei|. We formally define the zonotopic concretization of such

tuples by :

Definition 2.1 Let a tuple of affine forms with p variables over n noise symbols

be defined by a matrix A ∈ M(n+ 1, p). Its concretization is the zonotope

γ(A) =

⎧⎨
⎩

tA

⎛
⎝ 1

e

⎞
⎠ | e ∈ R

n, ||e||∞ ≤ 1

⎫⎬
⎭ ⊆ R

p .

x

y

10 15 20 25 30
5

10

15
For instance, for n = 4 and

p = 2, the gray zonotope is the

concretization of the affine set

(x̂, ŷ), with x̂ = 20− 4ε1 + 2ε3 +

3ε4, ŷ = 10 − 2ε1 + ε2 − ε4, and

tA =

⎛
⎝ 20 −4 0 2 3

10 −2 1 0 −1

⎞
⎠ .

Following the repartition of noise symbols in two sets, we define affine sets as

Minkowski sums of a central zonotope, γ(CX) and of a perturbation zonotope cen-

tered on 0, γ(PX). Central zonotopes depend on central noise symbols εi, which

represent the uncertainty on input values to the program. Perturbation zonotopes

depend on perturbation symbols ηj which are created along the interpretation of the

program and represent the uncertainty due to operations that are not interpreted

exactly.

Definition 2.2 We define an affine set X by the pair of matrices

X = (CX , PX) ∈ M(n+ 1, p)×M(m, p).

The affine form Xk = cX0k +
∑n

i=1 c
X
ikεi +

∑m
j=1 p

X
jkηj is the symbolic representation

in X of the value of xk (the kth program variable).

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–76 67

2.2 Geometric and functional orders

Definition 2.3 Let X be an affine set. Its concretization γ(X) ⊆ R
p is the zono-

tope

γ(X) =

⎧⎨
⎩

tCX

⎛
⎝ 1

ε

⎞
⎠+ tPXη | ε× η ∈ [−1, 1]n+m

⎫⎬
⎭ .

If we were only interested in abstractions of current values of variables, the

partial order to consider for proving the correctness of the abstract semantic would

be subset inclusion of the concretization, as formalized in Definition 2.3.

However, we consider functional abstractions. Classically, input/output func-

tional abstractions are handled by adding slack variables corresponding to the ini-

tial values of the uncertain inputs. Here, we can see the central (noise) symbol εi
of the affine forms as being these slack variables: an affine set for p variables over

n input noise symbols defines a function from R
n to R

p.

We thus define a pre-order on affine sets [7,11] which formalizes the fact that the

central symbols have a specific interpretation as parameterizing the initial values of

input arguments to the analyzed program:

Definition 2.4 Let X = (CX , PX), Y = (CY , P Y) be two affine sets in M(n +

1, p)×M(m, p). We say that X ≤ Y iff

∀u ∈ R
p, ||(CY − CX)u||1 ≤ ||P Y u||1 − ||PXu||1 .

where ||X||1 =
∑n

i=1 |Xi| is the l1 norm of vector X.

2.3 Join operator: preliminaries and motivation for the present work

The least upper bound of two affine sets does not exist, there may be incompara-

ble minimal upper bounds. In previous work [10,11], we defined an upper bound

for affine sets based on an algorithm that, for each variable taken independently,

gives a minimal upper bound in some (most, actually) cases. However, considered

globally, this upper bound generally does not give a minimal upper bound: indeed,

performing the join operation independently on each variable ignores the relations

between variables, and is thus not satisfying.

Let us first recall this join operator over affine sets. For two real numbers α and

β, let α ∧ β denote their minimum and α ∨ β their maximum. We define

argmin|.|(α, β) = {γ ∈ [α ∧ β, α ∨ β] | |γ| minimal}

Let x and y be two intervals. We say that x and y are in generic positions if,

whenever x ⊆ y, inf x = inf y or supx = supy.

Lemma 2.5 One-dimensional join. [10] Let two affine sets X and Y in M(n +

1, p)×M(m, p) such that at least p−1 components are equal: for all l ∈ [1, p], l �= k,

Xl = Yl. We define Z = X 	 Y by for all l ∈ [1, p], l �= k, Zl = Xl = Yl and

Zk = Xk 	 Yk, such that for all l ∈ [1, p], l �= k, i = 1 ∈ [1, n], j ∈ [1,m]:

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–7668

• cZ0,k = mid (γ(Xk) ∪ γ(Yk))

• cZi,k = argmin|.|(cXi,k, c
Y
i,k)

• pZj,k = argmin|.|(pXj,k, p
Y
j,k)

• pZm+k,k = sup γ(Xk) ∪ γ(Yk)− cZ0,k −
∑n

i=1 |cZi,k| −
∑m

j=1 |pZj,k|
• pZm+k,l = 0

Then Z is an upper bound of X and Y such that γ(Zk) = γ(Xk) ∪ γ(Yk). And it is

a minimal upper bound whenever γ(Xk) and γ(Yk) are in generic positions.

In words, the center of the affine form Zk is taken as the center of the concretiza-

tions of the two affine forms Xk and Yk. Then the coefficients of Zk over the noise

symbols present in Xk and Yk are taken as the smallest common dependencies. And

finally we add a new noise symbol ηm+k to take into account the uncertainty due

to the join operation, its coefficient is pZm+k,k.

This one-dimensional operator can be extended to obtain a p-dimensional join

operator, when all dimensions of the affine sets are joined:

Lemma 2.6 Componentwise join. [11] Let two affine sets X and Y in M(n +

1, p)×M(m, p). We define Z = X 	C Y by: for all k ∈ [1, p], Zk = Xk 	 Yk. Then

Z is an upper bound of X and Y .

The perturbation added to take into account the uncertainty due to the join is

a diagonal block p× p: a new noise symbol ηm+k is added for each variable xk, and

these new noise symbols are not shared. This join operator thus loses some relation

that may exist between variables.

Let us now consider an example, that motivates a global join operator :

Example 2.7

1 float x1 := [1,3];

2 float x2 := [1,3];

3 float x3;

4 if (random()) {
5 x1 = x1 + 2;

6 x2 = x2 + 2; }
7 x3 = x2 − x1;

Joining the two branches supposes to join the two affine sets X and Y defined

by (X1 = 2 + ε1, X2 = 2 + ε2) and (Y1 = 4 + ε1, Y2 = 4 + ε2). If we apply the

component-wise join defined in Lemma 2.5, we obtain Z such that Z1 = 3+ ε1 + η1
and Z2 = 3 + ε2 + η2, where η1 and η2 are two independent new noise symbols. In

this case, we do not capture the somehow disjunctive information, that either 0 or 2

is added to both program variables x1 and x2, but that it can not be that 0 is added

to x1 and 2 is added to x2. And we obtain Z3 = Z2−Z1 = ε2+η2−ε1−η1 ∈ [−4, 4].

Now, observe that there is a relation between variables which is true for both

branches joined. Since we do not preserve it, the final result is inaccurate. Indeed,

it is more than simply a relation between variables, it is a relation between variables

and inputs of the program, relations that are captured by our functional abstract

domain: we have x2 − x1 = ε2 − ε1 in both branches. In order to get a global

join operation on X and Y , we can thus use the one-dimensional join operator on

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–76 69

one variable, and naturally deduce the affine form for the second variable by this

relation: this gives W such that W1 = 3 + ε1 + η1 as previously, and we deduce

W2 = 3 + ε2 + η1. We thus obtain here a minimal upper bound of X and Y , and

can deduce the expected result W3 = W2 −W1 = ε2 − ε1 ∈ [−2, 2].

The projection on (x1, x2) of the concretization of X, Y , Z and W are repre-

sented Figure 1. The component-wise join gives the box γ(Z) in which no relation

is preserved between Z1 and Z2. Whereas the global join gives the zonotope γ(W),

which is here a minimal upper bound of γ(X) and γ(Y).

γ(X)

γ(Y)

γ(Z) γ(W)

x1

x2

1 3 50

1

3

5

Fig. 1. X, Y and results Z and W of the component-wise and global join operators on Example 2.7

It now remains to formally define these common relations, and to characterize

the join operator preserving these relations.

3 Preserving affine relations in join operations

3.1 Affine relations over affine sets

Let us consider an affine set X = (CX , PX) over p program variables x1, . . . , xp,

defined over n central noise symbols ε1, . . . , εn and m perturbation noise symbols

η1, . . . , ηm. An affine relation inX is an affine equation over the p program variables

and the n central noise symbols, that holds for any values of the noise symbols, i.e.

is given by α1, . . . , αp, β0, . . . , βn ∈ R such that:

p∑
r=1

αrxr = β0 +
n∑

i=1

βiεi (1)

holds for any ε = t(ε1, . . . , εn) ∈ [−1, 1]n and η = t(η1, . . . , ηm) ∈ [−1, 1]m and

(x1, . . . , xp) =
tCXε+ tPXη.

Note that only central noise symbols appear in the equation, and not the per-

turbation noise symbols. Moreover, we cannot have all the αr = 0 without having

all the βi = 0 as well. Hence affine relations in an affine set always link the value

of at least one xr with other variables or central noise symbols. It is also well

known that the set of affine relations defined in Equation 1, identified with the vec-

tor (α1, . . . , αp, β0, . . . , βn), is a vector space over the reals: sums of any two such

vectors, and multiplication of such vectors by any λ ∈ R still define a valid affine

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–7670

relation. As a sub-vector space of Rp+n+1, it is necessarily of finite dimension, hence

generated by a finite basis, i.e. a finite number k of independent affine relations.

This k is thus necessarily less or equal to p, since the n noise symbols are linearly

independent, and there is a constant term.

3.2 Common affine relations

An affine relation common to X and Y is an affine relation in X which is also an

affine relation in Y . Consider we have k such affine relations, k being necessarily

less or equal to p as previously stated:
p∑

r=1

αl,rxr = βl,0 +

n∑
i=1

βl,iεi, ∀l ∈ {1 . . . k}. (2)

When the (xr)1≤r≤p are defined by an affine set X = (CX , PX), we rewrite:

∑p
r=1 αl,rxr =

∑n
i=0 (

∑p
r=1 αl,rci,r) εi +

∑m
j=0 (

∑p
r=1 αl,rpj,r) ηj , ∀l ∈ {1, . . . , k}

These relations, being true for every value of the noise symbols εi and ηj , imply

that for all 1 ≤ l ≤ k, 0 ≤ i ≤ n and 1 ≤ j ≤ m, we have:
p∑

r=1

αl,rci,r = βl,i (3) and

p∑
r=1

αl,rpj,r = 0 (4)

Example 3.1 Consider again the two affine sets joined in Example 2.7:

X1 = 2 + ε1

X2 = 2 + ε2
and

Y1 = 4 + ε1

Y2 = 4 + ε2

We want the affine relations common to X and Y , of the form: α1x1 + α2x2 =

β0 + β1ε1 + β2ε2 that hold for all (ε1, ε2) ∈ [−1, 1]. Substituting X and Y in this

relation yields β0 = 2α1 + 2α2 = 4α1 + 4α2, β1 = α1 and β2 = α2. The solutions

can be parameterized by a λ ∈ R, they are of the form β0 = 0, α1 = β1 = λ,

α2 = β2 = −λ. For instance we can choose x2 − x1 = ε2 − ε1.

3.3 Reduction to row-echelon form

Up to a renumbering of the variables x1,. . ., xp, we can always suppose the k inde-

pendent affine relations common to X and Y are of the form:

xi = Ri(xi+1, . . . , xp, ε1, . . . , εn), (5)

where Ri is an affine function, for all i ∈ [1..k].

This can be shown as follows. We first consider the matrix M = t(D1, . . . , Dk)

whose ith row is the vector Di ∈ R
p+n+1 representing the ith of the k independent

affine relations common to X and Y . This matrix can be written M = (M ′|M ′′)
with M ′ a k × k matrix (only the coefficient of the xi appear) and M ′′ is the

remaining block of size k × (p+ n+ 1− k).

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–76 71

Now, M ′ has an LU decomposition (see e.g. [1]) M ′ = LU , where L is lower

triangular and ones on the diagonal, U is upper triangular. Then (U |L−1M ′′) is a
matrix of affine relations common to X and Y as well: indeed, (U |L−1M ′′) = L−1M

and thus (U |L−1M ′′)u = 0 is equivalent to Mu = 0. Now, as the rank of M is k, as

it is made of k independent affine relations, U has exactly k non-null elements on

the diagonal, giving k independent relations of the form defined in Equation 5.

3.4 Definition of a join operator

Suppose we have two affine sets X and Y defining p variables, our new join operator

is defined by Algorithm 1, that we prove correct, and even optimal in some cases,

in this section (cf. Proposition 2.6). In what follows, we note X>k the affine set

obtained by the projection ofX ∈ M(n+1, p)×M(m, p) on its p−k last components

xk+1, . . . , xp.

Algorithm 1 Algorithm for the global join operator

Inputs are X = (CX , PX), Y = (CY , P Y), output is Z

Form the system of equations in αl,r, βl,i, for 1 ≤ l ≤ p, 0 ≤ i ≤ n, 1 ≤ j ≤ m:

⎧⎨
⎩

∑p
r=1 αl,rc

X
i,r =

∑p
r=1 αl,rc

Y
i,r = βl,i

∑p
r=1 αl,rp

X
j,r =

∑p
r=1 αl,rp

Y
j,r = 0

Solve this system to get k independent affine relations, i = 1, . . . , k, using LU

decomposition: xi = Ri(xi+1, . . . , xp, ε1, . . . , εn)

Define Z = X 	 Y as:

For rows strictly greater than k: Z>k = X>k 	C Y>k (cf. Lemma 2.6)

For rows less than k:

for i = k downto 1 do

Zi = Ri(Zi+1, . . . , Zp, ε1, . . . , εn)

end for

Basically, the algorithm works as follows: we determine the k independent affine

relations between the variables and the input noise symbols εi, that they have in

common. We express them as in Equation 2. We thus can choose among the p

variables, p− k variables, on which we use the component-wise join of Lemma 2.6,

and from there reconstruct an upper bound for the p variables using Equation 5.

The global join of Algorithm 1 is therefore mathematically defined as :

Definition 3.2 Global join. Let X and Y be two affine sets in M(n + 1, p) ×
M(m, p), which have in common k independent affine relations:

for all i ∈ [1, k], xi = Ri(xi+1, . . . , xp, ε1, . . . , εn). We define Z = X 	G Y by

Z>k = X>k 	C Y>k and for all i ∈ k, . . . , 1, Zi = Ri(Zi+1, . . . , Zp, ε1, . . . , εn).

Note that in Definition 3.2, the operations are ordered: first computation of

Z>k, then reconstruction of Zk to Z1. Due to the row-echelon reduction and the

reconstruction, the worst-case time complexity of this global join is O(n3 + n2p),

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–7672

whereas the component-wise join’s complexity is only O(np). However, we introduce

less new noise symbols and we are more precise, so this new join operation may speed

up fixpoint computations as shown in Section 4.

Proposition 3.3 now proves the correctness of Algorithm 1, as well as optimality

in some cases (in particular, when k = p − 1, because of the optimality of the

uni-dimensional join in the generic case) :

Proposition 3.3 Z = X 	G Y is an upper bound of X and Y , and if Z>k is a

minimal upper bound of X>k and Y>k, then Z is a minimal upper bound of X

and Y .

A lemma (needed to prove Proposition 3.3) states that relations of Equation 2

are compatible with the functional order. This property shows the necessity to

preserve affine input/output relations.

Lemma 3.4 Let X = (CX , PX) and Y = (CY , P Y) be two affine sets such that:

(i) X ≤ Y ,

(ii) Y satisfies the k relations of Equation 2

Then X satisfies these k relations.

This join operator is indirectly linked to Karr’s algorithm [14,16], as it com-

putes and preserves affine equalities that Karr’s algorithm would infer if applied

functionally, that is equalities between variables and inputs (our noise symbols).

4 Experiments

The APRON [17] library implements different abstract domains, including the affine

sets (Taylor1+ domain). We implemented this new join operator in the Taylor1+

abstract domain. We present some results on programs analyzed with Interproc, a

static analyzer which allows us to select any APRON abstract domain. First, we

focus on comparisons of results of join operators with Taylor1+ using the standard

(component-wise) and the global joins. We then show the relative performance of all

classical domains and our domains on an example with different discretization steps.

We refer to [7,8] for examples which really aim at demonstrating the performance

of zonotopic abstract domains in general.

We consider three examples (Fig 5) that illustrate some constructions commonly

found in classical programs. Loop counter (Fig 2) is a program in which the value

of a variable x depends indirectly on the value of the loop counter. With the global

join operator, we infer that x − i = 2 + 2ε1 and the analysis reaches a fix-point

without the help of a widening operator. With the classical join operator, the

analysis cannot terminate without widening, and terminates with the disappointing

x ∈ [0,∞]. If branches (Fig 3) show what may happen when we join the two

branches of an conditional structure that encodes a computation on variables x and

y, depending on the current mode (m, considered as a value 0 or 1) of the program.

In this example, the difference is more subtle since the results of both join operations

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–76 73

have the same interval concretization. However, the global join is better since it

introduces only one new noise symbol instead of three. Linear recurrence (Fig 4)

computes a sequence of couples that converges to (14, 14). Without the global join,

the static analysis with zonotopic abstract domain cannot find out this limit.

1 float x=[0,4];
2 int i=0;
3 while (i ≤ 5) {
4 i++;
5 x++;}

Fig. 2. Loop counter

1 float x=[0,4];
2 float y=[0,4];
3 bool m = brandom();
4 if (m) {
5 x++; y++;
6 m= not(m);}
7 else {
8 x−−; y−−;
9 m= not(m);}

Fig. 3. If branches

1 float x=12;
2 float x1=12;
3 float y=16;
4 float y1=16;
5 while (true) {
6 x=x1;
7 y=y1;
8 x1=3∗x/4 + y/4;
9 y1=x/4 + 3∗ y/4;}

Fig. 4. Linear recurrence

example standard join global join relation

loop counter
i ∈ [0, 6]

x ∈ [0,∞]

i = 3 + 3η2 ∈ [0, 6]

x = 5 + 2ε1 + 3η2 ∈ [0, 10]
x− i = 2 + 2ε1

if branches

x = 2 + 2ε1 + η1 ∈ [−1, 5]

y = 2 + 2ε2 + η2 ∈ [−1, 5]

m = 0.5 + 0.5η3 ∈ [0, 1]

x = 2 + 2ε1 + η1 ∈ [−1, 5]

y = 2 + 2ε2 + η1 ∈ [−1, 5]

m = 0.5− 0.5η1 ∈ [0, 1]

x+ 2m = 3 + 2ε1

y + 2m = 3 + 2ε2

linear

recurrence

x, x1 ∈ [12, 16]

y, y1 ∈ [12, 16]

x, x1 ∈ [12, 14]

y, y1 ∈ [14, 16]

x1 + y1 = 28

x+ y = 28

Fig. 5. Comparison between standard join and global join

1 float f(float x) {
2 return 2∗x−3; }
4 float g(float x) {
5 return −x+5; }
7 int main() {
8 int i ;
9 float x,y,z, t ,u,v;

10 y = f(0); z = g(0);
11 u = f(.75) ; v = g(.25);
12 for (i=1; i<=N; i++) {
13 x=[0,((float) i)/N];
14 y=f(x); z=g(x);
15 u=f(v); v=g(u)/2; }
16 t=y+2∗z;
17 return 0; }

Fig. 6. Program to compare abstract domains of APRON

Finally, we consider a function to challenge the performance and the precision

of the APRON abstract domains (Fig. 6). We iterate this function by a Kleene

iteration, without widening. The final value does not depend on the parameter N ;

increasing N only increases the number of join operations performed. We compared

four abstract domains of APRON (boxes, octagons, convex polyhedra, Taylor1+)

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–7674

� ����� ����� ����� ����� ����� �����

�

��

��

��

	�

���

���

���

���

�	�

��
����

��������

�
������

�
��������

���

�
��� �! "
�
#���� $

�
%#

�
&�

'

Fig. 7. Comparison of different abstract domains

to the domain Taylor1+ with global join (Taylor1+gj). Taylor1+ with global join

provides an analysis slightly faster than classical Taylor1+, and up to 40 percent

faster than polyhedra, and even 74 percent faster than octagons (Figure 7). The

global join operator on Taylor1+ allows to prove the exact invariant t = 7, that

only polyhedra find as well. Boxes find t ∈ [5, 9], octagons t ∈ [5.5, 8.5], Taylor1+

with standard join t ∈ [5, 9].

5 Conclusion

In this paper, we have proposed a new join operator of zonotopic abstract domains.

This addresses the main drawback of the domain, which apart from the join oper-

ator, was known for providing precise and fast analyses. This join operator stays

in the line of a functional (input/output) analysis, by discovering and preserving

some common affine relations holding between program variables and inputs of the

program. It also allows to discover some useful properties, that for instance link

the current program variables values to loops counters, or even make apparent some

disjunctive information. We showed that while improving the accuracy compared

to the previous join operation of [7], we still keep a very fast operation. We believe

that this approach generalizes easily to the case of constrained affine sets, as intro-

duced in [8]. Future work includes the case of inexact common affine relations, for

instance to handle the case when they approximate non-linear relations.

References

[1] Rob Beezer. A First Course in Linear Algebra. available at http://linear.ups.edu/online.html,
2006.

[2] J. L. D. Comba and J. Stolfi. Affine arithmetic and its applications to computer graphics. Proceedings
of SIBGRAPI, 1993.

[3] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE
static analyzer. In ESOP’05, pages 21–30, 2005.

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–76 75

http://linear.ups.edu/online.html

[4] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program.
In POPL’78, pages 84–96. ACM Press, 1978.

[5] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine. Towards an industrial use
of FLUCTUAT on safety-critical avionics software. In FMICS’09, LNCS 5825, pages 53–69. Springer-
Verlag, 2009.

[6] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. Spaceex: Scalable verification of hybrid systems. In CAV’11, LNCS. Springer, 2011.

[7] K. Ghorbal, E. Goubault, and S. Putot. The zonotope abstract domain Taylor1+. In CAV’09, LNCS
5643, pages 627–633. Springer-Verlag, 2009.

[8] K. Ghorbal, E. Goubault, and S. Putot. A logical product approach to zonotope intersection. In
CAV’10, LNCS 6174, pages 212–226, 2010.

[9] A. Girard. Reachability of uncertain linear systems using zonotopes. In HSCC’05, LNCS 3414, pages
291–305. Springer-Verlag, 2005.

[10] E. Goubault and S. Putot. Perturbed affine arithmetic for invariant computation in numerical program
analysis. CoRR, abs/0807.2961, available at http://arxiv.org/abs/0807.2961, 2008.

[11] E. Goubault and S. Putot. A zonotopic framework for functional abstractions. CoRR, abs/0910.1763,
available at http://arxiv.org/abs/0910.1763, 2009.

[12] Eric Goubault and Sylvie Putot. Static analysis of finite precision computations. In VMCAI’11, LNCS
6530, pages 232–247, 2011.

[13] Leonidas J. Guibas, An Nguyen, and Li Zhang. Zonotopes as bounding volumes. In Proceedings of 14
t h Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

[14] Michael Karr. Affine relationships among variables of a program. Acta Inf., 6:133–151, 1976.

[15] A. Miné. A new numerical abstract domain based on difference-bound matrices. In Proceedings of the
Second Symposium on Programs as Data Objects, LNCS 2053, pages 155–172. Springer-Verlag, 2001.

[16] Markus Müller-Olm and Helmut Seidl. A note on Karr’s algorithm. In ICALP, volume 3142 of Lecture
Notes in Computer Science, pages 1016–1028, 2004.

[17] APRON Project. Numerical abstract domain library, 2007. http://apron.cri.ensmp.fr.

[18] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear systems using
mathematical programming. In VMCAI’05, LNCS 3385, pages 25–41, 2005.

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 65–7676

http://apron.cri.ensmp.fr

	Introduction
	Previous results on zonotopic abstract domains
	Affine arithmetic, zonotopes and affine sets
	Geometric and functional orders
	Join operator: preliminaries and motivation for the present work

	Preserving affine relations in join operations
	Affine relations over affine sets
	Common affine relations
	Reduction to row-echelon form
	Definition of a join operator

	Experiments
	Conclusion
	References

