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Abstract: Starting with our work on the 
characterization of the imprecision error in programs 
using floating-point-numbers, by abstract 
interpretation, this paper shows that there are 
numerous perspectives, if one wants to fully qualify 
the numerical quality of control systems, as found in 
the aeronautical and automotive industry, for 
instance. Some very common functions (e.g. 
integrators) are hard to statically analyse, because 
their numerical correctness depend on  a fine-
grained specification of the classes of input signals 
they handle. This gets even more complex in the 
case of e.g. PID controllers, which interact in closed 
loop with an external environment, since their input 
signals are in part the consequence of their own 
computation, similarly for the imprecision errors. We 
show examples of non-trivial bad and good 
numerical behaviours, discuss the results of our 
methods, and present our current research 
directions, that should hopefully help characterize 
the imprecision error of such control systems. 

Keywords: floating-point numbers, imprecision 
errors, static analysis, abstract interpretation.  

1. Introduction 

The research work in computer systems at CEA 
originally started with the N4 generations of nuclear 
plants controlled by software (and not hardwired as 
previous generations). In particular, the emergency 
stop in such nuclear plants is the most critical part, 
which required huge validation efforts, fostering new 
research both in conception and verification 
methods, and still accounting for part of our current 
developments, under the auspices of IRSN. Our 
validation activity naturally applies to other critical 
control systems, such as the ones in the automotive 
and aeronautics industry. We will most notably take 
as an example of our current research the Fluctuat 
tool, currently evaluated and used both by IRSN and 
Airbus.  
 
Fluctuat is a static analyser by abstract 
interpretation, which helps determine the 
discrepancy in the numerical computations in a 
control system, due to the use of an imperfect 
arithmetic, the IEEE 754 floating-point numbers (and 
more recently, fixed-point numbers as well), instead 
of using the ideal real numbers. It takes as input a 
piece of software (written in ANSI C, or in assembler, 
for the TMS320C3X), some assertions describing 
the range and precision of potential numerical inputs 

to this program, and gives as a result an estimate of 
the range and precision of all variables of the 
program, at some location in the program, for all 
possible inputs as specified, and without executing it. 
Furthermore, this estimate, as guaranteed by the 
general theory of abstract interpretation [7], is “sure”, 
meaning that it is always an over-approximation of 
the set of possible values and imprecision errors that 
may arise during all potential (maybe infinite) 
executions of the program. Both the underlying 
theory and the tools themselves are described in [2], 
[4], [1], [3]. They have been successfully applied to 
some representative industrial control systems, but 
these case studies lead us to consider new 
challenges, both on the practical and theoretical 
sides. 

2. FLUCTUAT 

2.1 The tool 

The aim of Fluctuat is to either detect automatically a 
possible catastrophic loss of precision, and its 
source, or to prove that the precision of all 
computations remains in an acceptable range.  

Indeed, the origin of the main losses of precision is 
most of the time very localized. Fluctuat relies on 
semantics that decompose the error between the 
results of the same computation achieved 
respectively with floating-point and real numbers, in 
a sum of error terms corresponding to the 
elementary operations of this computation, and a 
higher order term, most of the time negligible, that 
agglomerates higher order errors. We give in this 
section a short overview of how floating-point 
operations are interpreted with the first semantics we 
implemented, based on this idea. 

Let F be either the set of simple or double precision 

floating-point numbers.  Let  FRo →↑ :  be the 

function that returns the rounded value of a real 
number, with respect to the rounding mode o. 

Then we define the function FRo →↓ :  that returns 

the round-off error by  

)()(, rrrRr oo ↑−=↓∈∀ . 

Assume that the control points of a program are 
annotated by unique labels Ll ∈ , and that ℑ  
denotes the union of L  and a special word hi  used 
to denote all terms of order higher or equal to 2. We 
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represent a variable x at some point in the program, 
by a sum 
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The analyser is built on this idea, using intervals to 
get computable supersets of the coefficients, in an 
abstract interpretation framework [7]. The use of 
intervals allows on one hand to consider sets of 
values for variables, and on the other hand to 
include the rounding errors committed by the 
analysis. Indeed, static analysis consists in 
computing some properties of a program without 
executing it, for possibly large or infinite sets of 
inputs. Here, we compute a superset of all possible 

values xf  and errors x
lω   for each variable x at any 

iteration of the loops, on the nodes of the programs 
to analyze. These computations are implemented 
using MPFR [5], a library that allows floating-point 
computations with arbitrary precision. 

The analyser has been finely tuned: it comprises an 
alias analyser, specific fix point iteration schemes, 
precise widening operators, mechanisms for 
automatically subdividing input interval values etc. 

Modular integer arithmetic is also considered, as well 
as casts between floating-point and integer, and 
bitwise operations on integers. Potential error terms 
are propagated between floating-point and integers.  

A language extension is understood by the analyser, 
that allows the user to specify ranges of possible 
values and errors of inputs (and soon, the ranges of 

the gradient of values over time), instead of giving 
them fixed values. 

Finally, the analysis relying on this domain does not 
use correlation between variables, and this may lead 
to large over-approximations. We thus have recently 
proposed weakly relational domains based on the 
same idea of keeping track of the origin of errors, but 
that use linear correlations between variables [20]. 
The results on the example presented in the next 
section were obtained with this relational analysis for 
the computation of values. The relational analysis for 
the computation of errors is being currently 
implemented. 

2.2 Examples 

Consider for example the following piece of code 
that computes the inverse of an input by a Newton 
iterative method.  

doubl e x i ,  xs i ,  A,  t emp;  
s i gned i nt  * Pt r A,  * Pt r x i ,  cond,  exp,  i ;  
doubl e epsi l on = e- 10 ;  
A = __BUI LTI N_DAED_DBETWEEN( 20. 0, 30. 0) ;   
Pt r A = ( s i gned i nt  * )  ( &A) ;  
Pt r x i  = ( s i gned i nt  * )  ( &xi ) ;  
exp = ( s i gned i nt )  ( ( Pt r A[ 0]  & 
0x7FF00000)  >> 20)  -  1023;  
x i  = 1;  Pt r x i [ 0]  = ( ( 1023- exp)  << 20) ;  
cond = 1;  i  = 0;  
whi l e ( cond)  {  
  xs i  = 2* xi - A* xi * x i ;  
  t emp = xsi - x i ;  
  cond = ( ( t emp > epsi l on)  | |  ( t emp < -
epsi l on) ) ;  
  x i  = xsi ;  
  i ++;  
}  

The special assertion  

A = __BUI LTI N_DAED_DBETWEEN( 20. 0, 30. 0)  

tells the analyzer that double precision input A can 
take its value between 20.0 and 30.0. Then the 
operation  

Pt r A = ( s i gned i nt  * )  ( &A)  

casts the double precision number A into an array of 
two integers. Then, the exponent of the input is got 
from the first integer of the array, by bitwise 
operations. Thus an initial estimate of the inverse, 
necessary for a good convergence of the Newton 
algorithm, is got from the exponent. Then a non-
linear iteration is computed until the difference 
between two successive iterates is bounded by 
epsilon.  

In the framework of embedded systems, it is very 
important to qualify the behaviour of such an 
algorithm for all possible inputs. The first crucial 
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point is to bound the possible number of iterations 
for any input in a range (in order to satisfy real-time 
constraints). And the second point that may be of 
importance is to see if the termination criterion is 
sensible, in the sense that if it is too low, the 
precision required may be obtained on the floating-
point result, but not for the real result.  

For example here, for all possible inputs between 
20.0 and 30.0, our analyser finds that the algorithm 
always terminates in a number of iterations between 
5 and 9, and states that the floating-point value of 
the output is in the interval [3.333333e-2,5.000000e-
2] with a maximum error between the real and the 
floating-point computation in [-4.21443e-
13,4.21443e-13]. We can note that the analyzer 
does not overestimate here the number of iterations, 
as executions show that respectively 5 iterations with 
an input equal to 20.0, and 9 iterations with an input 
equal to 30.0, are needed. Also, for the values, their 
bound indeed correspond to a close approximation 
of the inverse of the inputs. As for the error, it is for 
the moment slightly over-estimated, but we are 
currently working on a relational domain that will 
improve the results.  

It should be noted that this error is not the absolute 
error between the result and the real value of the 
inverse. Fluctuat bounds the error due to the use of 
floating-point numbers, and cannot consider the 
error due to the algorithm itself, which for example 
here gives only an approximation of the inverse of 
the input. 

The language of assertions understood by Fluctuat 
also allows to perturb the input with an initial error. 
For example if the input now has an error between –
e-5 and e-5, then we get that the output has its error 
in [-9.95e-4, 9.94e-4] so the initial error is 
propagated without particular amplification, as the 
algorithm is stable (even if again the error is over-
estimated). 

In this short example where errors come from a few 
lines, we only deal with value and global error, but 
for larger scale errors, the error graphs showing the 
origin of the main errors in the source code is useful 
in order to look more precisely at these few 
problematic lines. 

 

Let us now examine the same example but using 
simple precision floating-point numbers instead of 
double precision. The analyser does not manage to 
prove convergence of the algorithm in a finite 
number of iterations, the number of iterations 
obtained is possibly infinite. However, this may either 
be due to the fact that the algorithm indeed cannot 

converge, or to the fact that the precision of the 
analysis is not sufficient. In order to have a more 
refined insight on that point, a possibility is to use a 
special mode of the analyzer we call symbolic 
execution. This mode allows to see the behaviour 
(evolution of value and errors), still with our abstract 
semantics, but for one particular value of the input 
(instead of a set of inputs like intervals), potentially 
perturbed by an error interval. The symbolic 
execution is also often less costly than static 
analysis. We have thus tried symbolic execution for 
1000 input values in the range [20.0,30.0], and for 
the first 517 values tried, indeed the number of 
iteration remains bounded in [5,7]. However, for the 
518th value, A = 25.18, the algorithm does not 
converge, and the difference between two 
successive iterates alternates between -3.725290e-
09 and  3.725290e-09. This behaviour was 
confirmed by actual execution on machine 
(decomposing every arithmetic operation in order to 
avoid the use of registers for intermediate 
computations).  

 

Moreover, even in cases when the algorithm seems 
to converge properly, the accuracy of the result may 
be questionable : for example, for input A = 
25.46999931335449219, the algorithm converges in 
6 iterations, and the difference between two floating-
point iterates is zero. But the analyzer also gives the 
information that there is an rounding error on this 
difference equal to 2.0199e-09, which is 20 times 
greater than the stopping criterion epsilon. One can 
thus wonder at the meaning of the criterion in this 
case. 

Finally, if we relax the stopping criterion for example 
to epsilon=1e-7, then Fluctuat is able to find that the 
algorithm will always converge with between 4 and 
12 iterations. 

3. The complexity of control systems 

Fluctuat mostly considers as for now only one part of 
the complexity of the problem. Typically, the inputs 
to the programs we want to check come, at some 
point, from an external input. As for now, we only 
deal with the interface between the physical and the 
software worlds at the level of  the discretization of 
physical quantities (say, input from analogical 
sensors, measuring physical quantities such as 
speed, acceleration, position in space, temperature, 
etc.), which are made of real numbers in general, 
into integers (through quantization) or fixed-point or 
floating-point numbers. This is just one part of the 
problem: one also has to consider the discretization 
in time, or sampling of the data (as considered in 
“hybrid systems” theory [8] but in general to a lesser 
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extent than what we are planning to do). As for now, 
this is done in a rather simple way, partly because 
we mainly deal with synchronous systems, and 
partly because most of the systems we have been 
studying are somehow quite robust to the types of 
signal they can handle.  
For instance, in the previous example, we specified 
the range of the values and errors of inputs, and this 
was enough to get a good estimate of the numerical 
quality of the code. In the very near future, we will 
also have assertions to prescribe the range of the 
gradient of the inputs over time, which is a first step 
towards a better formalisation of the physical 
environment.  
 
This is quite new to static analysis, since the need 
has not been felt so much up to now. Typically, as 
reported in Astrée’s experiments (static analyser for 
run-time errors developed by ENS and X [6]), simple 
range assertions on cyclic inputs, not even giving 
some constraints on their time evolution, can be 
sufficient for proving absence of (software) bugs.  

 

In the case of precision analysis, this is not true for 
even simple pieces of code, typical of components in 
control systems. Integrators are such components. 
They generally take as input a value, add it up to a 
current value, and use thresholds to limit the value 
they compute. Integrators are called in general with 
new inputs over time, cyclically. Indeed, it is very 
simple to prove (automatically, in a static analyser, 
for instance using the interval abstraction) that the 
variable containing the result will not overflow, if the 
threshold mechanism is well designed. Now, when it 
comes to the potential drift between the floating-point 
and the real values, things are much more difficult: 
imagine that the floating-point value representing the 
input signal always has a negative bias with respect 
to its actual physical value. This bias might add up 
substantially and lead to a very important 
imprecision error (of the order up to the value of the 
threshold itself). The difficulty is in general that the 
“real signal” has to be known quite precisely in order 
to find out that the rounding (quantization) and 
sampling introduce, for instance, a zero average 
bias. We give and explain below examples of such 
phenomena, and ideas about lines of research 
concerning static analysis in such contexts: 

 
#def i ne SUP 20 
#def i ne I NF - 20 
#def i ne h 1/ 8. 0 
#def i ne N 100 
 
st at i c  f l oat  i nt gr x=0. 0;  
 
voi d i nt gr ( f l oat  x i )  {  

  i nt gr x += x i * h;  
  i f  ( i nt gr x > SUP)  
    i nt gr x = SUP;  
  i f  ( i nt gr x < I NF)  
    i nt gr x = I NF;  
}  
 
f l oat  f ( i nt  i )  {  
  … 
}  
 
voi d mai n( )  {  
  i nt  i ;  
  f or  ( i =0; i <N; i ++)   
    i nt gr ( f ( i ) ) ;  
}  

In the code above, i nt gr  is a function that 
integrates (using the rectangle method) a given 
function f  depending on a sample time i * h (h 
being the sampling step). Integration is carried out 
up to some threshold defined by the interval 
[ I NF, SUP] . Suppose f ( i ) =cos( 2πih). This can 
be the result of the sampling at times ih of an 
external physical environment agreeing with the 
following ordinary differential equation (ODE) – for 
instance coming from the modelling of some 
electronic oscillator circuit with negligible impedance, 
or after the transient period: 

04 2

2

2

=+ u
dt

ud π  

With initial conditions u(0)=1 and 0)0( =
dt

du
. Then 

for h any power of 2, it is easy to see that: 

I. i nt gr x  is finite on any trace of execution (and 
for every N); indeed, it is of the order of 

)2sin(2
1 xππ  when h is small enough, as seen 

in the figure below, for 8
1=h : 
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II. the imprecision error due to the floating-point 
truncation error, in the round to nearest mode 
is also bounded.  

 

For point I, this is only true if the input signal is 
sampled at a sufficient rate. For instance, if h=1, the 
result would diverge to infinity, but any sampling with 

2
1≤h  would do (this is related to Shannon’s 

theorem).  

 

In order to illustrate point II, for 8
1=h , the sampling 

sequence is of period 8:  

1, 
2

2
, 0, 

2

2− , -1, 
2

2− , 0 , 
2

2
; 

the imprecision error coming only from the rounding 

of 2
2  (the corresponding floating-point number is 

slightly less than the real number, by about 1.21e-8). 

The rounding error for 2
21 + is of about –5.938e-

9. Also, it is a property of the IEEE 754 standard [16] 
that, in particular, for 12

1 ≤≤ x , (1+x)-x=1 in the 

rounding to the nearest mode. Hence: 

1
2

2

2

2
1 =−��

�

�
�
�
�

�
+  

 This means that the imprecision error on i nt gr x  is 
the following sequence of period 8:  

0, -5.938e-9; -5.938e-9, 0, 0, -1.51e-9, -1.51e-9, 0, 

which is bounded indeed, as can be seen in the 
figure below: 

 

 
Of course any unfortunate error in the sampling time 
(or more general irregular sampling times, such as 
the ones considered in works in applied 
mathematics, such as [19]), or due to the sensor, 
might entail an important drift between the computed 
integral and the real integral. For instance, suppose 

that at every period (of 8 samples), sample number 4 
(which should be taken at time (8k+3)h is in fact 
taken at time (8k+3)h+ε where ε is of the order of 
1.71e-8. For this sampling time t, f ( t)  is equal to the 
floating-point number, closest to the real number 

2
2− , hence the imprecision error is zero for the 

computation of f  at this precise time. But this 
produces a positive drift between the real number 
and the floating-point computation of the integral, 
which will take, after a finite number of iterations, the 
real number to the SUP threshold whereas the 
floating-point number will be periodic always less 
than 0.214 approximatively. See the figure below to 
see the slow drift of the imprecision error: 

 

 
 

The fact is that any simple static analyser, based on 
standard intervals for instance, will be able to prove 
I, but II will be in general quite hard. Fluctuat is able 
to find that if the sampling is exact for a given h, and 
for the precise signal we have been looking at (with 
an extremely precise estimate of the solution of the 
ODE, using for instance the algorithm [13]) then 
“unfolding” the loop h

1  times, periodically, will allow 

for giving very accurate bounds on the imprecision 
error. For general input sampling times, or more 
general types of signals, it will have no other solution 
than bound the imprecision error by the whole 
interval size SUP- I NF. It will be right (not that 
pessimistic since this might really happen) but one 
might hope for better results, since in general an 
integrator is just a small part, buried deep in a 
control command code. This calls for the following: 

• a careful study of the imprecision error in the 
sampling of some classical (but general) 
classes of signals, or of solutions to some 
classical ODEs 

• probabilistic estimates of the imprecision 
error in more general cases, in order to be 
less pessimistic, and give an indication of 
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the “average case”, since the worst case 
might be very often erroneous. 

For instance, for our last statement: if we model the 
perturbation of the sampling time as independent 
gaussian random variables with zero average and 
small variance, this will result in a zero average and 
small variance difference between the real integral of 
the perturbed discrete signal and the real integral of 
the periodic discrete signal. We conjecture that 
under some mild assumptions, this will also be the 
case between the real integral and the floating-point 
integral of the perturbed discrete signal. 

 

As for the former point, one can readily see that 
there are functions that always behave badly with 
respect to the estimate of their integrals. For 
instance, if f  is a decreasing function converging 
towards zero, but whose integral (from 0 to x, any 
positive real) is not bounded, like  

1

1
)(

+
=

x
xf  

 the drift between the real number and the floating-
point number computation of its integral is always 
very important, as we will show shortly. Below are 
the pictures of the computed integral in the floating-
point numbers, and, respectively, of the imprecision 
error made for 10000000 iterations: 

 
 

Then for the imprecision errors (the last part of the 
curve is actually increasing for ever, until the SUP 
threshold): 

 
 

Consider any sampling of such a function f , such 
that for all N, there is always an infinite number of 
samples after N (plus infinity is an accumulation 
point of the sequence of samples). Then, because f  
is converging towards 0, and as it is always positive 
(it is decreasing towards zero), there is an X such 
that for all x greater than X, f ( x)  is less than half of 
the smallest positive floating-point number (of a 
given type). Hence for all subsequent samples, the 
signal will be rounded to zero, hence the integral as 
computed by our code, in the floating-point numbers, 
will converge in a finite time, to a finite number.  
Notice now that the integral of f  from X to any 
further t will diverge to plus infinity when t goes to 
infinity. For a decreasing and positive function, the 
discrete integral as given by the algorithm 
programmed in our code, always gives an upper-
approximation (in the real numbers), of the real 
integral, hence will also diverge to plus infinity. This 
entails that the imprecision error can grow arbitrarily 
high (up to the thresholds given by the code). 

  

4. Future challenges 

This gives but a simplified view of the problems one 
might encounter when trying to automatically verify 
typical PID control systems [12], very much used in 
industrial codes. More generally, in most control 
systems, feedback loops are created, linking the 
output of the code to the input, at some further step, 
in a more or less direct way. For instance, the output 
of a control system goes through actuators, that 
interact with the physical environment, and in turn, 
will modify the values that the sensors will input to 
the control system, later on. We have already seen 
in the last section that the verification of such 
systems can only be precise enough if the 
“semantics” of the physical environment is modelled 
accurately, for instance using models involving some 
ODE or PDE. But this involved only the “separate” 
resolution of ODEs before trying to solve the 
(discrete) abstract semantical equations given by the 
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code under analysis. For programs which interact 
also through actuators on the environment (that is, 
every real life control system), this is not enough: we 
need to be able to solve the discrete and continuous 
equations jointly. This poses new challenges to the 
field of automatic validation of systems, integrated in 
their environment, since methods for solving these 
discrete and continuous systems are in general fairly 
different! It is already interesting to note that some 
control theorists have also begun to make the way in 
the reverse direction, integrating software in their 
models of the physical world [9], [10]. It is probable 
that the two communities will meet on a joint 
solution.  
 
Take the following example. Water is poured into a 
tank of water at a given rate Fi, and a controller can 
act on the output flow Fo, possibly faster than the 
output flow (as shown in the figure below):  

 
Hence the level u of the tank is governed by the 
ODE: 

oi FF
dt

du −=  

The controller will try to adjust the outgoing flow 
through an action on the valve, so that it can make 
the level reach and stabilize at the objective level yc . 
It will take as input, at periodic time ticks, the current 
level of the water (not knowing the input flow Fi  of 
course) so that to determine whether it has to open 
more or close more the valve. Typical controllers 
(see [12]) take as new value of the flow Fo at the 
time tick i, controlled by the value iu , a coefficient K 

multiplied by ie , the difference between the current 

level y and the objective level yc.  These very 
simple controllers are called proportional controllers 
(P controllers). They can be controlled also with an 
extra term, using a correction term based on the time 
derivative of ie (to have a PD controller). Finally, one 

can also add up a factor of the integral over time of 

ie  (to have a general PID controller). We refer the 

reader to [12] for instance, for more about the 
respective interests of these different controllers. 
Note that PID controllers are heavily used in industry 
in the large, this is not a purely academic example.  
 
An implementation of a PID controller can be easily 
encoded as follows, using the sum of ie  over time to 

compute the integral (see our integrator of Section 3) 
and 1−− ii ee  as a simple discretization of the time 

derivative of ie . Our PID controller is implemented in 

the mai n function below; it implements the following 
iterative scheme: 
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The different variables involved in the code below 
are: 

• yn is the current value (at sample time n) 
of the level of the tank, 

• t aui  is the integration time of the PID 
controller, 

• t aud is the derivation time of the PID 
controller, 

• K is the gain of the controller, 
• yc is the level value that the controller 

should converge to,  
• ui  (as computed by the mai n function), is 

the value of the flow of water that the 
controller imposes on the valve, at time i . 

t ypedef  doubl e NUM;  
st at i c  NUM yn = 0;  
NUM ui  = 0;  
 
NUM y( i nt  i )  {  
  yn += ui ;  
  r et ur n yn;  
}  
 
voi d mai n( )  {  
  NUM yi ,  yc;  
  NUM K;  
  NUM T;  
  NUM t aui ;  
  NUM t aud;  
  NUM ei ,  sumej ,  epi ;  
  i nt  i ;  
  T = 1;  
  t aui  = 1;  
  t aud = 1;  
  K = . 5;  
  yc = . 5;  
  y i  = y( 0) ;  
  epi  = yc- y i ;  
  sumej  = epi ;  
  f or  ( i =1; i <100; i ++)  {  
    y i  = y( i ) ;  
    ei  = yc- y i ;  
    sumej  = sumej +ei ;  
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    ui  = K* ( ei +sumej * T/ t aui +t aud/ T* ( ei -
epi ) ) ;  
    epi  = ei ;  
  }  
}  
 
This example is complex for a static analyser, as 
already was the integrator in Section 3, which it 
contains. So we only study here the numerical 
behaviour for one execution only, using Fluctuat and 
the same semantics as explained in Section 1 (this is 
a symbolic execution in the corresponding abstract 
domain). The graph below shows the value of the 
command ui  over time, as automatically given by 
Fluctuat : 

 
while the figure below pictures the evolution over 
time of the measure ei  of the difference between 
the current level of water and the objective level: 

 
 

 
Notice that numerical experiments show that this 
scheme is well behaved in general, as shown in our 
particular run of the algorithm, in the figure below 
(imprecision error of the difference between the level 
yi  objective yc over time): 
 

 
 
Notice that the errors at the end are going to zero, 
and are transient, due to the very low value of 
ei =yi - yc at these iterations (around the ulp(1) 
from the 70th iteration on). The first iterates are 
actually computed exactly (the floating-point number 
is equal to the real number) because the first few 

iterates are of the form n−2 (the first ones are 0.5, 
0.5, -0.25, -0.125 etc.) and thus the integral, 
derivative and gain computation (since the gain is 
also of this form: 0.5) have a small finite bit 
expansion in the floating-point number format. It is 
only after about 70 iterations, when close enough to 
the ulp, that some bits are lost in the rounding to 
nearest mode, but this still converges towards 0. 
 
Unfortunately, this is but an approximation of the 
system we should prove correct (in particular, as for 
the imprecision errors in the control mechanism). In 
the real system, function y is a sampling at some 
more or less precise times of the current level of the 
tank, modelled (in the real numbers) as the solution 
of  the differential equation above. We can make two 
remarks here: 

• Fo is equal to the current flow command 
(given by ui ) at the last clock tick – which is 
only a floating-point number approximating 
the value of the real command that should 
have taken place. Also the actuator (the 
valve) may not be very precise, and a new 
error is created there. This affects at the 
next sampling time the value of y . Because 
of the feedback loop, the imprecision error of 
the computation of ui  will affect later 
inputs, possibly drifting dramatically (there is 
an integrator, as in last section, in the 
code!). But now, the characterization of the 
input signals, even probabilistically, is very 
hard to make, since the input depends on 
the computation. 

• Here, the ODE describing the external 
physical world is very simple, it is easy to 
simulate its solution in the same formalism 
as for the controller code (this is what we did 
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here to analyse the code through our current 
version of Fluctuat). This is unfortunately not 
the case in general, and one has to design 
mixed ODE-discrete systems solvers, in 
order to be able to answer the verification 
problem (see for instance [13] or [11]). 

 
Notice that once again, it is the integrator part of the 
code which creates the main problem for Fluctuat: if 
we just use a P or PD controller, then we can prove 
automatically that there is no big imprecision error, in 
the particular case when the outside physical world 
is simulated by a C function as the one we had for 
the PID controller. 
 

5. Conclusion 

We have seen that Fluctuat is able to assert the 
precision of many floating-point computations in 
industrial, representative, control systems. Our 
current and future work is driven by two related 
objectives: to improve the precision of the analyses 
and to deal with larger classes of problems. These 
directions often are convergent since, for example, a 
more accurate domain enables the analyser to treat 
new classes of algorithms while improving the 
precision of the results in general. Obviously, as for 
other static analysers, a trade-off between precision 
and performances has to be carefully chosen.  
  
A main difficulty comes from the fact that programs 
contain information on the evolution of floating-point 
values but not on the error terms. For example, the 
threshold performed by the integrator of Section 3 
does not allow one to limit the error on the 
accumulator. So, in order to enable Fluctuat to infer 
such properties, we aim at designing new domains. 
For example, we are currently introducing linear 
correlations between variables, to limit the usual 
drawbacks of interval arithmetic (wrapping effect) on 
the error terms [20]. We also plan to compute 
information on the derivatives of the errors with 
respect to the floating-point values, by  (safe) 
automatic differentiation, to correlate the floating-
point values to the error terms. 
 
New classes of problems have already been 
mentioned in this article. The analysis of hybrid 
systems, described in Section 4, is quite a 
challenging direction. Besides the definition of the 
analysis itself, it requires the design of safe 
numerical algorithms to find sure solutions to 
equation systems (typically ODE or PDE). Basically, 
for the safety and precision of the analysis, these 
algorithms have to output fine over-approximations 
and under-approximations of the real solution. For 
instance, in the case of the integrator of Section 3, a 
current implementation of the abstract domain of O. 

Bouissou [13] can already prove the boundedness of 
the variable i nt gr x for the cosine function, 
assuming the sampling is done at exact periodic 
times.  
 
Next, our interest for introducing random variables to 
model some error terms was illustrated in Section 3 
to cope with problems where, in the worst case, 
some error terms may indeed grow infinitely, for 
example if round-off errors do not cancel each other, 
even if this scenario is very unrealistic. In these 
cases, we plan to use new analyses based on 
probabilistic abstract domains [17]. Another mid-term 
objective is to analyse mathematically more difficult 
problems. More precisely, we aim at designing new 
analysis frameworks to cope with numerical 
intensive codes, used for simulations (by opposition 
to control systems). However, the properties 
ensuring the stability of this kind of algorithms 
usually are much more complicated than in the case 
of control systems. Special purpose domains, 
possibly specific to some classes of numerical 
methods will probably be needed for these 
applications. 
 
Another important research direction concerns the 
validation of the conformance of an implementation 
with respect to a model and this problem can be 
considered at different levels of abstraction. In 
practice, control systems usually are designed using 
high-level, often block diagram-based, languages 
like SCADE of SIMULINK and, then, are translated 
into C or assembler (by hand or automatically). If C 
code is used, it ultimately has to be compiled into 
assembler. 
In any case, one has to assert that an 
implementation conforms to a model (C w.r.t. 
SCADE or SIMULINK, assembler w.r.t. C, etc.). 
These translations are error prone for numerical 
precision since floating-point computations are very 
sensitive, for example, to the evaluation order of the 
operations and to the different numbers of bits 
available in registers and memory locations. Hence, 
implementation details may significantly change the 
quality of a code, even if it mathematically computes 
what the specification requires in the reals. This 
makes us investigate different topics: first, the 
analysis of control systems described by block 
diagrams is a necessary intermediate objective. 
Second, we plan to use techniques  to compare 
invariants at different levels of abstractions. This 
approach was successfully applied to run-time errors 
[18] but numerical precision introduces new 
problems, since we cannot expect to obtain exactly 
the same error terms in the model and the 
implementation. Finally, we investigate ways to 
make our analysers (C and assembler) collaborate, 
at least to analyse C codes with inlined assembler 
routines and, at longer term, to help solving the 
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conformance problem. For example, under some 
assumptions, any arithmetic C expression could be 
translated in assembler before applying a mixed 
analysis. 
  
Finally, we aim at defining more robust  safety 
properties concerning the numerical precision of 
programs. Current criteria consist of proving that no 
error term overpasses a given limit, expressed as an 
absolute or relative quantity. But such criteria remain 
weak: for example an error of one percent may be, 
most of the time negligible, while being critical in 
some situations. In the context of hybrid systems, we 
plan to define more robust criteria based on the 
actions performed by a program on  the 
environment. For example, an alarm has to be 
activated in the same cases, independently of which 
arithmetic is used, and independently of the 
precision of the computations. 

 

Last but not least, in the search for realistic 
modelling and verification of systems involving 
software, some particular events have to be taken 
into account: for instance, faults of sensors, or 
actuators [15], since most control systems are 
inherently designed to be robust to some forms of 
accidents, and a complete proof should integrate the 
proof of the relevant software (and hardware) 
mechanisms. We advocate that other interactions 
with software than the ones with the physical world 
should be considered, namely the interaction with 
hardware (through OS, or simpler apparatus, like 
simple drivers). An ultimate goal, would be to include 
in the proof of a control system the human factor 
(which gives some inputs to the software in 
particular, for instance a pilot of a plane, or a driver 
of a car), but this has unfortunately far less clear 
scientific grounds, although models could and should 
include some basic factors like minimum response 
time of a human being, the possibility of an illegal 
command issued by the human being (such as turn 
off the key while driving), which can be formalized.  
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