
1

Discrete Choice in the Presence of
Numerical Uncertainties

Debasmita Lohar, Student Member, IEEE, Eva Darulova, Sylvie Putot, and Eric Goubault

Abstract—Numerical uncertainties from noisy inputs or
finite-precision roundoff errors are unavoidable on resource-
constrained systems. While techniques exist to compute worst-
case bounds on these errors for arithmetic operations, these
approaches do not generalize to programs which take discrete
decisions. In this case, the more interesting quantity is the prob-
ability of the program making the wrong decision. In this paper,
we study two approaches to compute a guaranteed bound on this
probability: exact probabilistic inference and probabilistic static
analysis. By themselves, they provide accuracy and scalability,
respectively, but unfortunately not at the same time. We propose
an extension to the latter approach which allows us to bound the
probability tightly and fully automatically while scaling to small
but interesting embedded examples.

Index Terms—uncertainty, floating-point, fixed-point, probabil-
ity, static analysis.

I. INTRODUCTION

For many computations in embedded resource-constrained
systems numerical uncertainties are unavoidable. They are
usually a combination of input uncertainties, e.g. from noisy
sensors, and finite-precision roundoff errors committed during
the computation. Especially for safety-critical applications it
is important to show that the uncertainties remain small and
the results accurate enough. Furthermore, such programs are
often first developed and validated in a higher precision, before
being deployed in low-precision on the actual hardware, raising
additional questions about the correctness of the computed
results. Accurately propagating and bounding input and finite-
precision roundoff errors is challenging to achieve manually
and thus automated techniques and tools are imperative.

Today’s tools compute guaranteed upper bounds for floating-
point and fixed-point arithmetic roundoff errors in multi-
variate straight-line programs [1], [2], [3], and some tech-
niques even offer some support for conditional branches
and loops [3], [4], [5]. Unfortunately, none of the present
techniques considers the case where the result of the numerical
computation (res) is the basis for a discrete decision, as in
res = ...; if(res < const) true else false.

Such programs are important whenever a system must decide,
e.g., whether to raise an alarm or not, which of several discrete
control signals to sent, etc. Furthermore, machine learning
classifiers are increasingly deployed in resource-constrained
systems where they may decide whether a heartbeat signal is
normal or not [6].

Debasmita Lohar and Eva Darulova are with MPI-SWS.
Sylvie Putot and Eric Goubault are with LIX, CNRS and École Polytech-

nique..
This article was presented in the International Conference on Embedded

Software 2018 and appears as part of the ESWEEK-TCAD special issue.

Previous work on bounding numerical errors has focused
on worst-case analysis, i.e. at each step of a computation the
analysis computes the largest possible absolute error that can
appear for a given input domain. Unfortunately, this analysis
cannot be simply extended to a program which makes discrete
decisions. For instance, if the program outputs either ‘0’ or
‘1’ (representing true and false), then the worst-case error is
exactly 1. In general, some uncertainty is unavoidable and thus
the computation will necessarily output a different result than
the ideal reference, at least for some inputs.

Such a trivial result is clearly not very useful. Ideally, a
program with uncertainties should compute the correct answer,
resp. decision, for most inputs, i.e. the uncertainties should
be small enough that the answers are mostly correct. A more
useful measure of correctness is thus the probability that the
discrete result will be correct. For this, we clearly have to take
into account the distributions of inputs and propagate them
through the computation.

In this paper, we consider two approaches to propagating
input distributions through numerical computations: exact
symbolic probabilistic inference [7] and sound probabilistic
static analysis [8]. We show that while both approaches
seemingly solve the problem, the former produces good results,
but only for tiny programs and the latter, while it scales
significantly better, overapproximates the probability of wrong
results too much to be useful in practice.

We extend the static analysis approach with interval subdi-
vision and reachability checking to soundly determine which
part of the input domain is actually relevant for computing the
probability of wrong results. The probabilistic analysis is then
only run where needed and due to a smaller input domain
suffers from less overapproximation. Overall, our analysis
produces tight probability bounds, while being sound and
scalable enough for small, yet realistic embedded programs.
This analysis is fully automated and works on general numerical
programs with arithmetic and elementary operations, and
can consider different probability distributions on the inputs,
including uncertain ones.

We have implemented this analysis in a prototype tool, which
we will release as open source. We integrated it with an existing
tool for bounding numerical errors due to input uncertainties
and roundoff errors in floating-point as well as fixed-point
arithmetic [9] and thus obtain a fully automated end-to-end
solution. We evaluate it on several embedded controllers as
well as machine learning classifiers and obtain encouraging
results.

a) Contributions: To summarize, in this paper:
• we provide a precise problem definition and present, to

2

the best of our knowledge, the first sound analysis of the
effects of numerical uncertainties on discrete decisions,

• we show that while symbolic probabilistic reasoning
provides exact results, it does not scale well,

• we extend an existing probabilistic static analysis with
interval subdivision and reachability checks,

• we evaluate our analysis and the various design decisions
that we make on a set of representative embedded
examples

• we implement our analysis in a prototype tool and will
release it as open source.

II. PROBLEM DEFINITION AND OVERVIEW

Before diving into the details, we first specify the problem
we are considering more precisely, introduce terminology that
we will use in this paper, and provide an overview of our
approach.

a) Input Programs: In this work, we focus on the core
issue and consider programs which perform a finite-precision
numerical computation and then make a discrete decision based
on the computed result. For example, based on the control
output calculated by a nonlinear controller [10], an alarm may
be raised:

res = -x1*x2 - 2*x2*x3 - x1 - x3
if(res <= 0.0) raise_alarm()

Here, x1, x2, x3 are the controller inputs and may carry some
initial uncertainties. Abstracting away the effects of the decision,
the programs that we consider are defined as a function f :
Rn → B from a possibly multivariate real-valued input to
a boolean output. This function specifies the ideal baseline
computation.1 The function executing on actual hardware is
implemented in finite-precision: f̃ : Fn → B. Due to input
uncertainties and roundoff errors, f and f̃ may return different
results for the same ideal inputs (note that the inputs have to
be rounded as well).

The goal of this paper is to automatically compute a
guaranteed bound on the probability that f and f̃ return
different results. We will call this probability the wrong path
probability (WPP). In general, we cannot expect this probability
to be zero, but we want to be able to show that it is small
enough (for a particular application).

While we presently only consider programs with the rela-
tively simple structure above, our approach straight-forwardly
generalizes to nested conditionals and to other discrete return
types by considering each path and each return value separately.
The numerical computation in our input is a straight-line expres-
sion, consisting of arithmetic operations (+,−, ∗, /,√) as well
as transcendental functions (sin, cos, exp, log). Conditionals or
loops in the numerical portion of the program are out of scope
of this paper; for these constructs, even sound roundoff error
computation is challenging and only limited techniques exist
so far [5], [4].

1In many applications, the baseline may be a higher-precision computation,
for which we use the real-valued one as a proxy.

x1 := uniform(-15.0, 15.0);
x2 := uniform(-15.0, 15.0);
x3 := uniform(-15.0, 15.0);

res := -x1*x2 - 2*x2*x3 - x1 - x3;
error := 0.2042266; // computed externally
assert(0.0 - error <= res && res <= 0.0 + error);

Fig. 1. Probabilistic program encoding the wrong path probability for the
example of a nonlinear controller

b) Bounding Numerical Uncertainties: A numerical pro-
gram may take the wrong path due to uncertainties in the
inputs as well as accumulated roundoff errors in the numerical
computation. Thus, the first step in computing an upper bound
on the wrong path probability for some f is to compute a
sound upper bound on the numerical errors, for which we use
established techniques [9].

c) Critical Intervals: For each input program, we have
one threshold value t, which determines the decision boundary,
i.e. the boundary around which the ideal and uncertain
computations may diverge. In our running example, this is
0.0.

The numerical error (e) we computed in the previous step
tells us how far away from this threshold we can possibly
observe a divergence. This defines the critical interval: [t−e, t+
e]. If the result of the ideal numerical computation falls into
this interval, then the uncertain, finite-precision computation
may compute a different discrete result. The probability that
the ideal computation lies in [t−e, t+e] is thus a sound bound
on the wrong path probability.

d) Propagating Probabilities: Given probability distribu-
tions on the inputs, we want to compute a sound bound on
the probability that the result of the numerical computation
falls within the critical interval. We consider only the forward
approach here, i.e. we propagate the input distributions through
the numerical computation.

We can express the wrong path probability precisely as a
probabilistic program as in Figure 1, where we use the syntax
of the PSI solver [7]. In this particular example, we consider
as the numerical uncertainty the roundoff error of a 16-bit
fixed-point arithmetic implementation and we choose uniform
input distributions.

We consider two quite different approaches for propagating
probability distributions. First, we use exact symbolic proba-
bilistic inference implemented in PSI. We provide more details
in section III, but in short our experiments show that while
PSI can indeed be applied to our problem, it unfortunately
does not scale to larger programs. For instance, for our running
example, we do not obtain a result within 20 minutes. An
alternative to using exact reasoning is abstraction. For this,
we have reimplemented a static analysis which propagates
uncertain distributions [11]. It computes a sound over- and
underapproximation of the probability distribution, and thus
scales much better. Unfortunately, for many of our example
programs, the overapproximation is too large. For instance for
our running example, we compute the wrong path probability
in 0.63s but the probability computed is 1.

3

e) Our Targeted Analysis: The reason why the above
approaches do not work well is that they compute general
probability distributions, but in our case we are interested in
the probability of the result being inside the fairly small critical
interval. A large portion of the input space never comes close
to this critical interval, but which inputs are relevant is not
immediately obvious. Ideally we could perform a backwards
reachability analysis, starting from the critical interval to obtain
only the relevant input domain. Unfortunately, for multivariate
programs, computing such a sound input domain is nontrivial.

We combine probabilistic static analysis with interval subdi-
vision and reachability checks to narrow down the input domain
in a forward manner. Subdivision is a standard technique to
reduce overapproximations in static analysis. While it can
improve the probability bounds by itself, we further use a
nonlinear decision procedure to completely remove parts of the
subdomain which definitely cannot reach the critical interval.
For our running example, our method computes a wrong path
probability of 0.07060 in 155s.

In summary, we obtain a technique which can compute fairly
tight probability bounds (judging from the few examples where
PSI computes a result), and which is nonetheless scalable
enough to handle programs which appear in embedded systems
in practice and for which guaranteed results are of importance.

III. USING SYMBOLIC INFERENCE

We can express the wrong path probability as a probabilistic
program as shown in Figure 1, which we can directly evaluate
using a probabilistic programming inference tool.

Several approaches for probabilistic inference exist. As exact
probabilistic inference is a hard problem [12], most algorithms
compute numerical approximations using sampling [13], [14],
[15]. Such methods, however, do not provide accuracy guar-
antees. The recently developed PSI (Probabilistic Symbolic
Inference) solver [7] performs symbolic inference and generates
a compact representation of the exact final distribution. This
distribution is in general still quite complex and large, but
it can be numerically evaluated using Mathematica [16], for
which we can specify an output precision.

A. Experimental Setup

We empirically evaluate to which extent exact probabilistic
inference is suitable for computing wrong path probabilities.
For these experiments we consider roundoff errors as the only
uncertainty, i.e. we assume that the inputs are otherwise exact.
For this, we combine three off-the-shelf tools.

Roundoff error analysis with Daisy In the first step, we
use the open source tool Daisy to compute a sound absolute
roundoff error bound on the numerical part of each benchmark.
Daisy performs forward dataflow analysis and supports both
floating-point and fixed-point arithmetic and can also be used
to propagate input errors [9].

We compute roundoff errors for 16 bit fixed-point arithmetic
as well as 32 bit (single precision) floating-point arithmetic
and record the roundoff error as a constant in the probabilistic
program. The computation of roundoff errors for all benchmarks
for one precision took under 30 seconds.

Symbolic probabilistic inference with PSI In the second
step, we run PSI on the probabilistic programs, each of the
same form as in Figure 1. We choose all inputs to be either
uniformly or normally distributed on the same support for which
we have computed roundoff errors. All inputs are independent.
PSI computes the output and the probability distribution of
the assertion failing; we record the latter for our experiment.
We set a timeout of 10 minutes (we did not observe different
results with longer timeouts).

Numerical evaluation with Mathematica PSI returns the
exact simplified expression of the wrong path probability in
the input format of Mathematica. This expression can then be
numerically evaluated using the N[...] command. We set the
output precision to be 5 decimal digits (Mathematica adjusts the
internal precision automatically), and a timeout of 10 minutes.

We used PSI downloaded on 22 March 2018, Mathematica
version 10.4.0.0 and Daisy’s version from 6 December 2017.
We ran all experiments on a Debian desktop with 3.3 GHz and
32 GB RAM.

a) Benchmarks: As no standard benchmark set exists,
we retrofit a number of existing benchmarks from the area
of finite-precision roundoff error estimation [1], [5]. Each of
these benchmarks comes with lower and upper bounds on
input variables. These benchmarks cover various scenarios:
sine, sineOrder3 and sqroot are polynomial approximations of
functions which are often costly to compute precisely, B-Splines
are used in embedded image applications [17], traincar and
rigidBody are linear and nonlinear controller [10], respectively,
and doppler and turbine are physics expressions. Table II shows
the number of arithmetic operations and variables of each
benchmark.

We consider all input variables to be either all uniformly or
all normally distributed within the input ranges. For variable
x which is uniformly distributed on [a, b], we declare it as
x := uniform(a, b). For a normally distributed variable, we
choose one standard deviation from the mean and declare it as

tmp := gauss(a, b);
observe(-1.0 <= tmp && tmp <= 1.0);
x := mid + radius * tmp;

with mid = (a+ b)/2 and radius = |(a− b)/2|.
For each benchmark, we select two thresholds: one where we

expect the wrong path probability to be low and one where we
expect it to be high. We generate these thresholds by simulation.
From a plot of the recorded results we choose one threshold
from the more and one from the less likely result region.

B. Results

Table I shows the wrong path probabilities for benchmarks
where both PSI and Mathematica finished within the time limit.
For doppler, rigidBody*, turbine* and traincar*, either PSI or
Mathematica timed out, so that we do not show them in the
table.

Table II shows the real time (measured by the bash time
command) taken by PSI to compute the exact probability
distribution. We also measured the time taken by Mathematica
(using the AbsoluteTiming command), however we observed
that either Mathematica reported a time below 1ms, or it timed

4

benchmark
precision 16-bit fixed-point 32-bit floating-point

input distribution normal uniform normal uniform
threshold high low high low high low high low

sine 8.12e-4 4.55e-4 9.55e-4 2.98e-4 6.47e-7 3.63e-7 7.61e-7 2.38e-7
sineOrder3 2.14e-3 5.24e-4 2.47e-3 4.49e-4 1.64e-6 4.03e-7 1.90e-6 3.44e-7

sqroot 3.07e-2 9.59e-4 2.79e-2 1.10e-3 9.62e-6 3.03e-7 8.74e-6 3.49e-7
bspline0 1.73e-2 6.05e-4 1.82e-2 7.23e-4 1.00e-5 3.53e-7 1.05e-5 4.21e-7
bspline1 3.26e-3 1.48e-3 3.46e-3 1.59e-3 2.39e-6 1.08e-6 2.54e-6 1.16e-6
bspline2 2.78e-3 1.26e-3 2.95e-3 1.32e-3 2.09e-6 9.46e-7 2.22e-6 9.95e-7
bspline3 2.78e-3 3.58e-4 2.30e-3 4.27e-4 1.70e-6 2.32e-7 1.49e-6 2.77e-7

TABLE I
WRONG PATH PROBABILITY COMPUTED BY PSI (NOT SHOWN BENCHMARKS DID NOT COMPLETE WITHIN 20MIN)

benchmark #ops-#vars normal distrib. uniform distrib.

doppler 8 - 3 * *
sine 18 - 1 1s 301ms 688ms

sineOrder3 5 - 1 437ms 523ms
sqroot 14 - 1 565ms 767ms

bspline0 6 - 1 729ms 354ms
bspline1 8 - 1 690ms 303ms
bspline2 10 - 1 729ms 356ms
bspline3 4 - 1 716ms 994ms

rigidBody1 7 - 3 2m 1s 510ms -
rigidBody2 14 - 3 - -

turbine1 14 - 3 - -
turbine2 10 - 3 - 1m 46s 348ms
turbine3 14 - 3 - -
traincar1 6 - 3 15s 553ms 15s 330ms
traincar2 10 - 5 5m 53s 4ms 5m 52s 947ms
traincar3 14 - 7 5m 55s 616ms 5m 53s 52ms
traincar4 18 - 9 - -

TABLE II
AVERAGE ANALYSIS TIME OF PSI (- : TIMEOUT, * : SEGFAULT)

out after 10 minutes. For this reason, we only report PSI’s
running times. For the benchmarks where PSI successfully
computes a results (as reported in Table II) and which do not
appear in Table I, Mathematica timed out.

Where PSI and Mathematica are able to compute wrong
path probabilities, they indeed compute a smaller probability
for lower thresholds than for higher ones. Similarly, for smaller
uncertainties, i.e. for 32-bit floating-point roundoff errors, the
probabilities are also significantly smaller, as expected. While
the values for uniform and normal input distributions are
not directly comparable, we have included them as different
distributions pose different difficulties for inference. This can be
seen in Table II where PSI can compute a result for rigidBody1
for normal and for turbine2 for uniform input distributions
only.

IV. PROBABILISTIC STATIC ANALYSIS

Clearly the results obtained by exact symbolic probabilistic
inference are unsatisfactory. We now turn to our second

approach—static analysis. Before we explain our extension
(section V), we review necessary background on probabilistic
static analysis.

A. Uncertain Probabilities

Interval arithmetic (IA) [18] is an efficient choice for range
estimation, which computes a bounding interval for each basic
operation as x◦y = [min(x◦y),max(x◦y)], ◦ ∈ {+,−, ∗, /}
and analogously for square root. Interval arithmetic cannot
track correlations between variables (e.g. x− x 6= 0), and thus
can introduce significant over-approximations of the true ranges.
Furthermore, interval arithmetic only captures nondeterminism,
i.e. x ∈ [a, b] expresses that variable x can take any value
between a and b, but it does not provide any more information
about its distribution.

Interval Dempster-Shafer (DSI) structures [19] associate
weights with intervals and thus allow to capture uncertain
probabilities. We provide the basics needed to follow the
remaining part of the paper here, for more details see [19],
[20].

Formally, a DSI structure consists of a finite set of so-called
focal elements: d = {〈x1, w1〉, 〈x2, w2〉, · · · , 〈xn, wn〉} where
xi ∈ I is a closed non-empty interval and wi ∈]0, 1] is the
associated probability and

∑n
k=1 wk = 1. The focal elements

express that the value of a variable represented by d is within xi

with probability wi, but the variable can (non-deterministically)
take any value within the interval xi.

a) Example: The DSI

d ={〈[−1, 0.25], 0.1〉, 〈[−0.5, 0.5], 0.2〉, 〈[0.25, 1], 0.3〉,
〈[0.5, 1], 0.1〉, 〈[0.5, 2], 0.1〉, 〈[1, 2], 0.2〉}

represents the set of probability distributions with support
[−1, 2], where the probability of picking a value between -1
and 0.25 is 0.1, the probability of picking a value between -0.5
and 0.5 is 0.2 etc. The figure below shows the set of probability
distributions graphically.

5

−1 −0.5 0.250.5 1 2

1

b) Arithmetic Operations: Arithmetic operations over
DSIs,
X � Y,� ∈ {+,−,×,÷}, distinguish the cases where X and
Y are independent, or dependent with unknown dependency.

With dX = {〈xi, wi〉 | i ∈ [1, n]} and dY = {〈yj, vj〉 | j ∈
[1,m]}, obtaining the DSI structure for Z = X � Y for inde-
pendent X and Y is straightforward: dZ = {〈zi,j, ri,j〉 | i ∈
[1, n], j ∈ [1,m]} with zi,j = xi � yj and ri,j = wi × vj .

The dependent case is more involved as we have to consider
any dependency between X and Y to compute a sound over-
and under- approximation of the probability. We use the method
of [21], which first computes the solution in an alternative
representation of DSI’s, so-called discrete p-boxes [20], and
then transforms the P-box back to a DSI. A discrete P-box
[P , P] is a pair of two non-decreasing step-functions functions
P and P such that P is left-continuous, P is right-continuous
and ∀x. P (x) ≤ P (x). A P-box encloses all probability
distributions whose cumulative distribution function (CDF)
P satisfy ∀x.P (x) ≤ P (x) ≤ P (x).

To compute the solution Z = X � Y as a P-box [FZ , FZ],
we first compute the arithmetic operation on the intervals of all
pairs of focal elements (as in the independent case), obtaining
a matrix of intervals: xi � yj = [zi,j , zi,j]. However, it no
longer holds that ri,j = wi × vj . Rather, we only know the
following constraints, corresponding to the rows and columns
of this matrix:

∀i ∈ [1, n],

m∑
j=1

ri,j = wi ∀j ∈ [1,m],

n∑
i=1

ri,j = vj

Intuitively, we want to compute an upper and a lower bound
on the cumulative distribution function at every point in the
domain. Since the P-boxes are step functions, we effectively
only need to perform this computation at the end points of
the intervals in the interval matrix. The maximization, resp.
minimization, of the cumulative distribution function can be
phrased as a linear program:

FZ(z) = minimize
∑
zi,j≤z ri,j

such that ∀i ∈ [1, n],
m∑
j=1

ri,j = wi

∀j ∈ [1,m],
n∑
i=1

ri,j = vj

This computes the lower P-box. The constraint
∑
zi,j≤z ri,j

expresses that all ri,j’s have to be taken into account, whose
corresponding intervals are definitely below z. The formula
for FZ is analogous.

We can then convert the resulting discrete P-Box [FZ , FZ]
to the DSI dZ . The intervals xi are obtained by matching the
lower and upper P-Box and the weights wi from the height of
the steps.

Dependent arithmetic is clearly costly, and in addition may
lose some precision. It is thus important to keep track of
dependencies between variables in order to be able to apply
independent arithmetic operations as much as possible. We do
this by using affine arithmetic, which we describe next.

B. Probabilistic Affine Arithmetic

Affine arithmetic (AA) [22] is an extension of IA which
tracks linear correlations between variables. Each quantity
is represented as an affine combination of noise symbols εi:
x̂ := x0 +

∑n
i=1 xiεi, εi ∈ [−1, 1]. The same noise symbol

can be shared by several affine forms, capturing correlations.
An affine form x̂ represents a set of values (an interval):

[
x0−∑n

i=1 |xi|, x0 +
∑n
i=1 |xi|

]
.

Linear arithmetic operations are computed term-wise:

αx̂+ βŷ + ζ = (αx0 + βy0 + ζ) +

n∑
i=1

(αxi + βyi)εi

Nonlinear operations are approximated by linearization and a
fresh noise symbol for the remainder term, see e.g. [22] for
more details.

Bouissou et.al. [11] introduced probabilistic affine forms
which combine affine arithmetic with DSI structures: DSIs
compute probability distributions and affine arithmetic tracks
the (linear) dependency information between them. Concretely,
a probabilistic affine form for a variable x is given by
x̂ = x0 +

∑n
i=1 xiηi where each noise symbol ηi is equipped

with a DSI dηi with support [−1, 1]. Thus, noise symbols in
standard affine arithmetic track nondeterministic uncertainty,
while probabilistic affine forms can capture more detailed
probabilistic information.

The presentation in [11] explicitly distinguishes between
two kinds of noise terms, independent ones and those with an
undefined dependency. In our present implementation, we do
not make this distinction. Instead, each noise symbol keeps a
set of indices on which it has a potential dependency.

As a standard affine arithmetic form represents an interval,
a probabilistic affine form represents a probability distribution
which is computed by summing the weighted DSIs associated
with each noise symbol: x0 +

∑n
i=1 xidηi . Depending on

whether a dηi has a dependency on the current running sum,
the addition operation is dependent or independent.

Linear and unary arithmetic operations over probabilistic
affine forms work exactly the same as standard affine form
operations. For non-linear operations, like multiplication, we
compute the magnitude of the remainder term as in e.g. [11].

V. IMPLEMENTATION AND EXTENSION

While the previous section covers the high-level algorithm
of probabilistic affine forms, in practice the implementation
relies on several additional design decisions. Unfortunately, the
previous implementation [11] was not available, nor were many
of the details. In this section, we first provide the most important
design decisions we took before turning to our extension.

6

1 def reduce(DSI d, threshold T):
2 for ei : (xi, wi) ← d:
3 if wi < 1e-5 && overlaps(xi, xi−1):
4 merge(ei, ei−1) // merging low weights
5

6 avg = avgWidth(d), sd = stdDevWidth(d)
7 if sd > 1e-3: // variation in widths
8 for ei: (xi, wi) ← d:
9 if width(xi) < (avg - sd) && overlaps(xi, xi−1):

10 merge(ei, ei−1)
11

12 avg = avgWeight(d), sd = stdDevWeight(d)
13 if sd > 1e-4: // variation in weights
14 for ei : (xi, wi) ← d:
15 if wi < (avg - sd) && overlaps(xi, xi−1):
16 merge(ei, ei−1)
17

18 if length(d) > T:
19 reduceAlternateOverlapping(d)
20 return d

Fig. 2. Reduction algorithm

A. Implementation

In order to use probabilistic AA to propagate input dis-
tributions, these have to be first transformed into DSIs. This
happens through discretization and our implementation provides
convenience methods for uniform and normal distributions. The
overall accuracy of the computed distributions depends on the
amount of discretization: a finer discretization into more focal
elements increases the accuracy of the computed probability
distributions, but it also naturally increases the running time.

The results furthermore depend on the algorithm used
for reducing the number of focal elements of the DSI’s,
and the translation of probabilistic AA back into a DSI,
which we describe next. We also discuss our choice of LP
solver and soundness of internal arithmetic computations
in subsubsection V-A3.

1) Reduction: With each arithmetic operation, the number of
DSI focal elements grows exponentially and can soon become a
performance bottleneck. We thus implement a reduction method
which keeps the length of DSIs bounded, but which retains
as much information as possible. Figure 2 shows the high-
level algorithm. It is based on the idea of repeatedly merging
two focal elements ei = 〈[ai, bi], wi〉 and ej = 〈[aj , bj], wj〉,
producing one focal element with a wider interval and larger
weight:

eij = 〈[min(ai, aj),max(bi, bj)], wi + wj〉

The decision whether or not two focal elements should
be merged depends on the weights and interval widths.
Furthermore, our algorithm only merges two focal elements
when their intervals overlap in order to reduce loss of accuracy.

Our algorithm first merges focal elements whose weight
is less than a threshold (line 2 - 4). When this does not
reduce the number of focal elements sufficiently, we merge
all focal elements whose widths or weights are less than one
standard deviation from the average (lines 6-10 and 12-16).
Additionally, this merging is only applied when the standard
deviation is sufficiently large. Without this check, should all

focal elements have identical width (resp. weight), they would
all be merged into a single focal element. We have determined
all numerical thresholds empirically. Should all these methods
not be sufficient to reduce the length of the DSI, we merge every
two overlapping focal elements, irrespective of weights and
interval widths. We repeatedly apply the algorithm in Figure 2
until the size of the DSI is sufficiently reduced.

2) Converting AA to DSI: After performing all arithmetic
operations, the resulting probabilistic affine form needs to be
converted to a DSI, i.e. the affine terms need to be summed up,
using the dependency information collected by the affine form.
For this conversion, we implement a greedy strategy which
maximizes independent arithmetic operations. Our algorithm
first partitions the affine terms into sets where each set contains
mutually independent terms. These terms are added using
independent addition. The resulting mutually dependent partial
sums are then added (in any order) using the costlier dependent
addition.

3) Floating-point Arithmetic: Our prototype is implemented
using rationals (using infinite-precision integers) and thus does
not suffer from internal roundoff errors. This is important to
ensure soundness, but it naturally increases the running time
of our analysis. For operations which cannot be computed in
rationals, e.g. square root, we use the MPFR arbitrary-precision
arithmetic library [23] and ensure that the result is rounded
correctly to ensure sound, i.e. overapproximated bounds.

We use the GLPK [24] solver for the linear programs, which
is implemented with floating-point arithmetic internally and
thus does not compute guaranteed results. GLPK is generally
efficient and precise, but does occasionally generate solutions
with extraneous focal elements with weights on the order
of double floating-point roundoff error. A fully satisfactory
solution would use a guaranteed LP-solver, such as Lurupa
[25] or LPex [26], but the effect on performance is uncertain.
Given that the probabilities that we compute are many orders of
magnitude larger than double precision floating-point roundoff
errors, we have kept GLPK as our solver.

B. Evaluation of Probabilistic AA

Using only probabilistic AA, we can compute a sound over-
approximation of the wrong path probability (WPP). However,
our experimental results show that for many of our benchmarks,
the WPP computed is 1 or close to 1 (see the column marked
‘A’ in Table III). For this experiment, we discretized each of the
initial distributions into 25 pieces, and we have not observed a
large impact on the results if we discretize further. The reason
behind this high overapproximation is that the intervals of the
focal elements tend to be wide and thus too many intersect
with the critical interval.

C. Interval Subdivision + Reachability Checks

To reduce the overapproximation, we propose to subdivide
the ‘outer’ input interval before they are passed to the
probabilistic static analysis and to combine the subdivision with
reachability checks. The overall algorithm is shown in Figure 3.

The algorithm takes as input an arithmetic expression e, an
environment E mapping variables to intervals, the assumed

7

wrong path probability analysis time (in seconds)
setting A B C D E A B C D E
DSI subdiv. 25 0 2 4 4 25 0 2 4 4

outer subdiv. 0 32000 16000 8000 8000
(deriv.) 0 32000 16000 8000 8000

(deriv.)

doppler 1 4.683e-2 3.064e-2 2.165e-2 2.157e-2 14.35 222.08 137.75 184.34 189.30
sine 0.3240 3.125e-5 5.762e-5 6.445e-5 6.445e-5 3.54 279.76 141.48 75.05 74.63
sineOrder3 0.3584 6.250e-5 1.172e-4 1.230e-4 1.230e-4 0.27 196.14 97.90 49.38 49.20
sqroot 1 3.125e-5 6.250e-5 9.375e-5 9.375e-5 80.51 213.92 107.28 54.35 53.88
bspline0 1 3.125e-5 5.469e-5 6.055e-5 6.055e-5 0.76 207.97 104.77 51.88 51.86
bspline1 0.9597 6.250e-5 3.125e-5 1.953e-5 1.953e-5 3.95 195.92 98.78 49.16 49.08
bspline2 0.9161 6.250e-5 1.230e-4 1.719e-4 1.719e-4 3.02 197.29 98.62 49.60 49.52
bspline3 1 3.125e-5 3.125e-5 7.813e-6 7.813e-6 0.76 190.35 94.85 47.51 47.47
rigidBody1 1 7.992e-2 7.105e-2 7.060e-2 7.052e-2 0.65 190.26 116.32 154.54 147.83
rigidBody2 1 1.022e-1 0.1048 9.229e-2 0.1069 1.26 235.95 145.07 238.85 242.38
turbine1 1 5.747e-2 5.767e-2 4.820e-2 5.252e-2 65.24 250.59 323.07 376.17 425.58
turbine2 1 5.280e-2 5.441e-2 4.641e-2 4.905e-2 17.81 223.60 215.74 259.42 250.76
turbine3 1 6.965e-2 6.387e-2 5.389e-2 5.731e-2 49.15 238.16 356.71 447.97 524.22
traincar1 0.0983 4.807e-2 2.982e-2 1.863e-2 2.465e-2 0.21 184.95 99.15 58.29 59.78
traincar2 0.1142 0.2958 0.1741 9.173e-2 0.1232 1.24 112.28 87.43 302.02 384.86
traincar3 0.1328 0.5372 0.3663 0.1971 0.1329 1.23 109.72 57.82 186.31 460.53
traincar4 0.2043 0.8545 0.7132 0.4200 0.2826 1.32 132.27 21.32 73.90 650.28

TABLE III
WRONG PATH PROBABILITIES COMPUTED WITH DIFFERENT SETTINGS FOR 32 BIT FLOATING-POINT ROUNDOFF ERRORS AS UNCERTAINTY, UNIFORM INPUT

DISTRIBUTIONS AND A HIGH THRESHOLD DEFINING THE CRITICAL INTERVAL, AS WELL AS ANALYSIS TIMES (AVERAGED OVER 3 RUNS)

1 def wrongPathProb(expr e, env E, distribution dist,
2 divLimit L, discretLimit X, criticalInterval cI):
3 numDiv = pow(L, 1/len(E)) // distributing L
4 subDomains = carthesianSubdiv(E, numDiv, dist)
5 ρ = 0 // total WPP
6 for (dom, ρdom) ← subDomains:
7 if (cheackReachable(e, dom, cI)):
8 outputDSI = probAnalysis(e, dom, X)
9 ρloc = intersect(cI, outputDSI)

10 else:
11 ρloc = 0 // critical interval not reachable
12 ρ = ρ+ ρdom × ρloc // add local WPP
13 return ρ

Fig. 3. Interval subdivision with reachability check

distribution of inputs dist, a limit on outer subdivisions L,
a limit on the discretization of input distributions X and the
critical interval cI.

The algorithm first distributes the outer subdivision limit L

among the input variables (line 3), and then subdivides each
input variable’s interval numDiv times such that we obtain overall
at most L subdomains (line 4).

For each subdomain dom, the algorithm then checks whether
the critical interval is reachable (line 7). This check is
performed by encoding reachability as an SMT query and
discharged using Z3 [27]. We set a timeout of 1s; if the SMT
solver times out, we assume the critical interval is reachable,
thus ensuring soundness. If the critical interval is potentially
reachable, we perform probabilistic analysis, obtaining a sound
overapproximation of the output distribution as an DSI (line

8). From this, we obtain the wrong path probability ρloc for
the subdomain dom by summing up the probabilities of the
outputDSI’s focal elements which intersect with the critical
interval (line 9). If the SMT solver determines that the critical
interval is not reachable from dom, the wrong path probability
is ρloc = 0.

Finally, the algorithm returns the overall WPP as the
weighted sum ρ =

∑
ρdom, i × ρloc, i, where the weights ρdom

depend on the input distribution. Our implementation currently
supports normal and uniform distributions; e.g. for the latter,
all ρdom’s are the same.

Recall our running example from Figure 1 which takes
three inputs x1, x2, x3 uniformly distributed in [−15.0, 15.0].
Choosing L = 8000, our algorithm subdivides each input
range into 20 pieces, each with equal weight. For this
example, the reachability checks determine that for 87% of
the subdomains the critical interval is unreachable and thus
for these the probability analysis is skipped. For the remaining
13%, probabilistic analysis computes the total WPP as 0.07060.
The WPP using only reachability checks and no probabilistic
analysis would be 0.07992.

D. Evaluation of Parameter Settings

The algorithm in Figure 3 is conceptually simple, but
very effective for computing tight wrong path probabilities.
Nonetheless, it has several parameters which need to be
specified. In particular, it performs two kinds of subdivisions:
we can discretize the DSIs in the probabilistic analysis, and
we can subdivide the input intervals. We determined suitable
parameters with a systematic empirical exploration, of which

8

we present a subset here. For our evaluation in section VI, we
choose one such setting for which the analysis is then fully
automated.

Table III summarizes our experiments, where we compare
the wrong path probabilities computed and the analysis time
taken for the following different subdivision strategies, which
we denote with the letters A-E. The row ‘# DSI subdiv’ gives
the number of focal elements of each input variable distribution,
and ‘# outer subdivision’ the maximum value of L in Figure 3.
To ensure a fair comparison, we choose the number of outer
and DSI subdivisions such that the total number of divisions
is at most 32000.

A, probabilistic analysis only: In this experiment, we do
not subdivide the outer interval, i.e. L = 1. The probabilistic
analysis discretizes each initial variable distribution into 25
focal elements.

B, non-probabilistic analysis: Here, we only subdivide the
outer interval and do not apply any probabilistic analysis. If
the critical interval is reachable, as determined using the SMT
solver, we assign 1 to the local probability and 0 otherwise.
In general, this analysis already provides much better results,
i.e. smaller wrong path probabilities, and for some of our
univariate benchmarks, even the best results. On the other
hand, the analysis is on the more expensive side.

C, outer subdivision and probabilistic analysis with
coarse discretization: In this setting, we apply both discretiza-
tion and outer subdivision, but choose the focus on the latter,
i.e. we choose a large L = 16000 and a small number of focal
elements (2 per variable) for the initial discretization. This
setting provides overall decent, but not best, results.

D, outer subdivision and probabilistic analysis with
larger discretization As in setting C, we use both kinds of
subdivisions, but use a smaller L = 8000, but 4 initial focal
elements (per variable). We found this setting to provide overall
the best results, at an acceptable analysis time.

E: derivative guided outer subdivision For settings B - D,
we subdivide each input variable equally (outer subdiv.). One
could argue that some variables may influence the result more or
less. Based on this idea, we use the magnitude of the derivative
w.r.t. each input variable to decide which variable’s interval
should be subdivided more: variables with larger derivatives
are subdivided more. Somewhat surprisingly, this provides a
(small) benefit only for two benchmarks, when compared to
setting D.

The running times are below 10mins, except for traincar4
where the analysis takes 10.838mins (650.28s), which is
comparable to the 10min timeout for PSI. We note that
increasing the running time for PSI beyond 10mins did not
lead to any different results and that Mathematica’s running
time needs to be accounted for as well.

Overall, we observe that for univariate functions outer
subdivision alone without a probabilistic analysis is sufficient to
provide reasonable wrong path probabilities and for the linear
traincar controllers, DSI discretization alone is enough without
outer subdivisions. For other benchmarks, a combination with
outer and DSI subdivision provides the best results, with setting
D being better overall.

benchmark high threshold low threshold

doppler 2.16e-2 4.93e-3
sine 6.45e-5 6.25e-5
sineOrder3 1.23e-4 6.25e-5
sqroot 9.38e-5 7.62e-5
bspline0 6.05e-5 6.64e-5
bspline1 1.95e-5 6.05e-5
bspline2 1.72e-4 5.66e-5
bspline3 7.81e-6 6.64e-5
rigidBody1 7.06e-2 6.28e-3
rigidBody2 9.23e-2 6.10e-2
turbine1 4.82e-2 4.47e-3
turbine2 4.64e-2 3.35e-3
turbine3 5.39e-2 2.08e-3
traincar1 1.86e-2 2.61e-3
traincar2 9.17e-2 3.51e-3
traincar3 1.97e-1 7.29e-4
traincar4 4.20e-1 7.19e-3

TABLE IV
WPP FOR HIGH AND LOW THRESHOLDS (SETTING D)

We note that for those benchmarks, where PSI computes
a probability using exact inference, the results with our
static analysis method are quite close, confirming that the
overapproximations due to static analysis are acceptable.

1) Low vs High Thresholds: Finally, we also compare our
analysis results using setting D for low and high thresholds,
see Table IV. We observe that our static analysis method is
not able to detect the low-probability threshold as consistently
as PSI, which is due to the fact that our method computes an
overapproximation.

E. Future Improvements

While our prototype already computes useful wrong path
probabilities, the performance of our implementation could
be improved in several ways. First, the probabilistic analysis
on each subdomain is trivially parallelizable, but we currently
compute it sequentially as the GLPK solver is not threadsafe
(but has a convenient interface for a prototype implementation).
Secondly, a smarter subdivision similar to branch-and-bound
methods could reduce the number of subdomains checked
by SMT. Next, instead of DSIs, we could employ a more
sophisticated method using concentration of measure inequal-
ities [28]. This method does not necessarily provide tighter
probability bounds, but is more efficient in general (but also
more complex to implement and the implementation from [28]
is not available). Finally, our implementation using rationals
is costly and can be improved either by using high-precision
floating-point arithmetic internally—at the expense of some
guarantees—or by using interval arithmetic with floating-point
bounds and outwards rounding—at the expense of complexity
of implementation.

9

VI. FURTHER EVALUATION

In this section, we choose the overall most successful setting
found in subsection V-C (setting D) and perform additional
experiments, comparing the results computed by our method
for different sized uncertainties, for uniform and normal
distributions, as well as independent and dependent inputs.
We furthermore choose a number of additional benchmarks
where studying discrete choices is particularly relevant.

filter: We unrol this 2nd order numerical filter [8], which
appears frequently in embedded software, three and four times
and obtain benchmarks with 15 and 25 arithmetic operations
and 3 and 4 input variables each.

solveCubic: This benchmark, obtained from GNU Scientific
Library, has been used in previous work [29] in the context of
test case generation for floating-point programs with branches.
The benchmark has 14 operations and 3 variables.

classID: We trained a Linear Support Vector Classifier
using the Python sklearn library on the Iris standard data
set which comes with sklearn, and extracted source code from
the classifier using sklearn-porter [30]. For our benchmark,
we have inlined the weights computed and the three versions
of this benchmark correspond to the three decision variables,
resp. classes, in the data set. They each have 15 arithmetic
operations and 4 input variables.

neuron: This is a simplified version of the DNN which is
supposed to have learned the ‘AND’ operator [31]. This neural
network has one hidden layer of size 2, and six weights defining
them. We consider here a one-input version, keeping one of the
inputs constant. This benchmark uses the exponential function
and has 22 arithmetic operations.

a) Different Sized Uncertainties: In this first experiment
we compare the wrong path probabilities computed using
our method for different-sized critical intervals: obtained by
computing roundoff errors for 16-bit fixed-point and 32-bit
floating-point arithmetic without input uncertainties, as well
as assuming an input uncertainty of 0.001 (and 32-bit floating-
points). All errors have been computed using the Daisy tool.
The four missing entries in the fixed-point arithmetic column
are due to overflows in the 16-bit implementation, and for the
neuron benchmarks, an input error of 0.001 leads to a potential
division by zero.

Table V shows the results. We observe that while the wrong
path probabilities are all relatively small, our method is not
able to distinguish in a notable way, except for the bspline
benchmark, between different sized critical intervals. This is,
as before with the low and high thresholds, a fundamental
limitation of our abstraction-based method, which we show
here for completeness.

b) Uniform vs Gaussian Inputs: In this section, we use our
analysis to compare how the wrong path probability changes
with the input distributions. For this we run our analysis with
all inputs uniformly and normally distributed, but keeping the
thresholds, i.e. critical intervals, constant.

Table VI shows the results. As expected, the wrong path
probabilities can differ substantially, which shows the impor-
tance of taking input distributions into account. We also show
the running times, as we have observed differences. We suspect

benchmark
no uncertainty input uncert.: 0.001

16-bit fixed 32-bit float 32-bit float

bspline2 1.38e-3 5.66e-5 6.08e-3
rigidBody1 6.35e-3 6.28e-3 6.32e-3
rigidBody2 - 5.05e-2 5.22e-2
traincar1 2.72e-3 2.61e-3 2.66e-3
traincar2 3.53e-3 3.51e-3 3.53e-3
traincar3 - 7.29e-4 7.36e-4
traincar4 - 7.19e-3 7.19e-3
filter3 3.51e-3 3.23e-3 3.31e-3
filter4 6.81e-4 6.72e-4 6.74e-4
solveCubic 3.32e-5 3.13e-5 3.32e-5
classID2 9.50e-2 9.37e-2 9.44e-2
classID1 5.79e-2 5.70e-2 5.74e-2
classID0 5.79e-2 5.70e-2 5.76e-2
neuron - 1.38e-1 -

TABLE V
WPP FOR DIFFERENT CRITICAL INTERVALS

benchmark
wrong path probability time (in s)
uniform normal uniform normal

bspline2 5.66e-5 6.43e-5 53.30 59.86
rigidBody1 6.28e-3 4.39e-3 69.20 153.81
rigidBody2 5.05e-2 5.10e-2 195.46 595.88
traincar1 2.61e-3 1.69e-3 52.02 51.89
traincar2 3.51e-3 2.10e-3 68.07 74.67
traincar3 7.29e-4 4.22e-4 25.01 35.00
traincar4 7.19e-3 5.49e-3 20.70 42.13
filter3 3.23e-3 1.97e-3 54.54 54.46
filter4 6.72e-4 3.17e-4 47.14 48.94
solveCubic 3.13e-5 1.30e-5 58.00 147.38
classID2 9.37e-2 0.100 383.73 661.24
classID1 5.70e-2 6.49e-2 293.04 532.12
classID0 5.70e-2 6.37e-2 331.13 609.52
neuron 0.138 0.160 16.34 16.31

TABLE VI
UNIFORMLY VS. NORMALLY DISTRIBUTED INPUTS

that these are due to the reduction method, which will have
different effects for different input distributions.

c) Dependent Inputs: Until now, we have always assumed
that all inputs were independent and dependencies were only
introduced by arithmetic operations. In this experiment, we look
at the wrong path probability computed with all inputs being
either independent or dependent (with unknown dependency).

Table VII shows the results. We observe that in general the
wrong path probabilities computed are greater for the dependent
case. This is to be expected as we have to consider all possible
dependencies. The difference are, however, not too large and
the results still useful.

Curiously, we also observe that the running times of our
method are smaller for the dependent case, even though in
this case we are calling the LP solver for every arithmetic
operation. But this is also the reason for the smaller running
times; the GLPK solver we use is implemented in floating-

10

benchmark
wrong path probability time (in s)
indep. dep. indep. dep.

bspline2 5.66e-5 6.25e-5 53.30 54.27
rigidBody1 6.28e-3 1.37e-2 69.20 53.53
rigidBody2 5.05e-2 7.68e-2 195.46 77.91
traincar1 2.61e-3 5.22e-3 52.02 52.32
traincar2 3.51e-3 9.48e-3 68.07 56.88
traincar3 7.29e-4 7.20e-3 25.01 19.08
traincar4 7.19e-3 8.89e-2 20.70 9.32
filter3 3.23e-3 3.78e-3 54.54 54.20
filter4 6.72e-4 5.33e-4 47.14 47.36
solveCubic 3.13e-5 2.50e-4 58.00 56.43
classID2 9.37e-2 0.158 383.73 62.57
classID1 5.70e-2 8.66e-2 293.04 57.92
classID0 5.70e-2 0.119 331.13 60.38
neuron 0.138 0.138 16.34 6.82

TABLE VII
INDEPENDENT VS. DEPENDENT INPUTS (WITH UNIFORM INPUT

DISTRIBUTIONS)

point arithmetic, whose results we translate to rationals at
the interface to our implementation. Calling the solver often
effectively does not allow our rationals to grow too large and
thus keeps the running time low.

VII. RELATED WORK

a) Probabilistic Inference: In section III we have chosen
the tool PSI for our experiments which performs exact
symbolic inference. Probabilistic inference is an active field,
and there are several other alternative approaches. Among
many others, R2 uses MCMC sampling in combination with
program analysis to improve efficiency [15], Stan’s Hamiltonian
sampling generates samples from high-probability regions [14].
Infer.NET implements several algorithms including expectation
and belief propagation and Gibbs sampling [13], and it achieves
efficiency by compiling the graphical models into executable
code. MAYHAP [32] statically builds a distribution from
a probabilistic program simplifies the Bayesian network it
constructs before evaluating it via sampling. While these
approaches provide efficient solutions, they fundamentally are
all sampling based and thus cannot provide guaranteed bounds.

b) Probabilistic Program Analysis: Our approach is
linked to probabilistic static analysis, most notably to the
approach of [28], based on the propagation of uncertain
probability distributions, represented as P-boxes or Dempster-
Shafer structures. More broadly related is the work by Sankara-
narayanan et.al. [33], which verifies probabilistic properties for
programs with many paths by examining only finitely many. A
combination of symbolic execution and volume computation
provides bounds on the probability of the property holding.
This work only considers linear programs and does consider
the effects of finite-precision, while handling more general
programs and properties. Uncertain<T> [34] is a programming
language construct which makes uncertainties explicit and
which is lazily evaluated by sampling. While the input programs

are floating-point programs, roundoff errors are not taken into
account.

c) Finite-Precision Roundoff Error Analysis: Alternative
tools to Daisy for computing roundoff error bounds are for
instance FPTaylor [1] and Fluctuat [3]. The former’s analysis
technique does not support fixed-point arithmetic and the latter
is similar to Daisy in the analysis used, but the code is not
available as open source. The results computed by these tools
have been shown to be largely comparable for our purpose [1],
[9]. Daumas et.al. [35] compute bounds on the probability
that accumulated floating-point roundoff errors exceed a given
threshold, using known inequalities on sums of probability
distributions. This approach has also been used for value
analysis [28] and could be combined with ours, in the future.
Constraint-based approaches [36] have been recently proposed
which heuristically generate test cases where floating-point and
real-valued results differ, and in particular when the control
flow differs [29]. This work is complementary to our approach
as the generated test cases can be used for debugging, for
instance once our approach computes a wrong path probability
which is too large.

d) Finite-precision in Classification: While a classifier
can be trained in low precision [37], the common way is to
train in some higher precision and then translate to a lower
precision [38], [6]. For example, Lin et. al. [39] translate a
neural network trained in floating- point arithmetic to fixed-
point arithmetic using a dynamic analysis to determine the
dynamic range, mean and standard deviation of all weights
and activations. The error analysis is different from ours
in that computes the signal-to-noise ratio (SNR). It is also
only approximate and the evaluation shows that the predicted
and observed SNR do not match exactly. Our proposed
method computes, in contrast, a guaranteed bound on the
misclassification probability, albeit for classifiers of limited size
which are nonetheless important in safety-critical systems [6].

Reluplex [40] uses SMT-solving to prove input-output
properties of deep-neural networks (DNNs) with ReLus. In
particular, it can test for adversarial robustness, i.e. perturbing
a particular input up to some small quantity does not change
the classification result. Our approach is not specific to DNNs,
but can be used to quantify the potential misclassification rate.

VIII. CONCLUSION

We have considered several guaranteed analyses for bounding
the effects of numerical uncertainties on discrete decisions in
terms of the probability of making the wrong decision. We
conclude that existing exact and static analysis approaches have
shortcomings in terms of scalability and accuracy, but that those
can be overcome with a combination with a non-probabilistic
reachability analysis. Our presented method computes wrong
path probabilities which are tight enough to be useful in practice
for small, but interesting embedded programs. We view this
work as a first important step, with more work especially on
improving the performance to follow.

REFERENCES

[1] A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrishnan,
“Rigorous Estimation of Floating-Point Round-off Errors with Symbolic
Taylor Expansions,” in FM, 2015.

11

[2] M. Daumas and G. Melquiond, “Certification of Bounds on Expressions
Involving Rounded Operators,” ACM Trans. Math. Softw., vol. 37, no. 1,
pp. 2:1–2:20, 2010.

[3] E. Goubault and S. Putot, “Static Analysis of Finite Precision Computa-
tions,” in VMCAI, 2011.

[4] ——, “Robustness Analysis of Finite Precision Implementations,” in
APLAS, 2013, pp. 50–57.

[5] E. Darulova and V. Kuncak, “Towards a Compiler for Reals,” ACM
TOPLAS, vol. 39, no. 2, 2017.

[6] R. Braojos, G. Ansaloni, and D. Atienza, “A Methodology for Embedded
Classification of Heartbeats using Random Projections,” in DATE, 2013.

[7] S. Misailovic, M. Vechev, and T. Gehr, “PSI: Exact Symbolic Inference
for Probabilistic Programs ,” in CAV, 2016.

[8] A. Adje, O. Bouissou, J. Goubault-Larrecq, E. Goubault, and S. Putot,
“Static Analysis of Programs with Imprecise Probabilistic Inputs,” in
VSTTE, 2013.

[9] E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, and
R. Bastian, “Daisy - Framework for Analysis and Optimization
of Numerical Programs,” in TACAS, 2018. [Online]. Available:
https://github.com/malyzajko/daisy

[10] A. Anta and P. Tabuada, “To Sample or not to Sample: Self-Triggered
Control for Nonlinear Systems,” IEEE Transactions on Automatic Control,
vol. 55, no. 9, pp. 2030–2042, 2010.

[11] O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot, “A
Generalization of P-boxes to Affine Arithmetic,” Computing, vol. 94, no.
2-4, pp. 189–201, 2012.

[12] G. F. Cooper, “The Computational Complexity of Probabilistic Inference
Using Bayesian Belief Networks (Research Note),” Artif. Intell., vol. 42,
no. 2-3, pp. 393–405, 1990.

[13] T. Minka, J. Winn, J. Guiver, S. Webster, Y. Zaykov, B. Yangel,
A. Spengler, and J. Bronskill, “Infer.NET 2.6,” 2014, Microsoft Research
Cambridge. http://research.microsoft.com/infernet.

[14] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betan-
court, M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A Probabilistic
Programming Language,” Journal of Statistical Software, Articles, vol. 76,
no. 1, pp. 1–32, 2017.

[15] A. V. Nori, C.-K. Hur, S. K. Rajamani, and S. Samuel, “R2: An Efficient
MCMC Sampler for Probabilistic Programs,” in AAAI, 2014.

[16] W. R. Inc., “Mathematica, Version 10.4,” https://www.wolfram.com/
mathematica/, 2018, champaign, IL.

[17] D. U. Lee, A. A. Gaffar, R. C. Cheung, O. Mencer, W. Luk, and G. A.
Constantinides, “Accuracy-Guaranteed Bit-Width Optimization,” Trans.
Comp.-Aided Des. Integ. Cir. Sys., vol. 25, no. 10, pp. 1990–2000, 2006.

[18] R. Moore, Interval Analysis. Prentice-Hall, 1966.
[19] G. Shafer, A Mathematical Theory of Evidence. Princeton university

press, 1976, vol. 42.
[20] S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz, “Con-

structing Probability Boxes and Dempster-Shafer Structures,” Technical
report, Sandia National Laboratories, Tech. Rep., 2003.

[21] D. Berleant and C. Goodman-Strauss, “Bounding the Results of Arith-
metic Operations on Random Variables of Unknown Dependency Using
Intervals,” Reliable Computing, vol. 4, no. 2, pp. 147–165, May 1998.

[22] L. H. de Figueiredo and J. Stolfi, “Affine Arithmetic: Concepts and
Applications,” Numerical Algorithms, vol. 37, no. 1-4, 2004.

[23] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A Multiple-precision Binary Floating-point Library with Correct
Rounding,” ACM Trans. Math. Softw., vol. 33, no. 2, 2007.

[24] “GLPK (GNU Linear Programming Kit),” https://www.gnu.org/software/
glpk/, 2012.

[25] C. Keil, “Lurupa - Rigorous Error Bounds in Linear Programming,” in
Algebraic and Numerical Algorithms and Computer-assisted Proofs, ser.
Dagstuhl Seminar Proceedings, no. 05391, 2006. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2006/445

[26] M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel, E. Schömer,
R. Schulte, and D. Weber, “Certifying and Repairing Solutions to Large
LPs. How Good are LP-Solvers?” in SODA, 2003, pp. 255–256.

[27] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in TACAS,
2008.

[28] O. Bouissou, E. Goubault, S. Putot, A. Chakarov, and S. Sankara-
narayanan, “Uncertainty Propagation using Probabilistic Affine Forms
and Concentration of Measure Inequalities,” in TACAS, 2016.

[29] H. Zitoun, C. Michel, M. Rueher, and L. Michel, “Search Strategies for
Floating Point Constraint Systems,” in CP, 2017.

[30] “Project Sklearn-porter,” https://github.com/nok/sklearn-porter, 2018.
[31] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and

A. Swami, “The Limitations of Deep Learning in Adversarial Settings,”
in EuroS&P, 2016.

[32] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman,
and L. Ceze, “Expressing and Verifying Probabilistic Assertions,” in
PLDI, 2014.

[33] S. Sankaranarayanan, A. Chakarov, and S. Gulwani, “Static Analysis
for Probabilistic Programs: Inferring Whole Program Properties from
Finitely Many Paths,” in PLDI, 2013.

[34] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain<T>: A
First-order Type for Uncertain Data,” in ASPLOS, 2014.

[35] M. Daumas, D. Lester, E. Martin-Dorel, and A. Truffert, “Improved bound
for stochastic formal correctness of numerical algorithms,” Innovations
in Systems and Software Engineering, vol. 6, no. 3, pp. 173–179, 2010.

[36] H. Collavizza, C. Michel, and M. Rueher, “Searching Critical Values
for Floating-Point Programs,” in ICTSS, 2016.

[37] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations,” arXiv e-prints, vol. abs/1609.07061,
2016.

[38] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental Network
Quantization: Towards Lossless CNNs with Low-Precision Weights,” in
ICLR, 2017.

[39] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed Point Quantization
of Deep Convolutional Networks,” in ICML, 2016.

[40] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks,”
in CAV, 2017.

Debasmita Lohar received her Bachelor of Tech-
nology degree in Computer Science and Engineering
from the Heritage Institute of Technology, Kolkata,
India in 2013. She completed her Master of Science
in Computer Science and Engineering from the
Indian Institute of Technology Kharagpur, India in
2017. Currently she is a doctoral student at the Max
Planck Institute for Software Systems, Saarbrücken,
Germany. Her research interests include programming
languages and verification.

Eva Darulova obtained her PhD from École Poly-
technique Fédérale de Lausanne, Switzerland, in
2014. Since 2015, she is a tenure-track faculty at
the Max Planck Institute for Software Systems in
Germany. Her research interests include programming
languages, software verification and approximate
computing.

Sylvie Putot is Professor of Computer Science at
Ecole Polytechnique. Her research focuses on veri-
fication methods, from program analysis by abstract
interpretation to the analysis of hybrid and cyber-
physical systems.

Eric Goubault is a professor at Ecole Polytechnique,
currently serving as head of the computer science
department. He has written about 90 papers in
semantics and static analysis of programs, concurrent
and distributed systems, and hybrid systems. His main
focus now is on modeling and analysis of Cyber-
Physical Systems, using and developing a variety
of methods and theories among which are abstract
interpretation, model-checking, set-based, topological
and algebraic methods.

https://github.com/malyzajko/daisy
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://drops.dagstuhl.de/opus/volltexte/2006/445
https://github.com/nok/sklearn-porter

	Introduction
	Problem Definition and Overview
	Using Symbolic Inference
	Experimental Setup
	Results

	Probabilistic Static Analysis
	Uncertain Probabilities
	Probabilistic Affine Arithmetic

	Implementation and Extension
	Implementation
	Reduction
	Converting AA to DSI
	Floating-point Arithmetic

	Evaluation of Probabilistic AA
	Interval Subdivision + Reachability Checks
	Evaluation of Parameter Settings
	Low vs High Thresholds

	Future Improvements

	Further Evaluation
	Related Work
	Conclusion
	References
	Biographies
	Debasmita Lohar
	Eva Darulova
	Sylvie Putot
	Eric Goubault

