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ABSTRACT
We propose an approach for computing inner-approxima-
tions (also called under-approximations) of reachable sets of
dynamical systems defined by non-linear, uncertain, ordi-
nary differential equations. This is a notoriously difficult
problem, much more intricate than outer-approximations
(also called over-approximations), for which there exist well
known solutions, mostly based on Taylor models. The few
methods developed recently for inner-approximation mostly
rely on backward flowmaps, and extra ingredients, either
coming from optimization, or involving topological crite-
ria, are required. Our solution, in comparison, builds on
rather inexpensive set-based methods, namely a generalized
mean-value theorem combined with Taylor models outer-
approximations of the flow and its Jacobian with respect
to the uncertain inputs and parameters. We demonstrate
with a C/C++ prototype implementation that our method
is both efficient and precise on classical examples. The com-
bination of such forward inner and outer Taylor-model based
approximations can be used as a basis for the verification
and falsification of properties of cyber-physical systems.

Keywords
Inner-approximation; Taylor models; affine arithmetic; modal
intervals; reachability

1. INTRODUCTION
We propose an approach to compute inner-approximating

flowpipes, that under-approximate reachable sets of uncer-
tain continuous systems described by ordinary differential
equations, which are widely used for modeling all sorts of
physical, biological and even economic or social systems.

While outer-approximations describe states that may be
reached, inner-approximations represent states that are ac-
tually reachable from one of the initial states. They are
thus a very useful complement to the more classical outer-
approximations, since they allow to show that some execu-
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tions of the system will actually reach a target or a bad state.
Also, the combination of inner and outer-approximations al-
lows for judging the quality of the abstractions involved. But
methods for inner-approximated reachability are far less de-
veloped, and especially in the non-linear case, since most
methods in the non-linear case rely on conservative lineariza-
tions, which necessarily produce outer approximations.

In this work, we concentrate on the inner-approximation
of the reachable sets of the continuous part of hybrid sys-
tems. We consider general systems of parametric ODEs, i.e.
possibly non-linear, or even non-polynomial, of the form :

ẋ(t) = f(x, p, t) (1)

where the continuous variables x belong to a state-space
domain D ⊆ Rn, the (constant) parameters p belong to the
uncertainty domain P ⊆ Rp, and f : D × P × R+ → D is
assumed sufficiently smooth on D ⊆ Rn (at least C1, and
sometimes more when we will use higher Taylor models, see
Section 2.4).

Introducing the new state variable z = (x, p, t) with ż =
(ẋ, 0, 1), and defining Z = D×P×R+, the equation (1) can
be rewritten with all uncertainties embedded in the initial
state vector :

ż(t) = f(z) (2)

In the sequel, we will write xi and fi for the ith component
(i = 1, . . . , n) of the state vector x and of the function f .

Contributions:.
This paper extends the work of [13, 14], where were pro-

posed an approach for direct forward inner-approximated
reachability of discrete dynamical systems, and a few hints
to handle continuous and hybrid systems. We are comput-
ing here inner-approximations of the flow of uncertain initial
value problems, as defined in Section 2. There are two main
ingredients involved in our method. The first ingredient is
that in order to derive inner-approximations, we only need
forward outer-approximations of some dynamics, which we
can compute using classical Taylor models, introduced in
Section 2.4. But we need to outer-approximate not only the
set of reachable states of the dynamics but also of the varia-
tional equations, including the dynamics of the Jacobian of
the flow with respect to the uncertain initial values.

The second main ingredient of our method is a gener-
alized mean value theorem, that we introduce in Section
2.3, applied to the flow of the uncertain ODE. The general-
ized mean value theorem relies itself on modal intervals, a
simple extension of classical interval arithmetic (see Section
2.2), to inner-approximate the image of an input set by a

http://dx.doi.org/10.1145/3049797.3049811


non-linear vector-valued function. Note that (Kaucher) in-
terval methods, known to be conservative, are locally used
to derive inner ranges, but that this conservatism does not
propagate: the inner range is always computed from the
outer-approximated Taylor models.

In many ways, all this is remarkably simple, with respect
to other existing methods (using backward propagation of
the flow of the dynamics), that we discuss in the paragraph
devoted to related work. Our method is not much more
complex than a classical Taylor model approach for outer-
approximations. But we have to consider a larger dynamical
system, since we have to consider also the dynamics of the
Jacobian with respect to the initial values. Thus, if the orig-
inal system contains n equations, we must compute Taylor
models for n2 equations. However, the Taylor coefficients of
the Jacobian can easily be derived from the Taylor models
of the original equations, as we show in Section 3.

Finally, we carry out some experiments with our prototype
implementation and provide comparisons to existing work.

Related work:.
There are numerous methods for the computation of outer-

approximating (or over-approximating) flowpipes and reach-
able sets of ODEs, either linear [9], or non-linear [6, 25, 26],
linear in the presence of uncertain parameters [8] or non-
linear with uncertain parameters [1]. This is also supported
by several tools, that can often also consider hybrid systems,
see e.g. NLToolBox [27], SpaceEx [7], Flow* [3], CORA [2]
and VNODE-LP [24] to mention but a few.

Inner-approximations have been far less studied, except
in the case of linear systems, see e.g. [9], or using ellipsoidal
methods [21] (and the corresponding tool [20]). In [18], the
authors compute inner-approximations of the viability ker-
nel by iterating backward (inner-approximated) reachability
problems, using the ellipsoidal methods of [21]. The meth-
ods we propose here for inner-approximating reachable sets
can be used for inner-approximating viability kernels as well.

The main existing method for under-approximating (or
inner-approximating as we put it here) flowpipes of non-
linear systems is a backward method, described in [4]. The
method starts with a general compact and connected set of
states X0 described by a system of polynomial inequalities,
and constructs a Taylor model for the backward flowmap
Φ of the dynamics. Then, any connected set Ω which con-
tains a point x which is mapped by Φ into X0 is an inner-
approximation of the reachable set of states X if Ω does not
intersect the boundary of X. The method of [4] relies then
on two computational ingredients. First, it builds a Taylor
model for the backward flowmap (it is of the same order of
complexity as for any forward outer-approximation, or for
our inner-approximation method). Then, a candidate inner-
approximation Ω that does not intersect the boundary of X
is given by a set of polynomial constraints, derived from the
Taylor model for the backward flowmap, and the constraints
defining the initial set of states X0. The method of [4] has
then to test connectedness, which is intractable in general
but can be semi-decided using clever interval methods.

A similar backward approach has been proposed in [28]. It
is similar in that it also constructs an outer-approximation
of the backward flowmap. But their authors construct an
outer-approximation of the boundary of the reachable set to
find inner-approximations. This is done using interval meth-
ods and a careful subdivision of the state-space, which might

be very costly given that the boundary of the reachable set
of highly non-linear ODEs might be extremely complicated
to approximate.

Finally, the authors have recently discovered Section 4
of the work [11], which contains ideas that look similar to
ours. The main differences seem to be that we are consid-
ering more general parameterized dynamical systems, which
will later allow us to handle guard conditions for hybrid sys-
tems, and that we have a different scheme for bounding the
remainder in our inner-approximated Taylor models. But
we could not assess the practical differences since the de-
scription in [11] is sketchy, and contains no real experiment.

2. PRELIMINARIES
We introduce here the main ingredients used in our ap-

proach. Section 2.2 is devoted to generalized intervals and
Kaucher arithmetic, which are instrumental in extending the
mean-value theorem to obtain an inner-approximation of the
range of a function over interval inputs, as described in Sec-
tion 2.3. Finally briefly introduce Taylor methods for en-
closing flows of ODEs in Section 2.4.

2.1 Outer and inner interval approximations
Classical intervals [23] are used in many situations to rig-

orously compute with interval domains instead of reals, usu-
ally leading to outer approximations of function ranges over
boxes. We denote the set of classical intervals by IR =
{[x, x], x ∈ R, x ∈ R, x 6 x}

In what follows, uncertain quantities defined in intervals
(inputs) are noted in bold, outer-approximating interval en-
closures are noted in bold and enclosed within inward fac-
ing brackets, and inner-approximating intervals are noted in
bold and enclosed within outward facing brackets.

An outer-approximating extension of a function f : Rn →
R is a function [f ] : IRn → IR such that for all x in
IRn, range(f,x) = {f(x), x ∈ x} ⊆ [f ](x). The natural
interval extension consists in replacing real operations by
their interval counterparts in the expression of the function.
A generally more accurate extension relies on the mean-value
theorem, linearizing the function to compute. Suppose the
function f is differentiable over the interval x = [a, b]. Then,
the mean-value theorem implies that for any choice of x0 ∈
x, then we have ∀x ∈ x, ∃c ∈ x, f(x) = f(x0)+f ′(c)(x−x0).

If we can bound the range of the gradient of f over x,
by range(f ′,x) ⊆ [f ′](x), then we can derive the following
interval enclosure, usually called the mean-value extension:
for any x0 ∈ x, range(f,x) ⊆ f(x0) + [f ′](x)(x− x0).

Classical interval computations can be interpreted as quan-
tified propositions. Consider for example f(x) = x2 − x, its
exact range over x = [2, 3] is [2, 6]. The natural interval
extension of f , evaluated on [2, 3], is [f ]([2, 3]) = [2, 3]2 −
[2, 3] = [1, 7], which can be interpreted as the proposition
(∀x ∈ [2, 3]) (∃z ∈ [1, 7]) (f(x) = z). The mean-value exten-
sion gives f(2.5)+ [f ′]([2, 3]) × ([2, 3] − 2.5) = [1.25, 6.25],
and can be interpreted similarly as an outer-aproximation.

Inner-approximations determine a set of values proved to
belong to the range of the function over some input box.
The fact that some ]z[∈ IR satisfies ]z[⊆ range(f,x), i.e., is
an inner-approximation of the range of f over x, can again
be written using quantifiers : (∀z ∈]z[) (∃x ∈ x) (f(x) = z).

2.2 Modal intervals and Kaucher arithmetic



The results and notations introduced in this section are
mostly based on the work of Goldsztejn et al. on modal
intervals [10]. Let us first introduce generalized intervals,
i.e., intervals whose bounds are not ordered, and Kaucher
arithmetic [17] on these intervals.

The set of generalized intervals is denoted by IK = {x =
[x, x], x ∈ R, x ∈ R}. Related to a set of real numbers
{x0 ∈ R, x 6 x0 6 x}, one can consider two generalized
intervals, [x, x], which is called proper, and [x, x], which is
called improper. We define the operations dual [a, b] = [b, a]
and pro [a, b] = [min(a, b), max(a, b)].

Definition 1 ( [10]). Let f : Rn → R be a continuous
function and x ∈ IKn, which we can decompose in xA ∈ IRp

and xE ∈ (dual IR)q with p+ q = n. A generalized interval
z ∈ IK is (f,x)-interpretable if

(∀xA ∈ xA) (Qzz ∈ pro z) (∃xE ∈ pro xE), (f(x) = z) (3)

where Qz = ∃ if (z) is proper, and Qz = ∀ otherwise.

When all intervals in (3) are proper, we retrieve the inter-
pretation of classical interval computation, which gives an
outer approximation of range(f,x), that is (∀x ∈ x) (∃z ∈
[z]) (f(x) = z). When all intervals are improper, (3) be-
comes an inner-approximation of range(f,x), that is (∀z ∈
]pro z[) (∃x ∈ pro x) (f(x) = z).

Kaucher arithmetic [17] returns intervals that are inter-
pretable as inner-approximations in some simple cases. Kau-
cher addition extends addition on classical intervals by x +
y = [x+ y, x+ y] and x− y = [x− y, x− y].

For multiplication, let us decompose IK in P = {x =
[x, x], x > 0 ∧ x > 0}, −P = {x = [x, x], x 6 0 ∧ x 6
0}, Z = {x = [x, x], x 6 0 6 x}, and dual Z = {x =
[x, x], x > 0 > x}. When restricted to proper intervals, the
Kaucher multiplication coincides with the classical interval
multiplication. Kaucher multiplication x × y extends the
classical multiplication for all possible combinations of x and
y belonging to these sets. We refer to [17] for full details,
and only give below an intuitive explanation of one of these
cases. Let us interpret the result of the multiplication z =
x × y when y ∈ dual Z, and x ∈ Z, which is z = x × y =
0. Proposition 1 will express the fact that the result can
be interpreted as in Definition 1. Interval z can a priori
either be proper or improper, let us consider the improper
case. We obtain an inner-approximation of the range of the
multiplication: according to the quantifiers in Definition 1,
computing z = x× y consists in finding z such that for all
x ∈ x, for all z ∈ pro z, there exists y ∈ pro y such that
z = x×y. If x contains zero, which is the case when x ∈ Z,
then z is necessarily 0. Indeed, a property that holds for all
x ∈ x, holds in particular for x = 0, from which we deduce
that for all z ∈ pro z, (there exists y ∈ pro y) z = 0.

The important feature of Kaucher arithmetic is that it
defines a generalized interval natural extension (see [10]) :

Proposition 1. Let f : Rn → R be a function, given by
an arithmetic expression where each variable appears syn-
tactically only once (and with dregree 1). Then for x ∈
IKn, f(x), computed using Kaucher arithmetic, is (f,x)-
interpretable.

Kaucher arithmetic can thus be used in some cases to com-
pute an inner-approximation of range(f,x). But the restric-
tion to functions f with single occurrences of variables, that
is with no dependency, prevents its direct use. A mean-value
extension allows us to overcome this limitation.

2.3 Generalized interval mean value extension
In the general case of a differentiable function f , the mean-

value theorem can be extended to define a generalized inter-
val mean value extension (see [10]) :

Theorem 1. Let f : Rn → R be differentiable, x ∈ IKn

an improper interval, and suppose that for each i ∈ {1, . . . , n},
we can compute [∆i] ∈ IR such that{

∂f

∂xi
(x), x ∈ pro x

}
⊆ [∆i]. (4)

Then, for any x̃ ∈ pro x, the following interval, evaluated
with Kaucher arithmetic, is (f,x)-interpretable :

f̃(x) = f(x̃) +

n∑
i=1

[∆i](xi − x̃i). (5)

When using (5) for inner-approximation, we can only get
a subset of all possible cases in the Kaucher multiplication,
we list them and the corresponding multiplication rules be-
low: (x ∈ P) × (y ∈ dual Z) = [xy, xy], (x ∈ −P) × (y ∈
dual Z) = [xy, xy], and (x ∈ Z) × (y ∈ dual Z) = 0. In-
deed, for an improper x and x̃ ∈ pro x, then (x − x̃) is in
dual Z. The outer-approximation [∆i] of the Jacobian is
a proper interval, thus in P, −P or Z, and we can deduce
from the multiplication rules that the inner-approximation
is non empty only when [∆i] does not contain 0.

Example 1. Let f be defined by f(x) = x2−x, for which
we want to compute an inner-approximation of the range
over x = [2, 3]. Due to the two occurrences of x, f(dualx),
computed with Kaucher arithmetic, is not (f,x)-interpretable.

The interval f̃(x) = f(2.5) + f ′([2, 3])(x − 2.5) = 3.75 +
[3, 5](x − 2.5) given by its mean-value extension, computed
with Kaucher arithmetic, is (f,x)-interpretable. For x =
[3, 2], using the multiplication rule for P × dual Z, we get

f̃(x) = 3.75 + [3, 5]([3, 2] − 2.5) = 3.75 + [3, 5][0.5,−0.5] =
3.75 + [1.5,−1.5] = [5.25, 2.25], that can be interpreted as:
∀z ∈ [2.25, 5.25], ∃x ∈ [2, 3], z = f(x). Thus, [2.25, 5.25] is
an inner-approximation of range(f, [2, 3]).

In Section 3, we will be using Theorem 1 with f being
the solution of the uncertain dynamical system (2): for this,
we need to be able to outer-approximate, at any time t,
f(x̃), x̃ ∈ pro x, and its Jacobian with respect to the (un-

certain) initial value of the system,
{

∂f
∂xi

(x), x ∈ pro x
}

.

Computing an enclosure of the solution of an initial value
problem is the objective of Section 2.4.

2.4 Enclosing the flow of an uncertain ODE
with interval Taylor methods

Consider the uncertain dynamical system (2), where z =
(x, p, t) and with initial condition z(t0) ∈ Z′ at time t0 ≥ 0.
Let us denote Z(t; t0,Z′) the set of solutions of (2) at time
t for initial conditions in Z′ at t0. We define a time grid
t0 < t1 < . . . < tN , and assume Z′ = z0 = [z0, z0] at time
t0 ≥ 0.

Interval Taylor methods for guaranteed set integration,
see [25] for a review, compute flowpipes that are guaranteed
to contain the reachable set of solutions Z(t; t0,Z′) of (2)
for all time t in [tj , tj+1]. They first verify the existence
and uniqueness of the solution using the Banach fixed point
theorem and the Picard-Lindelöf operator, and compute an



a priori rough enclosure [rj+1] of Z(t) for all t in [tj , tj+1].
A tighter enclosure for the set of reachable values for t in
[tj , tj+1] is then computed using a Taylor series expansion of
order k of the solution at tj , where [rj+1] is used to enclose
the remaining term :

[z](t, tj , [zj ]) = [zj ] +

k−1∑
i=1

(t− tj)i

i!
f [i]([zj ])

+
(t− tj)k

k!
f [k]([rj+1]), (6)

where the Taylor coefficients f [i], which are the i − 1th Lie
derivative of f along vector field f , are defined inductively,
and can be computed by automatic differentiation as follows
(for all k = 1, . . . , n) :

f
[1]
k = fk (7)

f
[i+1]
k =

n∑
j=1

∂f
[i]
k

∂zj
fj (8)

Let us quickly recall how Equation (6) is obtained. Let
z(t) be a solution to Equation (2) starting at time 0 at point
z0. By definition :

dz
dt

(t) = f(z(t)) = f [1](z(t))

and more generally, we can prove by induction on l that
d(l+1)z

dt(l+1) (t) = f [l+1](z(t)), since by induction hypothesis :

d(l+1)z

dt(l+1) (t) = d
dt

(
t 7→ f [l](z(t))

)
=

n∑
j=1

żj(t)
∂f [l]

∂zj
(z(t))

=
n∑

j=1

fj(z(t))
∂f [l]

∂zj
(z(t)) = f [l+1](z(t))

Equation (6) is then a direct consequence from Taylor-La-
grange expansion, for sufficiently smooth functions f .

Finally, we use enclosure [zj+1] = [z](tj+1, tj , [zj ]) as ini-
tial solution set at time tj+1 to derive the interval Taylor
model on the next time step.

If evaluated plainly in interval arithmetic, scheme (6) yields
enclosures of increasing width. A classical way to control
the loss of accuracy due to the loss of correlation in interval
arithmetic, called wrapping effect, is a method introduced by
Lohner, that uses QR-factorization [25]. Alternatively, we
choose here to control wrapping using affine arithmetic [5]
instead of interval arithmetic in this evaluation.

3. FORWARD INNER REACHABILITY
As in Section 2.4, we consider the uncertain dynamical

system (2), where z = (x, p, t) and with initial condition
z(t0) ∈ Z′ = z0 = [z0, z0] at time t0 ≥ 0, and we denote
Z(t; t0,z0) the set of solutions {z(t, z0), z0(t0) ∈ z0} of (2)
at time t. We have seen in Section 2.4, that for a time grid
t0 < t1 < . . . < tN , we can compute on each time interval
[tj , tj+1], a flowpipe (6) that is guaranteed to contain the
reachable set of solutions of (2) for all time t in [tj , tj+1]. We
now want to compute also an inner-approximating flowpipe
of this reachable set, that is for all t in [tj , tj+1], a range
]z[(t, tj , [zj ]) such that all values inside that range are sure
to be reached at time t by an execution of system (2). For

that, we will apply Theorem 1, at all time t, to the function
z0 7→ z(t, z0) from Rn to Rn solution of the IVP (2).

In Section 3.1, we give the main lines of the computation of
inner-approximated flowpipes, and state the algorithm. We
then detail and comment each of its steps. In Section 3.2,
we show how we use the classical interval Picard-Lindelöf
iteration method to get rough enclosures of the solution and
its Jacobian on each time step, that we use for computing
the remainders of the Taylor models. In Section 3.3, we
build the Taylor models, and show that we can compute the
Taylor model of the Jacobian as if we were simply deriving
the Taylor model for the solution of the initial ODE, which
makes its construction very simple and efficient. Finally,
in Section 3.4, we comment the actual computation of the
inner-approximating flow-pipe, and show how a loss of accu-
racy in the outer-approximation results in a loss of accuracy
in the inner-approximation, and even possibly to an empty
inner-approximation.

3.1 Principle of the algorithm
On each time interval, in order to compute an inner range

of the solution of the uncertain system, we need an outer-
enclosure of the solution starting from a point in the initial
set, z(t, z̃0) for some z̃0 ∈ z0 (Equation (15) in Algorithm 1),
an enclosure of the solution by the system z(t, z0) over range
z0inz0 (Equation (16)), and an enclosure of its Jacobian
with respect to z0, evaluated over range z0 (Equation (17)).

The Jacobian is defined Jij(t,z0) = ∂zi
∂z0,j

(t,z0), for i and j

between 1 and n, and where zi is the i-th component of the
vector flow function z, and z0,j the j-th component of the
vector of initial conditions z0.

We compute these outer-approximations by applying the
Taylor method of Section 2.4 to z(t, z̃0) and J(t, z0) where
z0 ∈ z0 and with initial condition J(t0) = Id the identity
matrix : z(t, z̃0) satisfies system (2) with z(t0) = z̃0 ∈ z0,
so that we can directly use the Taylor expansion (6) on each
time interval [tj , tj+1] to compute Z(t; t0, z̃0). The coeffi-
cients of the Jacobian matrix of the flow satisfy :

J̇ij(t, z0) =

n∑
k=1

∂fi
∂zk

(z).Jkj(t, z0) (9)

that can be rewritten

J̇(t, z0) = Jaczf(z(t, z0)).J(t, z0). (10)

with J(t0) = Id (these are the “variational equations” used
in particular in [29] for improving outer-approximations of
continuous dynamical systems). We will denote by ∇zf the
function of variables zi and Jij (linear in Jij) which is the
right hand side of Equation 10. Hence, its pq entry is :

(∇zf)pq(z, J) =

n∑
k=1

∂fp
∂zk

(z)Jkq (11)

A Taylor expansion can thus be used to outer-approximate
the solution of (10) noted J (t; t0,z0) on each time interval
[tj , tj+1], using the outer-approximation for z(t, z0) given by
Taylor expansion (6). Equations (9) together with Equa-
tions (1) define a system of n(n + 1) ordinary differential
equations in n(n + 1) variables (z and J). We call the cor-
responding vector field F and write similarly, by an abuse
of notation, for H a function in variables z and J , H [i] the
i − 1th Lie derivative of H along the (augmented) vector



field H. More explicitly, it is defined inductively as follows :

H [1] = H (12)

H [i+1] = (H [i])[2] (13)

where the first Lie derivative is :

H [2] =

n∑
i=1

∂H

∂zi
fi +

n∑
k,l=1

∂H

∂Jkl

(
n∑

s=1

∂fk
∂zs

Jsl

)
(14)

Let us briefly detail how we obtained Equation (14). Con-
sider a solution t 7→ zi(t) and t 7→ Jij(t) of Equations (9)
and (1). The Lie derivative of H is the time derivative of

H̃(t) = H(z1(t), . . . , zn(t), J11(t), . . . , Jnn(t)) :

˙̃H(t) =
n∑

i=1

∂H
∂zi

(t)żi(t) +
n∑

k,l=1

∂H
∂Jkl

(t)J̇kl(t)

We get the formula (14) by replacing żi by its expression in

Equation (1) and J̇kl by its expression in Equation (9).

We summarize the procedure for computing the inner and
outer reachable sets in pseudo-Algorithm 1.

In the next sections, we detail the different steps of Algo-
rithm 1 and illustrate them on a running example:

Example 2. We consider the Brusselator equation:

f(x) =

(
1− 2x1 + 3

2
x21x2

x1 − 3
2
x21x2

)
with x = (x1, x2), over the time interval [0, h]

(
h = 1

20

)
, and

with initial conditions [x0] = ([2, 2.15], [0.1, 0.15]).
The Jacobian that appears in Equation (10) is :

Jaczf(z(t, z0)) =

(
−2 + 3x1x2

3
2
x21

1− 3x1x2 − 3
2
x21

)
3.2 Step 1: computing the rough enclosures

In order to compute the kth term in Equations (15) and
(16) we need to compute [rj ] (respectively [Rj ]), i.e. a priori
enclosures of the components of the solutions z and J over
the time interval [tj , tj+1]. This is done following the clas-
sical approach [25] relying on the interval Picard-Lindelöf
method. This goes as follows. First note that Equation (1)
can be rewritten as the integral equation

z(t) = z0 +

∫ tj+1

tj

f(z(s))ds (19)

and define F the functional which to function z associates
the right-hand side of Equation (19). Under the condition
that f is Lipschitz, F admits a unique fixpoint, solution
to Equations (1) and (19). The interval version F ] of the
Picard-Lindelöf operator F enjoys the same property and
is derived using the obvious rough interval approximation
of the integral : F ]([z]) = z0 + [tj , tj+1][f ]([z]) (where [z]
will denote ultimately the “rough” enclosure of the solutions
to Equation (1) and [f ] denotes the interval extension of
function f). Simple Jacobi like iteration suffices to reach
the fixpoint of F ] : [z]0 = z0, [z]i+1 = F ]([z]i) for all i ∈
N . Convergence can be ensured using outwards rounding
in finite precision, numerical acceleration techniques etc.

Example 3. We carry on with the computation of outer-
approximations for solutions and Jacobians for the Brusse-
lator on the first time step. We will write [xi](t) instead of

Data: a time grid t0 < t1 < . . . < tN , an initial range
z0, and some z̃0 ∈ z0

Result: [z](t,z0) and ]z[(t,z0) over t = [t0, tN ]
Init: j = 0, tj = t0, [zj ] = z0, [z̃j ] = z̃0, [Jj ] = Id
while j < N − 1 do

Step 1. compute a priori enclosures [rj+1] of
Z(t; tj ,zj) for all t in [tj , tj+1], [r̃j+1] of Z(t; tj , z̃j)
for all t in [tj , tj+1], and [Rj+1] of J (t; tj ,zj)
Step 2. build the Taylor Models valid on [tj , tj+1]:

[z](t, tj , [zj ]) = [zj ] +

k−1∑
i=1

(t− tj)i

i!
f [i]([zj ])

+
(t− tj)k

k!
f [k]([rj+1]). (15)

[z̃](t, tj , [z̃j ]) = [z̃j ] +

k−1∑
i=1

(t− tj)i

i!
f [i]([z̃j ])

+
(t− tj)k

k!
f [k]([r̃j+1]). (16)

[J ](t, tj , [zj ]) = [Jj ] +

k−1∑
i=1

(t− tj)i

i!
Jaczf

[i]([zj ]).[Jj ]

+
(t− tj)k

k!
Jaczf

[k]([rj+1]).[Rj+1] (17)

Step 3. deduce an inner-approximation valid for t in
[tj , tj+1] : if ]z[(t, tj) defined by Equation (18) is an
improper interval

]z[(t, tj) = [z̃](t, tj , [z̃j ])

+ [J ](t, tj , [zj ]) ∗ ([z0, z0]− z̃0) (18)

then interval pro ]z[(t, tj) is an inner-approximation
of the set of solutions {z(t, z0), z0(t0) ∈ z0} of (2) at
time t, otherwise the inner-approximation is empty.
Step 4. [zj+1] = [z](tj+1, tj , [zj ]),
[z̃j+1] = [z̃](tj+1, tj , [z̃j ]), [Jj+1] = [J ](t, tj , [zj ])

end

Algorithm 1: Computing inner and outer reachable sets

[xi](t, 0, [x0]) as we are only considering the first time step.
We first need to determine the rough enclosures [r1]i and
[R1]i,j of the xi(t) and Jij(t) over t ∈ [0, h], x ∈ [x0] using

the interval Picard-Lindelöf method of Section 3.2 : [r1] =(
[1.86, 2.15]
[0.10, 0.23]

)
, [R1] =

(
[0.92, 1.00] [0.00, 0.35]

[−0.025, 0.022] [0.65, 1.00]

)
.

The remainders for k = 2 (first order Taylor model for
Equations (15) and (17)) will be determined in Example 4.

3.3 Step 2: building the Taylor models

Building the Lie derivatives of the Jacobian.
The formulation of Equation (17) relies on the possibility

to commute the ith Lie derivative with the calculation of



the Jacobian. Without this, we would have written:

[J ](t, tj , [zj ]) = [Jj ] +

k−1∑
i=1

(t− tj)i

i!
(Jacz(f))[i]([zj ]).[Jj ]

+
(t− tj)k

k!
(Jacz(f))[k]([rj+1]).[Rj+1] (20)

Jacz(f) being seen as a function of variables zi and Jij ,
which is linear in the Jij as in Equation (11). Equations
(17) and (20) are equivalent since the two derivatives (the
Jacobian calculation and the Lie derivative) commute.

We prove this equivalence by induction on the number of
Lie derivations. For i = 1, we have, by definition ∇z(f [1]) =

∇z(f) = (∇z(f))[1]. Suppose now we have, as an induction

step ∇z(f [i]) = (∇z(f))[i]. We now write :

∇z(f [i+1])pq =

n∑
k=1

∂f
[i+1]
p

∂zk
Jkq =

n∑
k=1

∂

∂zk

(
n∑

l=1

∂f
[i]
p

∂zl
fl

)
Jkq

hence,

∇z(f [i+1])pq =

n∑
k,l=1

(
∂2f

[i]
p

∂zk∂zl
fl +

∂f
[i]
p

∂zl

∂fl
∂zk

)
Jkq (21)

On the other hand we have :

(∇z(f)pq)[i+1] = (∇z(f [i])pq)[2]

by Definition (14) and by the induction step. Using now
Equation (14), and Equation (11) recalled below:

(∇z(f [i]))pq =
n∑

k=1

∂f
[i]
p

∂zk
Jkq

we have :

(∇z(f)pq)[i+1] =

n∑
k,l=1

∂2f
[i]
p

∂zk∂zl
flJkq

+

n∑
r=1

∂f
[i]
p

∂zr

(
n∑

t=1

∂fr
∂zt

Jtq

)
(22)

which is thus seen to be equal to ∇z(f [i+1])pq by Equation
(21).

Equation (17) is simpler to compute since we already com-
puted the Lie derivative of f , in Equation (16), the Jacobian
calculation being by itself rather inexpensive.

Computing the coefficients of the Taylor models.
We need to outer-approximate the values of some func-

tions, and in particular, all Lie derivatives, which are coeffi-
cients in the Taylor models, in Equations (15-17). We have
a wide choice from the existing set-based methods, is poly-
nomial. We will use in our running example affine arith-
metic [5], as in our prototype. Affine arithmetic was also
used in [13] for inner-approximations of discrete dynamical
systems. One interest is that we can use the results from [12]
to also get good estimates of the joint inner range of the state
variables zj , altogether, when needed.

Example 4. We compute a first-order Taylor model for
the Brusselator, using Equation (6) with k = 2, and us-

ing affine arithmetic to compute Jacz(f [i])([rj+1])[Jj ] and

f [i]([zj ]). We start with [x0] = ([2, 2.5], [0.1, 0.15]), hence,

in affine arithmetic, [x0] =
(
83
40

+ 3
40
ε1,

1
8

+ 1
40
ε2
)
. We eval-

uate f [1] = f using simple rules from affine arithmetic, e.g. :

f [1]([x0]) = −
119919

51200
−

1173

12800
ε1+

41361

256000
ε2+

27

51200
η1+

3015

256000
η2

(23)

and, e.g. Jacz(f [1])([x0])11 = − 391
320

+ 9
320

ε1+ 249
1600

ε2+ 9
1600

η3.
The non-linearity of f and its Jacobian produces new sym-
bols in the evaluation with affine arithmetic than ε1, ε2 : we
note them using the η letter, instead of ε, to make apparent
the uncertainty produced by the interpretation in affine arith-
metic. Equation (23) evaluates in interval [−2.6077,−2.0766].

To obtain the remainders, we compute f
[2]
i and Jacz(f

[2]
i ):

f
[2]
1 = −2+4x1+3x1x2+

3

2
x31−9x21x2+

9

2
x31x

2
2−

9

4
x41x2

(24)

Jacz(f [2])11(x1, x2)(J11, J21) = (3x2f1 + 3x1f2)J11

+ (−2 + 3x1x2)Jacz(f [1])11(x1, x2)(J11, J21)

+ 3x1f1J21 +
3

2
x21Jacz(f [1])21(x1, x2)(J11, J21) (25)

where Jacz(f [1])11 and Jacz(f [1])21 are just Jaczf(z(t, z0))11
and Jaczf(z(t, z0))21 given in Example 2.

Now again, we are applying affine arithmetic to compute
f [2]([r1]) and Jacz(f [2])([r1])[R1] given the rough enclosures
r1 and R1 computed in Example 3 and we find :

f [2]([r1]) =

(
[3.5371, 13.7617]

[−11.1499,−1.5368]

)
(26)

and Jacz(f [2])([r1])[R1] is the matrix :(
[−3.1897, 15.7653] [−74.8884,−19.3243]
[−14.0978, 3.5433] [16.4500, 68.0696]

)
As a direct consequence, we can evaluate Equations (15) and
(17) to get the outer-approximation of z and J at time h :

[z](h, t0, [z0]) = ([1.88320, 2.05421] , [0.15728, 0.20358])
(27)

[J ](h, t0, [z0]) =

(
[0.92545, 0.96808] [0.20597, 0.32253]
[−0.016, 0.02499] [0.67388, 0.78551]

)
(28)

For instance, the first component in Equation (27) is found
by using Equation (15) with k = 2 and by instantiating the
constant coefficient with [x0] = ([2, 2.5] , [0.1, 0.15]), the Tay-
lor coefficient in degree one in t with the result of Equation
(23), and in degree two with the result of Equation (26).
Using a coarser interval abstraction of coefficients in de-
gree zero and one, we indeed find an outer-approximation
of the flowpipe until time h : [z1](h, t0, [z0]) = [2, 2.5] +

[−2.6077,−2.0766] t+ [3.5371, 13.7617] t2

2
equal at time h to

[1.8740, 2.0634], which slightly over-approximates the result
of Equation (27) with affine arithmetic.

Computing the center of the inner-approximation.
Equation (16) is required to evaluate Equation (18) and

get inner-approximations: we need to propagate a (center)
point in the set of initial values through the flowpipe of
solutions of ODE (1), at each time step tj in our time grid.



This center solution is certainly not derivable from the outer-
approximation of the flowpipe, e.g. as its midpoint: in order
to soundly use the mean-value theorem, this solution must
outer-approximate the image by the flow of the initial point.

We use the same Taylor expansion, but with different ini-
tial conditions, to compute in (15) an outer-approximation
of the solution of system (2) with z(t0) = z̃0, used as the
center in inner-approximation (18), and in (16) an outer-
approximation of the solution of the same system but with
uncertain z(t0) ∈ z0, used to compute the Taylor coefficients
in Equation (17).

Example 5. Starting with the center x̃0 = (2.075, 0.125)
of the initial condition [x0] = ([2, 2.15] , [0.1, 0.15]), and ap-
plying the interval Picard-Lindelöf method of Section 3.2, we
find x = ([1.9655, 1.9718] , [0.1774, 0.1831]) at time h.

3.4 Step 3: computing the inner-approximation
The algorithm described in Section 3.1 fully relies on outer-

approximations at each step, to deduce an inner-approxi-
mation at Step 3. This means that we can soundly com-
pute and implement most of our approach using interval-
based methods with outward rounding as classically: out-
ward rounding should be used for the outer approximations
of flows and Jacobians (the larger these, the tighter the
inner-approx), but the computation by Kaucher aithmetic
of improper intervals should be done with inward rounding.

Also, the wider the outer-approximation in Taylor mod-
els (15-17), the tighter thus the less accurate the inner-
approximation (18): it can even lead to an empty inner-
approximation if the result of Equation (18) in Kaucher
arithmetic is not an improper interval.

The phenomenon we mentioned above can occur in two
ways. First, [z0, z0]− z̃0 is an improper interval that belongs
to dual Z as defined in Section 2.2. The outer-approximation
of the Jacobian matrix, [J ](t, tj , [zj ]) is a proper interval.
The Kaucher multiplication, as mentioned in Section 2.3,
will yield a non-zero improper interval only if [J ](t, tj , [zj ])
does not contain 0. And, in this case, the result of this mul-
tiplication will depend on the lower bound of the absolute
value of the Jacobian (while the same mean-value theorem
used for outer-approximation would imply a multiplication
of proper intervals that would depend on the upper bound
of the absolute value of the Jacobian). The larger this lower
bound, the wider the inner-approximation.

Suppose that the Kaucher multiplication yields an im-
proper interval. It is added to proper outer-approximation
[z̃](t, tj , [z̃j ]) of the solution at time t of the system starting
from point z̃0. Ideally, this should be tight, but if this in-
terval is wider than the improper interval resulting from the
Kaucher multiplication, then the sum of the two intervals -
computed using the extension of interval addition - will be
proper, and the inner-approximation empty.

The quality of the inner-approximation is strongly linked
to the quality of the outer-approximation. We can if neces-
sary locally improve the quality by using higher-order Tay-
lor models. Indeed, as we know that the exact reachable set
of the uncertain system lies between the inner and outer-
approximated flows, we can bound the approximation error
at each instant, and use this information to dynamically re-
fine the approximation.

Example 6. Now we can instantiate Equation (18) as
follows, for e.g. the first component of x and time t = h,

using the result of Example 5 for the outer-approximation
of the center at time h and Equation (28) for the outer-
approximation of the Jacobian at time h :

]z[(h, 0) = [1.9655, 1.9718]+[0.9254, 0.9680] [0.075,−0.075]

+ [0.2059, 0.3225] [0.025,−0.025] (29)

Finally, using Kaucher arithmetic (see Section 2.2), we find

]z[(h, 0) = [1.9655 + 0.92545× 0.075 + 0.20597× 0.025,
1.9718− 0.9254× 0.075− 0.20597× 0.025]

whose proper counterpart is [1.8973, 2.0400]. We thus effi-
ciently find a quite tight characterization of the reachable set
with a very low order scheme, for the Brusselator at time h :

[1.8973, 2.0400] ⊆ z(h, 0, [z0]) ⊆ [1.88320, 2.05421]

Of course, similarly to Example 4 for the outer-approxima-
tion of z, Equation (18) is valid for all times t in [0, h],
hence gives an inner-approximation of the flowpipe for the
Brusselator. This is what we will be doing in Section 4.1.

4. EXPERIMENTS AND BENCHMARKS
We implemented1 our method relying on the FILIB++ C++

library [22] for interval computations, the FADBAD++ pack-
age (http://www.fadbad.com) for automatic differentiation,
and (a slightly modified version of) the aaflib library (http:
//aaflib.sourceforge.net) for affine arithmetic. Affine arith-
metic is used for the coefficients of the Taylor models in
order to limit the wrapping effect. Matrix preconditioning
is a more classical alternative, but affine arithmetic proved
to be both efficient, if we limit the number of noise symbols
used, and accurate. It is also very convenient for prototyp-
ing, as we rely on the aaflib library.

We first demonstrate in Section 4.1 the good behavior
of our inner-approximated flowpipes on the quite difficult
Brusselator model. Then, in Section 4.2, we provide some
comparison to the experimental results of the related work.

4.1 Brusselator
We consider in this section another instance of the Brus-

selator system, slightly different from the version of Exam-
ple 2, which has been used in e.g. [4, 28] :{

ẋ1 = 1 + x21x2 − 2.5x1
ẋ2 = 1.5x1 − x21x2

with x1(0) ∈ [0.9, 1] and x2(0) ∈ [0, 0.1].
We use Taylor models of order 4 in time, and represent

in Figure 1, the inner and outer approximated flowpipes for
variables x1 and x2, up to a maximum time t = 10. The
inner-approximations are represented in dashed lines, and
the outer-approximations in plain lines.

We can note that the width of the inner-approximation
(internal dashed lines) decreases at times, and the inner-
approximation even becomes empty (for example for vari-
able x2 around t = 4), but the width can still later be non-
zero again. This is not a bug: this phenomenon is an illus-
tration of the fact detailed in Section 3.4, that when adding
an improper with a proper interval to get the inner range
of a variable, we can get a proper interval, which results in
an empty inner-approximation (of the variable of interest

1available from http://www.lix.polytechnique.fr/Labo/
Sylvie.Putot/software.html

http://www.fadbad.com
http://aaflib.sourceforge.net
http://aaflib.sourceforge.net
http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/software.html
http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/software.html


- actually, you can note that on this example, the inner-
approximations of the two variables do not become empty
at the same time). This does not prevent us from carrying
on with the computation of the Taylor models : non-empty
inner-approximations will be obtained at later times, de-
pending on the behavior of the Jacobian of the flow.

Figure 1: Brusselator (x1 and x2), Taylor models order 4

4.2 Comparisons to the related work
We provide in this section some elements of comparisons

to the experimental results given in [4,28]. Let us highlight
that it is difficult to compare these methods in a fair man-
ner, as evaluating the compared accuracy of these methods
is difficult. Also, our implementation is preliminary (using
fixed step of integration for instance), while some of the re-
lated work relies on the highly optimized interval solver for
initial value problem VNODE-LP [24].

Among the examples studied in both [4] and [28], we
first selected the version of the Brusselator introduced in
Section 4.1 as a representative of the systems of low degree.
We chose as second example a biological system of higher
degree (7), so as to demonstrate the way our approach scales.

˙

x1
x2
x3
x4
x5
x6
x7


=



−0.4x1 + ax3x4
0.4x1 − x2
x2 − ax3x4

ax5x6 − ax3x4
−ax5x6 + ax3x4
0.5x7 − ax5x6
−0.5x7 + ax5x6


(30)

In this system, a is a parameter which is taken equal to 50
in [4] and to 5 in [28]. We will use the corresponding value
of the parameter when comparing to the related work.

4.2.1 Comparison to [4]
In [4], the accuracy of computations is measured by the

minimum width ratio

γmin = min
γu(v)

γo(v)
, v ∈ V

where V is a set of vectors, and γu(v) and γo(v) measure re-
spectively the width of the inner-approximation and outer-
approximation in direction v ∈ V . Intuitively, the larger this
ratio, the better the approximation. Our method naturally
gives inner ranges for the projection of the flow system on
its state variables. We thus measure in our case the mini-
mum over the state variables xi of our system of this ratio.

We believe this corresponds to the measure that was used
for experiments in [4], as they mention that the vectors are
selected along the dimensions (axis-aligned).

Comparison on the Brusselator.
The initial set taken in [4], defined by x1 ≥ 0.9, x2 ≥

0, x1 + x2 − 1 ≤ 0, can be projected on 1 ≥ x1 ≥ 0.9,
0.1 ≥ x2 ≥ 0. This outer-approximation of the initial set
is quite inaccurate, which results in a lower quality of the
inner-approximation that must be taken into account in the
comparison to the results of [4]. We could actually also con-
sider initial sets that are not given as boxes but for instance
as zonotopes, but we did not investigate this here.

In [4], the authors study the result for t = 3 and t = 4,
with 4th order Taylor models and integration time step h =
0.02. We choose, as they do, 4th order Taylor models, and
time step h = 0.02. Our implementation until t = 4 takes
a total of 3.2 seconds (to compute both outer and inner ap-
proximations), where [4] takes 89 seconds. Our implementa-
tion is thus more than an order of magnitude quicker. Note
also that with our approach, taking order 3 Taylor models
and a larger time step of 0.1, we still obtain results of very
similar quality on γmin, in 0.25 seconds. Further decreasing
the precision starts degrading the quality of results.

In Figure 2, we represent γmin as a function of time, for a
time range extended to a maximum time of 10. We observe
that at t = 3, the relative width of the inner-approximation
over the outer-approximation is of order 0.7, which is equal
to the value given in Table 1 of [4]. However, this ratio
decreases quickly, mostly due to the x2 component, and at
t = 4, we get a ratio very close to 0.1, instead of 0.55 as
in [4]. Indeed, t = 4 is a time at which, as already noted in
Section 4.1, our inner-approximation of variable x2 is tem-
porarily of lower quality, even though the x1 inner estimate
is still of high quality. It is only temporary, as at further
times the quality improves, before degrading again.

Figure 2: Evolution of γmin with time

In Figure 3, we represent the evolution with time of the
widths of the inner- and outer-approximations of x2, the
component that makes γmin decrease drastically around t =
4. Whenever the width of the inner-approximation on x2
decreases to zero, the width of the outer-approximation is
also strongly decreasing: the difference between these widths
remains almost stable. We also note again that the inner-
approximation becoming empty at some point does not im-
pact the behavior of the inner-approximation at further times.
Finally, we note that this system looks quite stable, with so-



lution widths that tend to decrease with time. This is a
difficult case for the inner-approximation, as its width nat-
urally tends towards 0 due to the problem, as we note on
Figure 3. We advocate that inner and outer-approximations
should be considered jointly in order to assess the behavior
of a system.

Figure 3: Evolution with time of the width of inner- and
outer-approximations on x2

Comparison on the biological system.
We now consider the biological system, with initial condi-

tion x0 ∈ [0.1, 0.1175]× ...× [0.1, 0.1175], which is an outer-
approximation of the simplex taken in [4]. We compute inner
and outer approximated flowpipes for time in [0,0.2], with
order 5 Taylor Models and a step size of 0.01. The compu-
tation completes in 4.7 seconds, and we get as a measure of
quality of the approximation γmin(t = 0.2) ≈ 0.65, which is
this time a much better accuracy than the γmin(t = 0.2) =
0.25 obtained in 632 seconds in [4]. This seems to confirm
that our approaches scales very well to high dimensional
systems, with a very good accuracy.

We also measure as an indication of the accuracy the mean
value on the components xi of the distance between the inner
and outer approximations xini and xouti , computed as

n∑
i=1

max(sup(xouti )− sup(xini ), inf(xini )− inf(xouti ))

n
.

It gives an over-estimation of the error between the inner-
approximation and the exact reachable state at time t: this
value for t = 0.2 is 4.10−3.

4.2.2 Comparison to [28]

Comparison on the Brusselator.
In [28] the authors take X = [0.3, 0.4] × [0.5, 0.7] for a

time frame in [0,1.1], and a time step h=0.05. We compute
the inner and outer-approximations, for same time step and
with order 3 Taylor Models. In [28], the accuracy of the
result is estimated by a parameter εM that bounds the size
of the boxes used to approximated the boundary of the ex-
act reachable set, inside which they will look for an inner-
approximation. We believe this parameter comparable in
spirit to our measure of the maximum distance between the
inner and the outer approximations. We can point 2 dif-
ferences. First, in our case we compute the distance to the
outer-approximation, which will always be greater than the

distance to the exact reachable set. Also, our understanding
is that there are no guarantees in the method of [28] on the
actual distance from the inner-approximation itself to the
reachable set, whereas our bounds are guaranteed.

We obtain in 0.8 seconds a distance equal to 0.005 for x1,
and 0.01 for x2, which is 10 times larger than the estimation
0.001 obtained in 55 seconds in [28].

Comparison on the biological system.
We now consider the biological system, with, as in [28], a

box initial condition x0 ∈ [−0.015, 0.001]×...×[−0.015, 0.001].
In order to compare our results to their backward estimate,
we consider the reverse flow, for time in [0,0.2] , and use
order 3 Taylor Models and a step size of 0.02. Our computa-
tion of the inner and outer approximated flowpipes takes 0.2
seconds. We get inner-approximations that always strictly
contain the ones of [28], which takes 0.67 seconds. Our anal-
ysis is thus both faster and with better accuracy.

Using as quality measure the measure of [4] that com-
putes the ratio γ of the width of the inner-approximation
over the width of the outer-approximation, here componen-
twise on the variables, and using our outer-approximation in
both cases, we obtain for our approximation (γ1, . . . , γn) =
(0.970, 0.999, 0.973, 0.938, 0.938, 0.970, 0.971), while with the
results of [28] we get the lower quality results (γ1, . . . , γn) =
(0.85, 0.86, 0.22, 0.84, 0.84, 0.85, 0.85).

We also compare our results with the outer-approximation
computed by VNODE with a Taylor model of order 5. We
represent on Figure 4 the upper bound for each of the 7 vari-
ables xi on the outer-approximation by VNode, our outer-
approximation, our inner-approximation, and that of [28],
in that order, from left to right. The results confirm that

Figure 4: Upper bounds on inner and outer-approximations
on the 7 variables of the biological system

our inner-approximation (third bar of each group in the Fig-
ure) is generally very close to the outer-approximations (first
two bars in each group), while the inner-approximation of
the related work (fourth bar) is of lower quality, and on some
variables even absent (upper bound equal to zero).

5. CONCLUSION AND FUTURE WORK
We presented an approach to compute inner-approxima-

ting flowpipes of uncertain ODEs, that extends in a simple
way Taylor-based methods for outer-approximation. The
joint computation of the inner and outer-approximating flow-
pipes gives us a bound on the error to the exact reachable



set at each instant, that we can use if needed to dynami-
cally refine the approximation by using higher order Taylor
models or smaller step sizes. Indeed, accurate error estima-
tion, which is usually a difficult task, is a direct outcome of
our computation. A natural future extension of the present
work, is the inner-approximation of reachable sets in pres-
ence of guards and constraints, so as to handle general hy-
brid systems. Our approach allows us to inner-approximate
not only the variables as demonstrated here, but also the
projection on whatever function of these variables, not only
at specific times like the related work, but as flowpipes, that
can be used for detection of intersection. The symbolic infor-
mation included in our model when we evaluate the Taylor
models with affine arithmetic, will allow us to use existing
work on the inner-approximation of joint range of functions
and constraint solving, as e.g. [15].

Among the interests of inner-approximation is the possi-
bility to falsify properties. Our objective in that respect, is
to use the combination of inner and outer approximations
to tackle the verification and falsification of temporal prop-
erties of uncertain hybrid systems, along the lines of [16,30].

Finally, this work can be applied to other, related prob-
lems. First, this can be applied to backward reachability
problems, such as the ones treated in e.g. [28], by consider-
ing the opposite vector field. Secondly, this can be applied
to a particular backward reachability problem : the inner-
approximation of region of attractions, for which we should
compare our method with existing work [19].
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