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ABSTRACT
We revisit the problem of finding controlled invariants sets
(viability), for a class of differential inclusions, using topo-
logical methods based on Waz̆ewski property. In many ways,
this generalizes the Viability Theorem approach, which is it-
self a generalization of the Lyapunov function approach for
systems described by ordinary differential equations. We
give a computable criterion based on SoS methods for a
class of differential inclusions to have a non-empty viabil-
ity kernel within some given region. We use this method to
prove the existence of (controlled) invariant sets of switched
systems inside a region described by a polynomial template,
both with time-dependent switching and with state-based
switching through a finite set of hypersurfaces. A Matlab
implementation allows us to demonstrate its use.

Categories and Subject Descriptors
G.1.7 [Mathematics of Computing]: Numerical Anal-
ysis; F.1.1 [Theory of Computation]: Computation by
Abstract Devices

Keywords
control, differential inclusion, viability, cyber-physical sys-
tems

1. INTRODUCTION
In order to understand and control the dynamics of sys-

tems ruled by differential equations, it is important to locate
regions of the phase space that contain “invariant sets”, i.e.,
sets of points that are invariant under the action of the dy-
namical system. Topological methods, based on Waz̆ewski
property and Conley index [20], have been used with success
in order to find such invariant sets, within prescribed semi-
algebraic sets (or “templates”) and give their qualitative be-
havior: periodic orbits, attractors, repellers, chaos, . . . (see,
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e.g., [21]). The boundary of these templates are decom-
posed into “exit sets” and “entrance sets” according to the
directions of the flow at these points. It is well-known, for
example, that if all the flows are either entering into or exit-
ing from the template, then there exists an invariant inside
the template. The Waz̆ewski property, in particular, gives
criteria for guaranteeing the existence of invariants, in more
general cases with both entering and exiting flows at the
boundary. This method has been used in our previous work
on continuous systems [8]. We extend here this work by
considering the case of switched systems. Switched systems
are dynamical hybrid systems that combine continuous and
discrete dynamics. These systems are more and more used
in industrial applications, such as power electronics, due to
their versatility and ease of implementation. A switched sys-
tem is defined by a family of continuous dynamics, and by a
switching signal that changes the operating mode of the sys-
tem from one dynamics of the family to another. We use here
topological methods (in the sense of topological dynamics :
we are concentrating on closedness and non-connectedness
of the exit set) in order to guarantee the presence of invari-
ants inside templates for different classes of switching signal:
time-dependent or state-dependent.

Related work.
Similar problems have been investigated in the literature.

For example, in [2, 19, 25, 15, 14], authors calculate a con-
trolled invariant set contained in K via an iterative algo-
rithm. The algorithm is initialized with K and iteratively
removes trajectories that may be forced to exit the set due
to system dynamics. If the algorithm terminates at a fixed
point, this final set is the maximal controlled invariant set
(MCIS) contained in K. In general, the algorithm does not
terminate, and only an approximation of the MCIS is found,
which is still invariant but not maximal.

An alternative approach is to synthesize guards or tuning
the parameter values of switching surfaces in order to min-
imize an integral cost function (see, e.g. [4, 23]). In [12,
10], the authors create a transition system from the hybrid
dynamics by partitioning the state-space and introducing
transitions between partitions which reflect the dynamics
and invariance properties of the hybrid system model. The
relation between the hybrid system and the new transition
system is called a bisimulation, and a controller for the orig-
inal system can be synthesized from this bisimulation.

In [6], the authors use sum of squares (SOS) programming
to synthesize switching laws that are guaranteed to satisfy a
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state-based safety constraint. They consider hybrid systems
with a finite number of modes in which the state evolution
is governed by a differential inclusion, and they synthesize
guards that trigger transitions between modes. Guards are
assumed to be semialgebraic sets, i.e. a guard is a subset
of the continuous state space which satisfies a collection of
polynomial inequalities and equalities.

Although all these works pursue an objective similar to
ours, they use techniques such as Lyapunov function calcula-
tion, bisimulation, fix-point iteration, which differ from our
topological approach. Besides they generally treat only lin-
ear or affine modes while our method is suitable to switched
systems with polynomial modes. Note also that, as men-
tioned above, our method is based on the Waz̆ewski property
which generalizes the Lyapunov approach, and can treat ex-
amples that would have been very difficult to obtain with
Lyapunov functions (see [8] for examples).

2. DIFFERENTIAL INCLUSIONS AND VI-
ABILITY

2.1 Basic facts
Consider the general differential inclusion

ẋ ∈ F (x) (1)

where F is a map from Rn to ℘(Rn), the set of subsets of Rn.
A function x(·) : R+ → Rn is a solution of Equation (1) if x
is an absolutely continuous function and satisfies for almost
all t ∈ R, ẋ(t) ∈ F (x(t)) (see [3]). In general, there can be
many solutions to a differential inclusion. Throughout the
paper we note SF (x0) the set of all (absolutely continuous)
solutions to the Equation (1).

Definition 1. [3] The set-valued map F : Rn ; Rn is
a Marchaud map if F is upper semicontinuous (in short:
u.s.c.) with compact convex values and linear growth (that
is, there is a constant c > 0 such that |F (x)| := sup{|y| | y ∈
F (x)} ≤ c(1 + |x|), for every x).

We know from [3] that when F is a Marchaud map, then
the inclusion (1) has a solution such that x(t0) = x0 (for
all x0) and for a sufficiently small time interval [t0, t0 + ε),
ε > 0. Global existence, for all t ∈ R can be shown provided
F does not allow “blow-up” (‖x(t)‖ → ∞ as t → t∗ for a
finite t∗).

Definition 2. [3] Let K be a closed subset of Rn. A
trajectory of the differential inclusion (1), t → x(t), is said
to be viable (in K) when for all t, x(t) ∈ K. The viability
kernel of Equation (1) in K is V iabK(F ), the set of initial
conditions x0 ∈ K such that there exists a solution of SF (x0)
staying forever in K.

A closed set K ⊂ Rn being given, we study the following
problem of the existence of trajectories for the differential
inclusion (1) remaining in K: is V iabF (K) not empty? That
is, does there exist x0 in K and x(·) ∈ SF (x0) such that
∀t ≥ 0, x(t) ∈ K? It is well known that the problem has a
positive answer for any x0 ∈ K, and all trajectories, when
the boundary of K is the level set of a Lyapunov function
associated with the differential inclusion [9]. But finding
such Lyapunov functions is generally difficult. The Viability
Theorem is a slight relaxation of this approach, to prove

that there exists a trajectory staying inside K, whereas all
trajectories may not stay inside K. Let us denote by CK(x)
the Bouligant contingent cone of K at x [3], which, in the
case where K is a closed convex subset of Rn is just the
closure of the tangent cone of K at x,

⋃
h>0

{
k−x
h
|k ∈ K

}
.

Theorem 1. [3] Consider a Marchaud map F : Rn →
℘(Rn) and a closed convex K ⊆ Rn. Suppose that ∀x ∈
K, F (x) ∩ CK(x) 6= ∅, then V iabK(F ) = K, i.e. there
always exists a trajectory for the differential inclusion (1)
from any point of K, staying in K.

The idea behind this theorem is that if there is always a
vector field which points inside K in F (x), for all x ∈ K,
then there is a way to follow it to stay inside K. In this
paper, we are going to generalize this approach using a
finer characterization of the exit set of the differential in-
clusion F . Let KS(F ) := {x0 ∈ ∂K | ∀x ∈ SF (x0) :
x leaves K immediately}, be the exit set for the differen-
tial inclusion F . Here, “immediately” means that for every
ε > 0 there is 0 < t < ε such that x(t) 6∈ K. We now
have the following result, which is a Waz̆ewski property for
differential inclusions :

Proposition 1. [5] Let K be a closed convex subset of
Rn and F a Marchaud map. If the set KS(F ) is closed and
not connected1, then V iabF (K) 6= ∅.

This provides us indeed with a generalization of Theorem
1 in that the former deals with the case where KS(F ) is
empty, and hence, is closed and not connected. In the sequel,
we focus on deriving conditions on differential inclusions to
get closed and disconnected exit sets. We then apply these
characterizations to prove the existence of switching modes
that make a switched system’s trajectory stay within some
prescribed region of space.

Viability is a generalization of invariance properties, that
can be used to verify properties of dynamical systems under
uncertainties (Section 6.1) or controlled systems (e.g. Sec-
tion 8), but few methods are available to compute the viabil-
ity kernel, and they are not tractable. Our goal is thus only
to prove non-emptyness of the viability kernel within some
fixed region. As an application of this, for instance, know-
ing that a parameterized (with uncertain parameters in U)
dynamical system is viable inside K means that the system
is controllable with parameters in U . Similarly for arbitrary
switching systems : if we prove that the viability kernel is
not empty within K, then we know that there is a switching
strategy to stabilize it, i.e. the system is controllable. For
those switched systems which have unique solutions within
K (which include a large class of practically meaningful sys-
tems), our method will prove that there exists a maximal
positive invariant set within K, which allows for spotting
areas in space where the system is stable (and by way of
complement, unstable), if K can be made sufficiently small.

2.2 Convex polynomial differential inclusions,
in convex compact semi-algebraic sets

2.2.1 Convex polynomial differential inclusions
1With the convention here that the empty set has no con-
nected component, hence is not connected.



For the rest of the article, we will restrict to the case
where F is given as the closed convexification of a finite set
of polynomial vector fields f1, . . . , fq:

F (x) = co(f1, . . . , fq) (2)

where co(y1, . . . , yq) is the convex combination of the q vec-
tors y1, . . . , yq in Rn and A is the topological closure of
A in Rn. For every such λ = (λ1, . . . , λq) we will write

fλ =
q∑
i=1

λifi so that F (x) can be identified with the set

of all such fλ(x), where λ is a continuous function. Such
differential inclusions are very well behaved and we will be
allowed to apply the results that we recapped in Section 2.1 :

Lemma 1. Set functions F of the form given at Equa-
tion (2) are Marchaud maps.

2.2.2 Convex compact semi-algebraic sets
We will also restrict ourselves further by looking for viable

solutions in closed convex sets K ⊂ Rn, which are defined,
for some vector c = (c1, . . . , cm) ∈ Rm, by the m polynomi-
als inequalities:

(P )

 p1(x1, . . . , xn) ≤ c1
. . .

pm(x1, . . . , xn) ≤ cm

We say that K is a (polynomial) template. We call min-
imal polynomial templates, the templates K which border
∂K is equal (and not just included as would be generally

the case) to
m⋃
i=1

{x | pi(x) = ci, pj(x) ≤ cj ∀j 6= i}.

2.2.3 Lie derivatives
Before stating results about the viability kernel of the cor-

responding differential inclusion, we need to introduce some
notions that will be necessary, on polynomial differential
equations. R[x] is the ring of polynomials in x.

Definition 3. (Lie derivative and higher-order Lie deri-
vatives). The Lie derivative of h ∈ R[x] along the vector

field f = (f1, . . . , fn) is defined by Lf (h) =
n∑
i=1

∂h
∂xi

f i =

〈f,∇h〉. Higher-order derivatives are defined by L(k+1)
f (h) =

Lf (L(k)
f (h)) with L0

f (h) = h.

For polynomial dynamical systems, only a finite number
of Lie derivatives are necessary to generate all higher-order
Lie derivatives. Indeed, let h ∈ R[x1, . . . , xn], we recursively
construct an ascending chain of ideals of R[x1, . . . , xn] by
appending successive Lie derivatives of h to the list of gen-

erators : 〈h〉 ⊆ 〈h,L1
f (h)〉 ⊆ · · · ⊆ 〈h,L1

f (h), . . . ,L(N)
f (h)〉.

Since the ring R[x] is Noetherian [16], this increasing chain
of ideals has necessarily a finite length: the maximal element
of the chain is called the differential radical ideal of h and
will be noted L

√
〈h〉. Its order is the smallest N such that:

L(N)
f (h) ∈ 〈h,L(1)

f (h), . . . ,L(N−1)
f (h)〉 (3)

This N is computationally tractable. If we note Ni the order
of the ideal L

√
〈pi〉, then for face i we should compute the

successive Lie derivatives until Ni. This can be done by test-
ing if the Gröbner basis spanned by the derivatives changes.
Indeed, two ideals are equal if they have the same reduced

Gröbner basis [1]. If we denote by G({g1, · · · , gn}) the Gröb-

ner basis of {g1, · · · , gn}, the first n s.t. G({L(0)
f (pi), · · · ,

L(n)
f (pi)}) = G({L(1)

f (pi), · · · ,L(n+1)
f (pi)}) is equal to Ni.

3. VIABILITY OF CONVEX DIFFERENTIAL
INCLUSIONS IN TEMPLATES

3.1 Viability: a first topological approach
There is first a simple characterization of KS(F ) for dif-

ferential inclusions of the form we consider in this section,
along the lines of [8]:

Theorem 2. Consider the differential inclusion (2). Let
K be a compact minimal polynomial template defined by the
set of inequalities (P ) and let N j

i be the order of the differ-

ential ideal L
√
〈pi〉 along fj. If for each face Ki of template

K we have (Hi):

• for all k ∈ {1, . . . , N j
i −2}, for all λ ∈ Rq, for all (x, λ),(

pi(x) = ci, ∀j 6= i, pj(x) ≤ cj &
q∑

u=1

λu = 1,

λ1, . . . , λq ≥ 0 & L(1)
fλ

(pi)(x) = 0, . . . ,L(k)
fλ

(pi)(x) = 0
)

=⇒ L(k+1)
fλ

(pi)(x) ≥ 0

•

{
(x, λ) | pi(x) = ci, ∀j 6= i pj(x) ≤ cj &

q∑
u=1

λu = 1,

∀u, λu ≥ 0 & L(1)
fλ

(pi)(x) = · · · = L(N
j
i−1)

fλ
(pi)(x) = 0

}
is empty.

Then KS(F ) is closed and equal to

m⋃
i=1

⋂
q∑
u=1

λu=1, λ1,...,λq≥0

{x ∈ Ki | Lfλ(pi)(x) ≥ 0}

If furthermore KS(F ) is disconnected, then V iabK(F ) 6= ∅.

Note now that (Hi) can be checked by SoS relaxation [17]
in the ring of multivariate polynomials R[λ1, . . . , λq, x1, . . . , xn],

as in [8]. As a matter of fact, L(v)
fλ

(pi) is a polynomial in

R[λ1, . . . , λq, x1, . . . , xn], as easily shown by induction on v.
But this is both an expensive way to solve our problem and a
fairly weak condition for solving problem (P ). What the the-
orem says is that KS(F ) is closed when KS({fλ}) is closed
for all λ. As the example below shows, this is far too strict
a condition in general, to be applicable.

Example 1 (Example 2.7 of [24]). Let us consider the
switched system defined by :

f1(x, y) =

(
−y

x− y3
)

f2(x, y) =

(
y

−x− y3
)

We consider the differential inclusion in R2, F (x, y) = co(f1,
f2) and the template K = [−0.5, 0.5] × [−0.5, 0.5] given by
p1 = −x, p2 = x, p3 = −y, p4 = y and c1 = c2 = c3 = c4 =
0.5. We have:

Lf1(p1) = y Lf2(p1) = −y
Lf1(p2) = −y Lf2(p2) = y
Lf1(p3) = −x+ y3 Lf2(p3) = x+ y3

Lf1(p4) = x− y3 Lf2(p4) = −x− y3



For instance, for p1(x) = c1, λ1 + λ2 = 1, we get Lfλ(p1) =
(λ1−λ2)y = (1−2λ2)y which is zero for y = 0 or λ2 = 1

2
. In

the first case, L(2)
fλ

(p1) = 1
2
(1− 2λ2)2 and in the second case

L(2)
fλ

(p1) = (1− 2λ2)y3 = 0. Therefore, the 2nd criterion of

(Hi) for i = 1 in Theorem 2 is not satisfied. But it can be
verified that V (x, y) = x2 + y2 is a common weak Lyapunov
function, so that the system is uniformly stable [24]. We
will show later on that more refined topological methods can
prove the existence of viable trajectories within K.

3.2 Viability in templates with one face
In this section, we further characterize KS(F ) for F of

the form given by Equation (1), when K is defined by one
face only (for example, when K is an ellipsoid).

Lemma 2.

KS(F ) =
⋂

λ1,...,λq≥0,
q∑
i=1

λi=1

KS({fλ})

Furthermore, if the template K is defined by a unique poly-

nomial p1, KS(F ) =
q⋂
i=1

KS({fi})

In the case of a one-face template K, we can refine Theo-
rem 2 to the following result:

Theorem 3. Consider the differential inclusion (2). Let
K be a convex compact minimal polynomial template defined
by the set of inequalities (P ) and let N j

1 be the order of the

differential ideal L
√
〈p1〉 along fj. If for the only face K1 of

template K, for all j = 1, . . . , q we have (Hj):

• for all k ∈ {1, . . . , N j
1 − 2},

{x ∈ K1 | L(1)
fj

(p1)(x) = 0, . . . ,L(k)
fj

(p1)(x) = 0,

∀i 6= j, L(1)
fi

(p1) ≥ 0, L(k+1)
fj

(p1)(x) < 0}

is empty.

•
{x ∈ K1 | ∀i 6= j, L(1)

fi
(p1) ≥ 0 &

L(1)
fj

(p1)(x) = 0, . . . ,L(N
j
1−1)

fj
(p1)(x) = 0}

is empty

Then KS(F ) is closed and equal to

{x ∈ K1 |
q∧
j=1

L(1)
fj

(p1)(x) ≥ 0}

If furthermore KS(F ) is disconnected, then V iabF (K) 6= ∅.

Algorithm (A).
We can check the conditions of Theorem 3, in a similar

way as what was developed in [8], using Sum of Squares
optimization [17] and Stengle’s nichtnegativstellensatz, for
increasing k from 1 to N j

1 − 2, for each vector field fj . We
determine polynomials αn (n = 0, . . . , k), SoS polynomials
βS,µ (S ⊆ {1, . . . , j − 1, j + 1, . . . , q}, µ ∈ {0, 1}) and an
integer l, such that

k∑
n=0

αnL(n)
fj

+
∑

S⊆{1,...,j−1,j+1,...,q}
µ∈{0,1}

βS,µGS,µ+
(
L(k+1)
fj

)2l
= 0

(4)

where GS,µ = (−L(k+1)
fj

)µ
∏
s∈S
L(1)
fs

for any S ⊆ {1, . . . , j −

1, j+1, . . . , q}, µ ∈ {0, 1} and the convention that L0
fj

(p1) =
c1 − p1. Practically, this is done by bounding the degrees of
the polynomials αn and βS,µ we are looking for, and taking
low values for l (in all our examples, we took l = 1), the
problem can thus be tested by semidefinite programming.
An example of application of Theorem 3 to compute the
exit set of a one-face template (ball) is given in Section 6.4.

3.3 Viability for general templates
In general, we do not have the same results when the

boundary of K is defined by several template polynomials
pi, as illustrated in the following example.

Example 2. We carry on with Example 1. We have:
KS({f1}) = [−0.5, 0[ × {−0.5} ∪ [0, 0.5[ × {0.5} ∪ {0.5} ×
[−0.5, 0[ ∪ {−0.5} × ]0, 0.5] and
KS({f2}) = [−0.5, 0[× {0.5} ∪ ]0, 0.5]× {−0.5} ∪ {−0.5} ×
[−0.5, 0[ ∪ {0.5} × ]0, 0.5]

Hence KS({f1})∩KS({f2}) is {(−0.5,−0.5) , (−0.5, 0.5) ,
{(0.5, 0.5) , (0.5,−0.5)}. But at any of the four points above,
there is always a vector field within F (x, y) = co(f1(x, y),
f2(x, y)) which points strictly inside template K. For in-
stance, for point (0.5, 0.5), we have:

Lfλ(p2) = 0.5(λ2 − λ1) Lfλ(p4) = 0.5(λ1 − λ2)x− 1
8

Take for instance λ1 = 9
16

, λ2 = 7
16

, the solutions for 9
16
f1 +

7
16
f2 are entering K. The same occurs for the other three

points: this is pictured in Figure 2. It follows that KS({fλ})
is empty for λ = ( 9

16
, 7
16

), hence KS(F ) is empty (by Lemma

2), hence KS(F ) 6= KS({f1}) ∩KS({f2}).

Let K now be a convex compact minimal polynomial tem-
plates. It is a stratified space. We call Ki the face of the
template K given by {(x1, . . . , xn) | pi(x1, . . . , xn) = ci}∩K,
and, for all multi-indices k ∈ {(k1, . . . , ki) | 1 ≤ k1 < . . . <
ki ≤ m}, Kk the k-face of K given by Kk = {x | pk1(x) =

ck1 , . . . , pki(x) = cki }. We write
◦
Ki for the interior of the

i-face, given by
◦
Ki= {x | pi(x) = ci & ∀j 6= i, pj(x) < cj}

and for all multi-indices k ∈ {(k1, . . . , ki) | 1 ≤ k1 < . . . <

ki ≤ m},
◦
Kk is the interior of the k-face of K given by

◦
Kk=

{x | pk1(x) = ck1 , . . . , pki(x) = cki & ∀j 6∈ k, pj(x) < cj}

Example 3. Consider template K in R3 given by p1(x) =
−x1, p2(x) = x1, p3(x) = −x2, p4(x) = x2, p5(x) = −x3,
p6(x) = x3 and c1 = c2 = c3 = c4 = c5 = c6 = 1. Geo-
metrically, K is the cube [−1, 1]× [−1, 1]× [−1, 1], stratified
by its 6 faces, 12 edges and 8 extremal points as depicted in
Figure 1.

We have a full characterization of the exit set for F in
K, which is indeed more involved than Lemma 2. We note

KSk(F ) = KS(F )∩
◦
Kk the intersection of KS(F ) with the

interior of face Kk.

Proposition 2. Suppose we have a convex compact min-
imal polynomial template K defined by the set of inequalities
(P ), and consider the differential inclusion for (1). KS(F )
is defined by its intersections with all (iterated) faces of K :

• for all i = 1, . . . ,m, KSi (F ) =
q⋂
j=1

KSi ({fj})



x1

x2

x3

K 1

K4

K6 K(1,6)K(2,6)

K(3,6)

K(4,6)

K(1,4)

K(1,4,6)

K(1,3,6)
K(2,3,6)

K(2,4,6)

Figure 1: Stratification of a parallellepipedic template.
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9

16
f1 +

7

16
f2

f1

f2

K1 K2

K3

K4
K(2,4) = (

1

2
,
1

2
)

Figure 2: Field λ1f1 + λ2f2 is entrant at K(2,4).

• for all multi-indices k = (k1, . . . , ki) of cardinality at
least 2

KSk(F ) =
⋂

λ1,...,λq≥0,
q∑
i=1

λi=1

KSk({fλ}).

Example 4. We carry on with Example 2. We derive
from the calculations of the Lie derivative made in Exam-
ple 1 that KS2 ({f1}) = {0.5} × [−0.5, 0[ and KS2 ({f2}) =
{0.5} × ]0, 0.5]. By Proposition 2, we have then:

KS2 (F ) = KS2 ({f1}) ∩ KS2 ({f2}) = ∅ and

KS(2,4)(F ) =
⋂

λ1,λ2≥0,λ1+λ2=1

KS(2,4)({λ1f1 + λ2f2}) = ∅

because of the pair (λ1, λ2) =
(

9
16
, 7
16

)
found out in Exam-

ple 2 that makes the vector field λ1f1 + λ2f2 entrant in K
in the face K(2,4) = (0.5, 0.5). The three other extremal
points of K can be treated in a similar manner, and we con-
clude that KS(F ) = ∅. Figure 2 illustrates the entrant field
λ1f1 + λ2f2 at K(2,4).

Unfortunately, the formula for KS(F ) given in Proposi-
tion 2 is still highly inconvenient, for two reasons. First,
although it is simple to characterize KSi (F ) (for all i =
1, . . . ,m) in the style of [8], it is hard to characterize KSk(F )
as soon as the cardinal of k is greater than 2. Second, we
have to prove that KS(F ) is closed in order to be able to
apply Proposition 1 and prove that V iabF (K) 6= ∅. The
only simple characterization we have at hand is weak: if for
all multi-indices k, KSk(F ) is closed in Rn, then KS(F ) is
closed.

We now give a simple criterion for the closedness ofKS(F ).
The idea is to test closedness of the exit sets on all faces
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1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

K1 K2

K3

K4

K(2,3)K(1,3)

K(2,4)
K(1,4)

f1 f2
f1 f2

f1 f2 f1 f2

Figure 3: Illustration of Lemmas 3, 4 on Examples 5, 6

similarly to Proposition 2 and to test whether intersections
of faces are entirely exiting or entirely non-exiting (this is
called an entrance set or face). In this case, we can easily test
whether the exit set is closed by looking only at intersections
with each closure of faces Ki. Then we will use simple cri-
teria for deciding whether intersections of faces are entirely
exiting or entirely non-exiting in Lemmas 3 and 4. Finally,
these will have a simple translation in terms of positivstel-
lensatz conditions for some Lie derivative in Theorem 4.

For all multi-indices k = (k1, . . . , kj), let us writeKS
k ({fi})

for the exit set of the (not necessarily compact) set {x ∈
Rn | pk1(x) ≤ ck1 , . . . , pkj (x) ≤ ckj} under flow fi, inter-
sected with Kk.

Proposition 3. A sufficient condition for KS(F ) to be
closed is:

• For all i = 1, . . . ,m,
q⋂
j=1

KS
i ({fj}) is closed in Rn

• For all k multi-index of cardinality at least 2,⋂
λ1,...,λq≥0,

q∑
i=1

λi=1

KS
k ({fλ})

is either empty or the full (iterated) face Kk.

Deciding the second condition of Proposition 3 can be
done combinatorially, in simple cases:

Lemma 3. Consider a point x ∈
◦
Kk for some multi-index

k = (1 ≤ k1 < . . . < ki ≤ m). Suppose that there ex-
ists j in {1, . . . , i} such that for all u in {1, . . . , q}, x ∈
KS
kj

({fu}). Then x is in the exit set for F , in face Kk:

x ∈
⋂

λ1,...,λq≥0,
q∑
i=1

λi=1

KS
k ({fλ}).

Example 5. Consider again Example 1, with the box K′ =
[−1, 1]× [2, 3]. Simple computations using the corresponding
Lie derivatives show that:

KS
3 ({f1}) = [−1, 1]× {2} KS

3 ({f2}) = [−1, 1]× {2}
KSj ({fi}) = ∅ for all i = 1, 2 j 6= 3

Figure 3 illustrates this example, where KS(F ) = [−1, 1]×
{2} is represented as a thick line. Since

◦
K(1,3)= {(−1, 2)} ∈

KS
3 ({f1}) ∩ KS

3 ({f2}) and
◦
K(2,3)= {(1, 2)} ∈ KS

3 ({f1}) ∩
KS

3 ({f2}), Lemma 3 applies and we know that KS
(1,3)(F ) =

{(−1, 2)}, KS
(2,3)(F ) = {(1, 2)}. To apply Proposition 3, we



need also to sort out whether the 2 other (iterated) faces
K(1,4) = {(−1, 3)} and K(2,4) = {(1, 3)} are entrant or exit
faces. This is the objective of the following Lemma.

We note hereafter KT (F ), the subset of the boundary of
template K for which there exists a solution to the differen-
tial inclusion for (1) which enters K immediately. Note that
KT (F ) is in the complement of KS(F ). For all multi-indices
k = (k1, . . . , ki), in a similar way as we did for KS(F ), we
also note KT

k ({fi}) for such an entrance set for the tem-
plate {x ∈ Rn | pk1(x) ≤ ck1 , . . . , pki(x) ≤ cki} under flow
fi, intersected with Kk. We then have somehow a dual to
Lemma 3, with similar proof:

Lemma 4. Consider a point x ∈
◦
Kk for some multi-index

k = (1 ≤ k1 < . . . < ki ≤ m). Suppose that there exists u in
{1, . . . , q} such that for all j in {1, . . . , i}, x ∈ KT

kj
({fu}).

Then x ∈ KT (F ): x ∈
⋂

λ1,...,λq≥0,
q∑
i=1

λi=1

KT
k ({fλ}).

Example 6. We carry on with Example 5. Let us look
at face K(1,4) = {(−1, 3)}. We see that Lf2(p1)(−1, 3) =
−3 < 0 and Lf2(p4)(−1, 3) = −26 < 0, hence (−1, 3) ∈
KT

(1,4)({f1, f2}). By Lemma 4, K(1,4) = (−1, 3) is entrant

and KS
(1,4)(F ) = ∅. Similarly, we would find KS

(2,4)(F ) = ∅
so now Proposition 3 applies and KS(F ) = [−1, 1] × {2} is
closed. This situation is illustrated on Figure 3, where at
the corners, always exiting flows (at K(1,3) and K(2,3)) are
represented in orange, whereas the flows that can possibly
enter the template (at K(1,4) and K(2,4)) are in green.

Proposition 3, Lemmas 3, 4, translate into polynomial
decision problems, as the theorem below expresses. These
polynomial problems derive from similar conditions given for
ordinary flows in [8] as we explain below.

Theorem 4. Consider the differential inclusion for (2).
Let K be a convex compact minimal polynomial template
defined by the set of inequalities (P ) and let N j

i be the order

of the differential ideal L
√
〈pi〉 along fj. Suppose we have:

• For all faces i, all j = 1, . . . , q, and all l = 1, . . . , N j
i −

2, we have (Hi,j,l):(
pi(x) = ci & ∀k 6= i, pk(x) ≤ ck & Lfj (pi) = 0, . . . ,

L(l)
fj

(pi) = 0 & ∀v 6= j, Lfv (pi) ≥ 0
)
⇒ L(l+1)

fj
(pi)(x) ≥ 0

and (H
i,j,N

j
i−1

): the following set is empty

{x ∈ Ki | ∀k 6= i, L(1)
fk

(pi) ≥ 0 &

L(1)
fj

(pi)(x) = 0, . . . ,L(N
j
i−1)

fj
(pi)(x) = 0}

• For all multi-indices k in {1, . . . ,m}, of cardinality
greater or equal than 2,

– there exists l = 1, . . . , i s.t. we have (H+
l,k):

(pk1(x) = ck1 & . . . & pki(x) = cki&
∀k 6= {k1, . . . , ki}, pk(x) ≤ ck)
=⇒

(
Lf1(pkl)(x) > 0 & . . . & Lfq (pkl(x) > 0

)
– Or there exists j = 1, . . . , q such that (H−j,k):

(pk1(x) = ck1 & . . . & pki(x) = cki&
∀k 6= {k1, . . . , ki}, pk(x) ≤ ck)
=⇒

(
Lfj (pk1)(x) < 0 & . . . & Lfj (pki)(x) < 0

)

Then KS(F ) is closed and is
m⋃
i=1

{x ∈ Ki |
q∧
j=1

L(1)
fj

(pi)(x) ≥

0}. Also, if KS(F ) is disconnected, then V iabK(F ) 6= ∅.

Conditions (Hi,j,l) ensure that at a point of tangency of
flow fj , on face Ki, of order l, which is also in the exit
set of the other flows fv, a certain (l + 1)th Lie derivative
is non-negative, meaning that flow fj at that point is still
exiting – this ensures closedness of the exit set on this face.
Conditions (H+

l,k) (resp. (H−l,k) ensure that the exit sets on
Kk are the full face (resp. are empty).

Proof. The proof goes as follows: we know that KS(F )
is closed under the conditions of Proposition 3. For the
first item of the hypotheses of Proposition 3, we use the
characterization of [8], to get conditions (Hi,j,l) at each order
l, for each face i and all potential tangencies for vector field
fj . Furthermore, using Lemma 3 we can decide whether
a face Kk is entirely exiting, and this translates to (H+

l,k):
all vector fields f1 to fq are exiting with respect to face Kl

which contains Kk. Finally, using Lemma 4 we can decide
whether a faceKk has all its points which are non-exiting, by
imposing that it is entirely within KT (F ). Condition (H−j,k)
translates the second item of the hypotheses of Proposition
3: if there exists a vector field fj which is entrant on all faces
Kk1 to Kki at their points of intersection, then Kk does
not contain any exiting point for differential inclusion F .
Finally, KS(F ) is given as the union on all closed faces Ki

of the intersections of the exit sets for the template given by
pi of all vector fields f1, . . . , fq since, on iterated faces Kk

of face Ki, if the exit sets (for all j = 1, . . . , q) KS
i ({fj})

intersect Kk then KS
k ({fj}) is the whole face Kk and by

Lemma 3 this is equal to KS
k (F ).

Algorithm (B).
In the same way as with the algorithm of Theorem 3,

we can check the conditions of Theorem 4 by using Sum
of Squares optimization [17] and Stengle’s nichtnegativstel-
lensatz, for increasing k from 1 to N j

i − 2 and j from 1 to
q. In practice, as in [8], we generally use only a sufficient
condition (Hi,j), which implies all (Hi,j,l):(

pi(x) = ci & ∀k 6= i, pk(x) ≤ ck & Lfj (pi) = 0 &

∀l 6= j, Lfl(pi) ≥ 0) =⇒ L(2)
fj

(pi)(x) > 0

and which can be checked using the much less computation-
ally demanding Putinar positivstellensatz. When conditions
(H+

l,k) or (H−l,k) are not satisfied, we use the characterization
of Proposition 3 translated as in Theorem 2, as a polynomial
decision problem on variables (x, λ). This will be exempli-
fied in Example 8.

We are now going to explain how Theorem 4 can be ap-
plied for proving the existence of viable solutions for time-
dependent switched systems (Section 4) and state-dependent
switched systems (Section 5).

4. VIABILITY AND INVARIANTS OF TIME-
DEPENDENT SWITCHED SYSTEMS

Let us recall the notions related to time-dependent switched
system (see, e.g., [18]). Suppose that we are given a family
fi, i ∈ Q = {1, . . . , q} of functions from Rn to Rn. The set Q
is called the set of modes. We still assume here that the func-
tions are polynomials (hence locally Lipschitz). Let G de-
fined on every point x of Rn byG(x) = {f1(x), . . . , fq(x)}. It



has closed, non-empty values, and is locally-Lipschitz, hence
[3], the corresponding differential inclusion

ẋ ∈ G(x) (5)

has solutions over finite time intervals. A solution of such a
differential inclusion is any absolutely continuous functions
satisfying ẋ(t) ∈ G(x(t)) almost everywhere. Such functions
define time-dependent trajectories of the switched systems
with the q modes f1, . . . , fq.

A classical way to study the switched system (5) is to
consider instead the differential inclusion equation ẋ ∈ F (x)
where F is defined by (2). Indeed, the Filippov-Waz̆ewski
theorem, which is basically a generalisation of the bang-bang
control in ordinary linear control, states that all solutions of
the convexified equation (2) can be approximated by solu-
tions of Equation (5) with the same initial value, at least
over a compact time interval, and under some simple hy-
potheses.

But we will actually need a little more than this classical
theorem if we want to use the results of the previous section
for switched systems with time-dependent switching. There
are ways to extend it to infinite time horizon, still keeping
some control over the switched trajectories, with respect to
the trajectories of the corresponding differential inclusion,
at the expense of possibly having to slightly perturbate the
initial condition [13]. We restrict this version of Filippov-
Waz̆ewski “in infinite horizon” to our case, where we study
differential inclusions F = co(f1, . . . , fq) over Rn, which are
autonomous (they do not depend on time). In what follows,
let B(x,R) be the Euclidean ball in Rn of center x and radius
R, and dH the Hausdorff distance.

Theorem 5. [13] Let 0 < T ≤ ∞. Suppose the set-valued
map G : Rn → ℘(Rn) is measurable with respect to the Borel
subsets of Rn. Suppose also that for all R > 0 there exists
kR ∈ R such that for any ξ, η ∈ B(0, R),

dH(G(ξ), G(η)) ≤ kR|ξ − η|

and that there exists αR ∈ R such that for each ξ ∈ B(0, R),

sup{|ζ| : ζ ∈ G(ξ)} ≤ αR
Fix ξ ∈ X and let z ∈ [0, T ) → X be a solution of ẋ ∈
co(G(x)), x(0) = ξ. Let r = [0, T ) → R be a continuous
function satisfying r(t) > 0 for all t ∈ [0, T ].

Then there exists η0 ∈ B(ξ, r(0)) and a solution x =
[0, T )→ X of ẋ ∈ G(x), x(0) = η0 which satisfies

|z(t)− x(t)| ≤ r(t) ∀t ∈ [0, T )

Lemma 5. The switched system (5) satisfies the hypothe-
ses of Theorem 5.

We are now in a position to use Theorem 5 for the differ-
ential inclusion co(f1, . . . , fq). We can prove the following
adaptation of Theorem 4 to time-dependent switched sys-
tems:

Theorem 6. Consider the time-dependent switched sys-
tem of Equation (5). Let K be a compact minimal polyno-
mial template defined by the set of inequalities (P ) and let

N j
i be the order of the differential ideal L

√
〈pi〉 along fj.

Under the same conditions as those of Theorem 4, KS(F )
is closed and equal to

m⋃
i=1

{x ∈ Ki |
q∧
j=1

L(1)
fj

(pi)(x) ≥ 0}

If furthermore KS(F ) is disconnected, then for any open set

K̂ strictly containing K, V iabG(K̂) 6= ∅, i.e.: there exists a

viable solution of (5) within K̂.

Proof. By Theorem 4 we know that there exists at least
a trajectory δ of ẋ ∈ co(G(x)) which is included in K. By
Lemma 5 and Theorem 5 we know that for any r > 0 there
is a trajectory δr of ẋ ∈ G(x) at distance at most r of δ. Let

K̂ be any open set strictly containing K, by compactness
of K, there exists r > 0 such that

⋃
x∈K

B(x, r) ⊆ K̂, hence

δr ⊆ K̂ and V iabG(K̂) 6= ∅.

Example 7. Consider again the switched system of Ex-
ample 1. >From Example 5, we know that for template
K′ = [−1, 1]×[2, 3], KS(F ) = [−1, 1]×{2}. But this exit set
is connected, and Theorem 6 does not apply. It is actually
clear that there is no switching that can stabilize F within
K′: any infinite trajectory of the convexified flow of f1 and
f2 either does not intersect with K′, or traverses K′ (i.e.,
enters into K′ then exits from it), as shown in Figure 3.

We consider now the same switched system, but with the
box K = [−0.5, 0.5] × [−0.5, 0.5]. We know from Exam-
ple 4 that KS(F ) = ∅ and Theorem 6 applies. We can then
conclude that there exists a time-dependent switching which
stabilizes F within e.g. any square Kε = ]−0.5− ε, 0.5 + ε[×
]−0.5− ε, 0.5 + ε[ (ε > 0), by choosing appropriately f1 or
f2 for some amount of time. Actually, there is a trivial
switching: both systems f1 and f2 stabilize within K (this
is clear from Figure 2). Note however that the topological
criterion given in [8] is too weak to conclude, as both exit
sets KS({f1}) and KS({f2}) are non-closed.

5. VIABILITY AND INVARIANTS OF STATE-
DEPENDENT SWITCHED SYSTEMS

Switching events often depend not only on time, but also
on the current state of the system (see [18]). Suppose we
are given a partition of Rn as a finite or infinite number of
operating regions by means of a family of switching surfaces,
or guards. A state-dependent switched system is defined
by these operating regions, and in the interior of each of
these regions a continuous dynamical system. Whenever the
system trajectory hits a switching surface, the continuous
state changes its mode. For simplicity, we suppose hereafter
that there are only 2 modes and 1 switching surface. The
generalization is easy.

Consider a state-dependent switched system, described by
a C1 switching surface S, given by equation s(x) = 0 sepa-
rating Rn into two open components S+ = {x ∈ Rn | s(x) >
0} and S− = {x ∈ Rn | s(x) < 0}, and two subsystems
ẋ = fi(x), i = +,−, one on each side of each element of S:

ẋ =

{
f+(x) if s(x) > 0
f−(x) if s(x) < 0

(6)

We rely on Filippov’s definition of a solution to such sys-
tems :

Definition 4. [18] Given a state-dependent switched sys-
tem H defined by Equation 6, a function x(·) : R+ → Rn is
a solution of H if it is absolutely continuous and satisfies the
differential inclusion ẋ(t) ∈ F (x(t)) for almost all t ∈ R+,



where F is a multi-valued function defined as follows:

F (x) =

 {f−(x)} if x ∈ S−
{f+(x)} if x ∈ S+
co{f+(x), f−(x)} if x ∈ S

Similarly to Lemma 1, function F from Definition 4 is
a Lipschitzean Marchaud map, hence admits solutions on
finite time intervals (see [7], Chapter 2). We apply again
Theorem 5 and get a theorem similar to Theorem 6 :

Theorem 7. Consider the state-dependent switched sys-
tem defined by Equation (6). Let K be a compact minimal
polynomial template defined by the set of inequalities (P ).
Suppose the switching surface S intersects K only at inter-
sections of faces defining K, i.e. is entirely within k-faces
(with | k |≥ 2) of K.

Suppose, up to a reordering of faces, that {pi | i =
1, . . . , l} (resp. {pj | j = l+1, . . . ,m}) are the polynomials
defining the faces of K whose interior are in S+ (resp. S−)

and let N j
i be the order of the differential ideal L

√
〈pi〉 along

fj.
Under the same conditions as those of Theorem 4, KS(F )

is closed and equal to

l⋃
i=1

{x ∈ Ki|L(1)
f+

(pi)(x) ≥ 0}∪
m⋃

j=l+1

{x ∈ Kj |L(1)
f−(pj)(x) ≥ 0}

If furthermore KS(F ) is disconnected, then V iabF (K̂) 6= ∅
(K̂ is any open set strictly containing K), i.e.: there exists
a state-dependent switching signal for which there is a viable
solution of (6) within K̂.

6. EXPERIMENTS

6.1 An uncertain differential system
We consider a perturbation of the system discussed in [8] :

fε

xy
z

 =

x3 + y − x/10 + ε
−x− y/10 + ε

5z + ε


and we take as differential inclusion F (x, y, z) = {fε | −
0.05 ≤ ε ≤ 0.05}. We consider the template given by the
unique face p1 = x21 + (x2 − 1)2 + (x3 + 1)2 and c1 = 1/25.
We use Theorem 2 and its implementation as Algorithm
(A). With our Matlab implementation, the exit set for the
differential inclusion is proved closed in 348 seconds. It has
two connected components hence there is a viable trajectory
within the template considered.

6.2 Boost DC-DC Converter

Example 8. The boost DC-DC converter is an example
from power electronic, where the state of the system is x(t) =
[il(t) vc(t)]

T with il the current intensity in an inductor, and
vc(t) the voltage of a capacitor. The aim of the control is to
maintain the system inside a given zone K (while the output
voltage stabilizes around a desired value). The dynamics
associated with mode u is given by ẋ(t) = fu(x) = Aux(t)+b
(u = 1, 2).

We use in the experiments the numerical values of [11] for
A1 and A2, xc = 70, xl = 3, rc = 0.005, rl = 0.05, r0 = 1,

vs = 1. We instantiate to b = ( 1
3

0)T ,

A1 =

(
−0.0167 0

0 −0.0142

)
, A2 =

(
−0.0183 −0.3317
0.0142 −0.0142

)
and study the system in the rectangle K = [1.55, 2.15] ×
[1.0, 1.4], which corresponds to the template p1 = x, p2 =
−x, p3 = y, p4 = −y with c1 = 2.15, c2 = −1.55, c3 =
1.4, c4 = −1.

Time-dependent switching.
The Lie derivatives for each dynamic and each face, in-

stantiated for the chosen parameters and template K, are
given below :

Lf1(p1) = −.017x+ .3 Lf2(p1) = −.018x− .33y + .3
> 0 < 0

Lf1(p2) = −Lf1(p1) < 0 Lf2(p2) = −Lf2(p1) > 0
Lf1(p3) = −.014y < 0 Lf2(p3) = .014x− .014y > 0
Lf1(p4) = −Lf1(p3) > 0 Lf2(p4) = −Lf2(p3) < 0

The conditions of Theorem 6 are satisfied, using the simpler
version of Algorithm B, for all faces Ki: actually all first-
order Lie derivatives are strictly positive on the faces. This is
checked in 12.22 seconds using our Matlab implementation.
The conditions of Theorem 6 are not satisfied on the two
extremal points K(1,3) = (1.55, 1.0) and K(2,4) = (2.15, 1.4)
where we use the more complex characterization of Propo-
sition 3 as explained in Algorithm (B), showing the these
two points are not part of the exit set (see also Figure 4).
Therefore KS(F ) = ∅ and there exists a viable solution in
any open set containing K.

State-dependent switching.
We now consider the same system with a switching surface

S given by the affine function going through the corners
(1.55, 1.0) and (2.15, 1.4) i.e. {s(x) = y−ax− b = 0} where
a = 2/3 and b = −1/30, and f1 is applied in {s(x) > 0} and
f2 in {s(x) < 0} (see Figure 4).

f1

f2

{S = 0}

x0

f�⇤

f�⇤

Figure 4: Flows for Example 8 with switching surface S

Here again, we can show that KS(F ) is empty using The-
orem 7. It is clear indeed that all the points of S− ∩ ∂K
and S+∩∂K are entrant and satisfy the conditions of Theo-
rem 7 (i.e., those of Theorem 4). For the corners located on
S, this is less trivial (similarly to what happens in the time-
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K1K2

K3

K4

K(2,3)
K(1,3)

K(2,4) K(1,4)

Figure 5: KS = ∅ for template (c0, δ1, δ2) = (0.4, 0.1, 0.15).

dependent switching case) since f1 and f2 are both exiting.
But there are values of λ for which flow fλ is entrant. 2

6.3 Defocused switched systems

Example 9. Let us consider the defocused switched sys-
tem defined by

f1

(
x
y

)
=

(
−ρA −1/E
E −ρA

)(
x− xc
y − yc

)
(7)

f2

(
x
y

)
=

(
−ρB −1

1 −ρB

)(
x
y

)
(8)

The invariant sets of such systems are studied in [22]. We
consider here the case (xc, yc) = (cos(φ), sin(φ)), ρA =
0.5, ρB = 0.4, E = 0.5, φ = 0. The flows for the two sys-
tems are represented in Figure 6.

We choose box templates centered on the x axis, defined
by p1 = x, p2 = −x, p3 = y, p4 = −y and c1 = c0 + δ1,
c2 = −c0 + δ1, c3 = c4 = δ2 (see Figure 6). Calculating
the first-order Lie derivative for each dynamic and face, we
see that the boxes have an empty exit set KS(F ), and it
follows from Theorem 6 that the state of the system can be
maintained inside any box using an appropriate switching
law. For example the system can be controlled inside the
box defined by (c0 = 0.4, δ1 = 0.1, δ2 = 0.15) (see Figure 5)
and (c0 = 0.55, δ1 = 0.05, δ2 = 0.15), hence fairly accurately.

6.4 Disconnected exit sets

Example 10. We consider the switched system defined
by

f1

(
x
y

)
=

(
1 + y2

y

)
and f2

(
x
y

)
=

(
−1− y2

y

)

Box template.
We consider the template p1 = −x, p2 = x, p3 = −y,

p4 = y and c1 = c2 = c3 = c4 = 1. Calculating the Lie

2Actually, the surface S can be seen as a sliding surface,
i.e. there exists a solution which stays indefinitely on it: the
sliding strategy makes all the trajectories starting from K
converge to an equilibrium point (2.10648, 1.37098), repre-
sented as a green bullet point on Figure 4.

Figure 6: Box templates between the equilibrium points of
the defocused switched system.
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Figure 7: Flows f1 and f2, with KS(F ) in thick line.

derivative of the template, we can deduce closedness of the
exit set by Theorem 6, and, by Algorithm (B), in 22 seconds
in Matlab, KS(F ) = [−1, 1]×{−1}∪ [−1, 1]×{1}, which is
closed and disconnected (left of Figure 7).

Ball template.
Let us now take a unit ball template: p = x2 +y2 and c =

1. Calculating the Lie derivatives on this template we can
deduce, using Theorem 6 and Algorithm (B), in 8.6 seconds
using our Matlab implementation that KS(F ) = {(x, y) ∈
[−0.445042, 0.445 042] × [−1, 1] | x2 + y2 = 1}, which is
closed and disconnected (right of Figure 7). Hence the
ball as well as the box contain a viable trajectory for some
time-dependent switching strategy.

Example 11. Consider now the following generalization
of the previous system, to dimension 3 :

f1

xy
z

 =

1 + y2 + z2

y
z

 , f2

xy
z

 =

−1− y2 − z2
y
z

 ,

f3

xy
z

 =

 x
1 + x2 + z2

z

 , f4

xy
z

 =

 x
−1− x2 − z2

z



Ball template.
We use a ball template defined by p = x2 + y2 + z2 and

c = 1. By application of Theorem 6, with just the first two
Lie derivatives as in Algorithm (B), we find in 68.5 seconds
using our Matlab implementation that the exit set is closed.
It is made of two components (see Figure 8, the components
are in red) KS(F ) = {(x, y, z) ∈ [−0.445042, 0.445042] ×
[−0.445042, 0.445042] × [−1, 1] | x2 + y2 + z2 = 1} : there



exists a time-dependent switch stabilizing this system of four
non-linear ODEs in the unit ball of dimension 3.

Figure 8: The two components of the exit set, Example 11

7. CONCLUSION AND FUTURE WORK
We have explained in this paper how topological meth-

ods can be used in order to show the presence of invariant
sets inside given templates of the phase space of switched
systems. Computable criteria based on SoS methods have
been given, and successfully experimented on various exam-
ples of differential inclusions and time-dependent and state-
dependent switched systems of the literature. We think that
our approach sheds new light on the important problem of
locating invariants of switched systems. It is now natural
to consider parametric templates of a given form, and de-
termine the values of the parameters which satisfy our cri-
teria: this will allows us to synthesize templates containing
invariants. As future work, we plan to apply more refined
topological methods based on the Conley index, in order to
determine the dynamical nature of located invariants (stable
or unstable equilibrium point, limit cycle, chaos,. . . ).
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