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ABSTRACT
We introduce a new method to compute non-convex invariants
of numerical programs, which includes the class of switched
affine systems with affine guards. We obtain disjunctive and
non-convex invariants by associating different partial exe-
cution traces with different ellipsoids. A key ingredient is
the solution of non-monotone fixed points problems over the
space of ellipsoids with a reduction to small size linear matrix
inequalities. This allows us to analyze instances that are in-
accessible in terms of expressivity or scale by earlier methods
based on semi-definite programming.
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1 INTRODUCTION
Motivation. A basic problem in formal verification consists

in computing invariants of numerical programs. The latter
are omnipresent in embedded systems and control-command
software. For the analysis of such programs, the existing
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methods range from polyhedral domains [? ], including ex-
plicit or tractable subclasses with a constrained geometry [? ?

], to domains of quadratic, or piecewise-quadratic invariants,
involving ellipsoids [? ? ? ? ? ? ? ? ], or even higher degree
polynomial invariants [? ? ? ].

The analysis of numerical programs is often challenging.
Even for a simple program which iteratively switches between
two linear dynamics, reachability is already undecidable [? ].
In the case of switched linear systems, however, ellipsoids are
a natural choice. Indeed, they are known to provide optimal
(Lyapunov-type) stability certificates for unswitched linear
systems. Moreover, efficient algorithms based on semi-definite
programming allow one to propagate ellipsoids through the
analysis. Unfortunately, in the switched case, a single ellipsoid
leads to extremely conservative invariants.

Contribution. In this paper, we obtain disjunctive and
non-convex invariants for numerical programs, by exploiting
the good geometric and algorithmic properties of the space
of ellipsoids. To do so, we develop a new method. It relies
on associating an ellipsoid with each partial execution trace.
This leads to a disjunctive, possibly non-convex, invariant of
the program as a union of ellipsoids.

While disjunctive analyses generally suffer from a computa-
tional blow up, our method preserves scalability by expressing
the invariant as the union of a prescribed number of ellip-
soids. These ellipsoids are obtained efficiently by solving a
non-linear and non-monotone fixed point problem over the
space of ellipsoids. Indeed, every fixed point iteration is im-
plemented by solving linear matrix inequalities (LMI) of
relatively small size, depending on the number of program
variables but not the number of terms in the disjunction.

Our method is flexible enough to handle programs that
switch between several affine assignments of the form x 
A

i

x+B
i

u+ c
i

, where x is the state vector and u represents
a control or uncertainty vector. The switching process can be
arbitrary (or non-deterministic) or state-dependent via affine

guards.
We report experiments showing that our method can han-

dle instances of switched systems out of reach of earlier
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methods [? ? ? ? ], demonstrating the benefit brought by
the present “small-LMI” and “no-LMI” approaches in terms
of scalability, expressivity, and accuracy compared to earlier
methods based on ellipsoids.

Related work. In static analysis by abstract interpretation,
ellipsoidal methods have been proposed by a number of au-
thors: for accurately analyzing linear filters [? ], for control
programs and switched systems [? ], for linear time invariant
systems [? ], using policy iteration [? ? ], with clever widening
techniques [? ], or even using piecewise quadratic invariants
[? ]. Our work is also inspired by control theory [? ], where
intersections of ellipsoids are used to approximate the joint
spectral radius of linear switched systems without guards.
Intersection of ellipsoids and piecewise quadratic invariants
(like multiple Lyapunov functions [? ]) provide good invari-
ants for systems that have a single equilibrium, i.e. switching
between assignments of the form x  A

i

x+ B
i

u+ c
i

with
c
i

= 0. When c
i

6= 0, those assignments do not have the same
equilibrium point in general, and there is no guarantee that
a “small” convex invariant exists (since affine systems behave
asymptotically like linear systems, there must be a convex
invariant which can be very large). Therefore, our method
deals with non-convex invariants.

Moreover, our work falls in the category of disjunctive
analyses [? ] constructed on a given abstract domain (the
ellipsoidal domain of [? ]). Although very appealing in theory
(see [? ]), disjunctive analyses may lead to very expensive
analyses in practice. Several proposals have been made to
control the potential explosion of the number of disjunctions,
manipulated during an analysis, see e.g. [? ? ? ? ]. In order to
manage a tractable set of disjunctions of abstract elements,
several authors have proposed methods involving a trans-
formation of the original program. This includes semantic
techniques such as initial unfolding of loops (i.e. the copy
of n times the loop body, before the loop itself), as used in
e.g. [? ] and loop unfolding (i.e. n duplications of the loop
body, within the loop). This has been applied for instance
to synchronous languages in [? ] and in [? ] for improving
the precision of numerical analyses of imperative programs.
Some authors have also proposed to duplicate the abstract
elements attached to single statement according to the values
of binary variables (that typically control conditionals, or
modes of the program), as in BDD APRON [? ].

In this paper, we make a similar elaboration by choosing
an abstraction of the traces, on which we perform trace
partitioning [? ] through an automaton. Contrarily to the
existing elaborations, ours can be seen as identifying traces
with a common suffix.

This has a number of advantages. First, our method is
separating out invariants because of the recent “history”: for
stable iterative numerical systems, this is much better in
the sense that the older the values that are computed in
traces of executions, the fewer effect it has on the outcome
of the computation. Moreover, our method has only to solve
a number of small LMI problems, instead of one big LMI
system as in most classical methods, making it much more

Program 1: Switched affine program with guards (each
⇧ belongs to {6, <})
y  E

I

;
while true do

x := y;
u EU ;
if (fT

1,1x ⇧ g1,1) ^ · · · ^ (fT

1,Px ⇧ g1,P ) then

y :

= A1 ⇥ x+B1 ⇥ u+ c1;
end

...
if (fT

N,1x ⇧ gN,1) ^ · · · ^ (fT

N,P

x ⇧ g
N,P

) then

y :

= A
N

⇥ x+B
N

⇥ u+ c
N

;
end

end

tractable in practice. We compare our method with existing
methods [? ? ] based on ellipsoidal invariants at the end of
Section 5.2.

An essential originality of our method is the solution of
a non-monotone fixed point problem involving Löwner ellip-
soids. This differs from classical static analysis by abstract
interpretation which lead to monotone fixed point problems.
In the special linear case, the convergence proof relies on
properties of metric geometry. We use a canonical metric on
the cone of positive matrices, Riemann’s metric, and prove
that the iterative scheme solving the non-monotone fixed
point problem is a contraction.

Comparison with earlier methods. The present method
computes a program invariant as the union of a finite num-
ber of ellipsoids. Several works have proposed to compute
quadratic invariants of numerical programs as a single el-
lipsoid, obtained by iterative schemes [? ], by semi-definite
programming [? ] or policy iteration [? ]. These methods
usually produce invariants that are less accurate than ours
given the disjunctive nature of our approach.

Other methods compute invariants as the intersection of
ellipsoids [? ] or as piecewise quadratic functions [? ], i.e. qua-
dratic functions defined on polyhedral cells. These methods
are based on partitioning into finite execution traces. Addi-
tionally, they are restricted to the case of linear assignments
(c1 = c2 = 0). As a consequence, when compared to our
method, they are less expressive, and more expensive when
the size of the automaton is large, since they are expressed
as solution of large LMIs.

2 PROGRAMS OF INTEREST
We are interested in programs of the form of Program 1, in-
volving several affine switching conditions within a loop. This
class of programs includes programs that simulate switched
affine systems with affine guards.

For simplicity, we assume that all variables have global
scope. We denote by x (resp. y) the vector containing the
state variables x1, . . . , xn

(resp. y1, . . . , yn) and by E
I

an
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ellipsoid that over-approxi-mates of the set of initial values
for the state variables in y. We refer the reader to the next
section for background on ellipsoids. We also denote by u
the vector of input variables u1, . . . , um

, that may represent
values measured from a sensor. The set of possible values of
the vector u is over-approximated by an ellipsoid EU . The
operations + and ⇥ are vector or matrix operations. A vector
assignment is denoted (x1, . . . , xn

) := (y1, . . . , yn), or x := y
for short. The non-deterministic choice of a value for the
vector x inside a set X is denoted x  X . In Program 1,
f
i,j

is a vector of dimension n and g
i,j

is a real number;
so ^

j

(fT

i,j

x ⇧ g
i,j

), where ·T denotes the transposition and
each occurrence of ⇧ can be replaced either by 6 or <, is a
conjunction of affine guard conditions. In each assignment,
A

i

is an n ⇥ n matrix, B
i

is an n ⇥ m matrix and c
i

is a
vector of dimension n.

In most applications we have in mind, the switching condi-
tions are mutually exclusive, meaning exactly one switching
condition is valid for any value of the variable vector x. We
point out that this assumption can be made without loss of
generality, up to adding more conditional statements within
the loop and adjusting the assignments accordingly.

We shall also consider the somehow simpler variant of
this program in which every guard condition (fT

i,j

x ⇧ g
i,j

) is
replaced by the test of a random boolean, and refer to it as
a non-deterministic switched system.

An invariant for Program 1 is defined as a set I that
satisfies E

I

✓ I, and, for all i, j, x 2 I and u 2 U ,

A
i

x+B
i

u+ c
i

2 I whenever fT

i,j

x ⇧ g
i,j

.

(In the non-deterministic case, the condition fT

i,j

x ⇧ g
i,j

is
dropped.)

3 LÖWNER ELLIPSOID APPLIED TO
ABSTRACT INTERPRETATION

In this section, we introduce the domain of ellipsoids and sev-
eral operations on ellipsoids that are needed in our analysis.

We begin by recalling some notation. The set of real m⇥n
matrices is denoted by M

m,n

, and the set of real n ⇥ n
matrices is abbreviated as M

n

. The n⇥ n identity matrix is
denoted by I

n

.
A matrix M is symmetric if M = MT . The set of n ⇥ n

symmetric matrices is denoted S
n

. A symmetric matrix M =

(M
ij

) is called positive semi-definite if xTMx =

P
i,j

M
ij

x
i

x
j

>
0 for all real vectors x = (x

i

). This is equivalent to the ex-
istence of a matrix L 2 M

n

such that M = LLT . When
the matrix M is positive semi-definite, we write M < 0, and
we denote by S+

n

the set of positive semi-definite matrices.
When xTMx > 0 holds for all non-zero vectors x 2 Rn, we
say that the matrix M is positive definite. We denote the set
of positive definite matrices by S++

n

. We extend 4 into an
order relation over S

n

as follows: given A,B 2 S
n

, we say
that A 4 B when the matrix B �A is positive semi-definite.
This order relation is called the Löwner order. Finally, a set
X ⇢ Rn is said to be full-dimensional if it is not contained

in an affine subspace of codimension 1, or, equivalently, its
affine hull coincides with Rn.

A linear matrix inequality (LMI for short) refers to a
constraint of the form

A0 +

dX

k=1

x
k

A
k

< 0 , (1)

where x 2 Rd is the variable and (A
k

)16k6d

are given symmet-
ric n⇥ n matrices. In other words, given a symmetric matrix
A(x1, .., xd

) whose entries depend in an affine way on x 2 Rd,
the constraint A(x1, . . . , xd

) < 0 is an LMI. Several LMIs
can be combined into a single LMI, since

⇣
A(x) 0
0 B(x)

⌘
< 0

is equivalent to A(x) < 0 and B(x) < 0. The problem of
minimizing a convex function in the variable x that satisfies
the LMI in Equation (1) is called a semi-definite program
(SDP). We refer to [? ] for introductive background on these
programs.

Semi-definite programs can be solved in “polynomial time”
in the following approximate sense (semi-definite feasibility
is not known to be polynomial time in the Turing model of
computation). Given an accuracy parameter " > 0, one can
obtain, in particular by interior point methods (the most
efficient in practice), a "-approximate solution of a SDP in a
number of arithmetic operations which is polynomial in n, d,
log ", and log(R/r), assuming that the set F of vectors which
satisfy (1) is such that B(a, r) ⇢ F ⇢ B(a,R) for some point
a 2 Rn, where B(a, r) denotes the Euclidean ball of center a
and radius r, see [? ]. We warn the reader, however, that the
exponent of the polynomial is relatively high (see Section 5.1
for details). Hence, it is essential for scalability purposes to
limit as far as possible the growth of the dimension n and of
the number of variables d, which is one of our main goals in
what follows.

We can now introduce ellipsoids. Let B
n

= {x 2 Rn

: xTx 6
1} denote the unit ball of Rn. An ellipsoid is defined as the
image of the unit ball B

n

under an affine map x 7! Lx+ q,
where L 2M

p,n

and q 2 Rp. When the matrix L is invertible,
the matrix Q = LLT is positive definite and the ellipsoid
E(Q, q) is given by

E(Q, q) := {y 2 Rp

: (y � q)TQ�1
(y � q) 6 1} .

When the matrix L is not invertible, the matrix Q is only
positive semi-definite, so we have E(Q, q) = {y 2 Rp

: (y �
q)(y� q)T 4 Q} as shown in [? ]. When the matrix Q is posi-
tive definite, the ellipsoid E(Q, q) is full-dimensional, whereas
the ellipsoid E(Q, q) is “flat” when Q is only positive semi-
definite. We say that the ellipsoid E(Q, q) is centered if q = 0.
The volume of a full-dimensional ellipsoid is proportional
to detL = (detQ)

1/2 (the proportionality constant only de-
pends on the dimension). We denote the set of ellipsoids in
Rn by E

n

.
We recall a famous result by Löwner [? ].

Theorem 3.1 (Löwner [? ]). Given a compact and full-

dimen-sional set X ⇢ Rn

, there is a unique ellipsoid E(Q, q)
that contains X and that has minimum volume.
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This ellipsoid is called the Löwner ellipsoid of the set X ,
and we denote it by Löw(X ).

In our analysis, we need to be able to manipulate the
union of ellipsoids, the Minkowski sum of ellipsoids and the
intersection of an ellipsoid with a half-space, none of which are
ellipsoids in general. In the spirit of abstract interpretation,
we shall replace these operations by abstract operators that
return ellipsoidal values. These abstract operators need to
be sound, meaning that they must over-approximate their
concrete counterpart. In order to evaluate most of these
operators, reductions by semi-definite programming, which
rely on the S-Lemma and classical tools in linear algebra
such as Schur complement, have been proposed in [? ? ]. We
next recall these reductions for the sake of completeness.

Inclusion. We can check if an ellipsoid E(Q1, q1) is included
in the ellipsoid E(Q2, q2). When the matrix Q2 is positive
definite, checking the inclusion E(Q1, q1) ✓ E(Q2, q2) is equiv-
alent to checking if the following LMI has a solution as proved
in [? ]:

9� 2 R :

0

@
Q2 q1 � q2 L1

(q1 � q2)
T

1� � 01,n

LT

1 0

n,1 �I
n

1

A < 0 ,

where L1 satisfies Q1 = L1L
T

1 . In the special case where
q1 = q2, this amounts to checking if Q1 4 Q2. We shall see
later on that the case where the ellipsoid E(Q2, q2) is not full
dimensional does not arise in our analysis.

Image by an affine map. Let f : x 7! Ax+b denote an affine
map, with A 2M

p,n

and b 2 Rp. The image of the ellipsoid
E(Q, q) 2 E

n

by the affine map f is again an ellipsoid, given
by f

�
E(Q, q)

�
:

= E(AQAT , Aq + b) 2 E
p

.

Union of ellipsoids. A celebrated theorem of Kadison [? ]
implies that the space of centered ellipsoids, equipped with
the inclusion order, is as far as possible from a lattice: it is an
anti-lattice, meaning that two centered ellipsoids have a least
upper bound if and only if they are comparable. Similarly,
the set of (not necessarily centered) ellipsoids equipped with
the inclusion order does not constitute a lattice. This means
that, given ellipsoids E1, . . . , Ep

, there is generally not a single
ellipsoid E that is the smallest among ellipsoids that contain
[

k

E
k

. For this reason, we over-approximate the union of a
finite number of ellipsoids by the Löwner ellipsoid Löw

�
[

k

E
k

�
. The latter can be computed as E(Y �2, Y �1y), where

(Y, y) is the optimal solution of the following semi-definite
program [? ]:

argmin

Y,y

� log detY

subject to

0

@
I
n

(Y q
k

� y) Y L
k

(Y q
k

� y)T 1� �
k

01,n

LT

k

Y 0

n,1 �
k

I
n

1

A < 0 , 8k

Y < 0

(2)
and E

k

= E(L
k

LT

k

, q
k

). This is only true when the convex
hull of [

k

E
k

is full-dimensional (the opposite case will not

arise in our analysis). For the sake of brevity, we denote this
Löwner ellipsoid by

t
k

E
k

:

= Löw

�
[

k

E
k

�
. (3)

It will be convenient to write in infix form, E1 t · · · t E
p

instead of t
k

E
k

, noting that this is an abuse of notation,
since the operation t is not associative.

Minkowski sum of ellipsoids. Recall that the Minkowski sum
of two sets X,Y is the set X + Y :

= {x+ y : x 2 X, y 2 Y }.
Like the case of the union of ellipsoids, we over-approximate
the Minkowski sum of two ellipsoids E0, E1 by its Löwner
ellipsoid, and denote it by

E0 � E1 :

= Löw

�
E0 + E1

�
.

It has been shown in [? ] that, given two full-dimensional
ellipsoids E(Q1, q1) and E(Q2, q2), the Löwner ellipsoid of
E(Q1, q1) + E(Q2, q2) is then equal to E(Z�1, q1 + q2), where
Z is the solution of the semi-definite program

argmin

Z,�

log detZ�1

subject to
✓
�Q�1

1 0

n

0

n

(1� �)Q�1
2

◆
<

✓
Z Z
Z Z

◆

Z < 0, 0 6 � 6 1 .

(4)

Intersection between ellipsoid and half-space. A half-space

is defined as the set H(f, g) = {x 2 Rn

: fTx 6 g}, where
f 2 Rn is a non-zero vector and g is a real number. Given
an ellipsoid E , we over-approximate its intersection with the
half-space H by its Löwner ellipsoid, and we denote it by

E uH :

= Löw

�
E \H

�
.

When E is full-dimensional (we shall see later that it is
always the case in our computations), the set E uH can be
computed analytically following [? ]. We give the formula
below for the sake of completeness. Given an ellipsoid E(Q, q)
and a half-space H(f, g), let ↵ denote the quantity ↵ :

=

(fTQf)�1
(g�fT q). If ↵ > 1/n, we have EuH = E . If ↵ < �1,

then E\H = ;. If �1 6 ↵ 6 1/n, we have EuH = E(Q+, q+),
with q+ = q � (1 + n)�1

(1� n↵)Qf and

Q+
=

n2
(1� ↵2

)

n2 � 1

⇣
Q� 2

1� n↵

(1 + n)(1� ↵)
(Qf)(Qf)T

⌘
.

The intersection with several half-spaces is handled in a
sequential way, meaning that we evaluate Löw

�
E \ (H\H0

)

�

as (E uH) uH0. It will again be convenient to do an abuse
of notation, denoting the latter operation by E u (H \H0

).
Although this evaluation remains sound, it may yield a very
coarse over-approximation, since the maps E 7! E uH and
E 7! E uH0 do not commute in general. When several half-
spaces are involved, finding a better over-approximation is a
difficult and intractable problem, see [? , Section 3.7].

The Löwner ellipsoid has the following invariance property:

Proposition 3.2. The Löwner ellipsoid commutes with in-

vertible affine transformations: given a compact full-dimensional
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set X ⇢ Rn

and an invertible affine map f : Rn ! Rn

, we

have

f
�
Löw(X )

�
= Löw

�
f(X )

�
.

We give a proof in Appendix ??.
The Minkowski sum, union and intersection are operators

that commute with the action of invertible affine maps. By
Proposition 3.2, this is also the case for the Löwner ellipsoid.
As a consequence, the operators t, u and � that we have
defined do also commute with invertible affine maps. Since
those operators are the only ones that are used in the sub-
sequent analysis, it follows that the invariants deduced for
two systems that only differ by an affine change of variable
will also only differ by the same affine transformation. This
implies that the static analysis method which we next develop
commutes with an affine rewriting of the program variables,
which is a desirable robustness property.

4 A TRACE-DEPENDENT FIXED
POINT SCHEME AVOIDING THE
RECOURSE TO LARGE LMI

In this section, we present our approach to compute an
invariant for Program 1 as the union of finitely many ellip-
soids. It is obtained as the fixed point of a non-monotone
map that is based on an automaton, whose states represent
finite execution traces (in the case of De Bruijn automata,
see Section 5.2, these distinguish between different suffixes
of traces of the same length). As a consequence, we expect
that the more states this automaton has (i.e. the more execu-
tion traces are taken into account during the computation),
the more accurate the invariant to be. Moreover, since an
ellipsoid is associated with each state of the automaton, the
number of disjunctions in the invariant is constant during
the computation.

We label the branches of the loop of Program 1 by integers
from 1 to N , and denote by ⌃

:

= {1, . . . , N}. We can thus
identify the set of finite traces of the program with the set
⌃

⇤ of finite words built on the alphabet ⌃. For all a 2 ⌃,
we introduce the abstract operator guard

a

over the set of
ellipsoids E

n

, given by:

guard

a

(E) := E u
�
\

j

H
a,j

�
,

where H
a,j

denotes the half-space fT

a,j

x 6 g
a,j

. We also
introduce an action of ⌃⇤ on the set of ellipsoids E

n

, denoted
by · and defined for a 2 ⌃ and E 2 E

n

by:

a · E :

=

�
f
a

� guard
a

(E)
�
�

�
B

a

EU
�
,

where f
a

denotes the affine map x 7! A
a

x+ c
a

. In this way,
the map E 7! a ·E represents the abstract operator associated
with the branch a of the program.

Let W denote a finite subset of ⌃⇤ and ⌧ denote a map
from W ⇥ ⌃ to W. The triple A :

= (⌃,W, ⌧) defines a
deterministic finite automaton, whose alphabet is ⌃, whose
states are elements of W and whose transition function is
⌧ . Every state in this automaton is both an initial and final
state. The function ⌧ being totally defined over W ⇥ ⌃, the
automaton A accepts every word of ⌃⇤.

We shall consider functions E from the finite set of traces
W to the space of ellipsoid E

n

. We denote by E
w

the ellipsoid
associated with w 2 W by this function. It will be conve-
nient to identify E to the vector (E

w

)

w2W in EW
n

indexed by
elements of w.

Given an automaton A = (⌃,W, ⌧), let T denote a map
from EW

n

to itself, whose w-th coordinate is defined by

T
w

(E) := E
I

t
G

⌧(v,a)=w

a · E
v

. (5)

The fact that semi-definite programs can only be solved up
to a prescribed accuracy is a well known source of difficulties
in numerical program verification. If the approximate invari-
ant which is found is mapped to its interior, meaning that
some strictly feasible solution is returned by the SDP solver,
then, an exact invariant can be obtained a posteriori by some
rounding procedure, see the discussion in [? ]. In order to
make such methods applicable in the present setting, we
introduce a small margin " > 0 which will absorb numerical
imprecisions as suggested by the authors in [? ]. Hence, we
define the perturbed map T " from EW

n

to itself, whose w-th
coordinate is obtained by adding a “padding” "I

n

to each
ellipsoid:

T "

w

(E) := E
�
Q

w

+ "I
n

, q
w

�
where E(Q

w

, q
w

) = T
w

(E) .
Introducing the parameter " induces a trade-off between
speed (" large) and precision (" small). The speed-up effect is
shown in Equation (7), resulting from the complexity analysis
in Appendix ??. The loss of precision is due to the fact that
the map T " is a “deformation” of the true map T . In the
experiments, we have chosen 0.01 6 " 6 0.2.

These operators enable the computation of invariants as
unions of ellipsoids:

Theorem 4.1. Let E = (E
w

)

w2W denote a fixed point

of the map T "

. Then the set [
w2WE

w

is an invariant for

Program 1.

The same is true if E is only a post-fixed point of the map
T ", i.e. if for all w 2 W, we have T "

w

(E) ✓ E
w

. We give a
proof of this theorem in Appendix ??.

The map T " is the analogue of the fixed point functional
in abstract interpretation. Classical abstract interpretation
requires the fixed point functional to be a monotone map
defined on a complete lattice [? ]. Then, a program invariant
can be obtained as the least fixed point of this functional,
which can be computed by a standard fixed point scheme,
Kleene iteration. The present setting is more complex, for
the space EW

n

is not a lattice, and the operators t, u and
� are not monotone (this can be quickly verified, even for
ellipsoids of dimension 2). This entails that the map T " is
not monotone. However, we can still formulate an iteration
scheme a la Kleene in the present setting, defining

E0
= (E

I

, . . . , E
I

)

Ek+1
= T "

(Ek

) .
(6)

We assume in the sequel that the set of initial states E
I

and the
set of controls EU are full-dimensional. If this is not the case,
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we may approximate these ellipsoids by “nearly flat” ellipsoids.
Then, it is easily shown by induction that all occurrences
of the operators t, u and � in the Kleene iteration can be
computed with the means presented in Section 3:

Lemma 4.2. Assume that the ellipsoids E
I

and EU are full-

dimen-sional. Then all the ellipsoids Ek

w

computed at each step

of the Kleene iteration in Equation (6) are full-dimensional.

The lack of monotonicity of the operator T ", and the fact
that the space of ellipsoids does not constitute a lattice, make
more difficult the analysis of the Kleene iteration scheme than
in the classical case of abstract analysis. In particular, we have
to replace some order theoretical arguments by metric fixed
point properties. We establish the convergence of the Kleene
iteration in the linear case — i.e. when the assignments
are linear (B

a

= 0 and c
a

= 0), the switching process is
non-deterministic and the ellipsoids are centered — if the
“stability margin” is sufficient.

Theorem 4.3. Assume that the assignments are linear

(B
a

= 0 and c
a

= 0), the switching process is non-deterministic

and that the ellipsoid E
I

is centered and full-dimensional.

Then there is a positive constant µ
n,I

depending on the di-

mension n and the initial states E
I

such that if the spectral

norms of the matrices (A
a

)

a2⌃ are smaller than µ
n,I

, then

the Kleene iteration Ek+1
= T "

(Ek

) converges.

This theorem is proved in Appendix ??. The bound µ
n,I

that is given is very conservative. However, we shall see
in Section 5.2 that our algorithm converges although the
condition is not satisfied.

We also deduce that

O
⇣

log "� logmax

w

kQ0
w

�Q1
w

k2
3|W| log(�1/�0) + 2 logmax

a

kA
a

k2
.
⌘

(7)

iterations suffice to compute an invariant. As shown in Ap-
pendix ??, the values �0 < �1 depend only on the set of
initial states and the matrices A

a

.
Establishing the convergence of the Kleene iteration in

Equation 6 in the general case is difficult problem and remains
open.

Open Problem 1. Does the iterative scheme in Equa-

tion 6 converge if the matrices A
a

are suitably small, when

either affine assignments (c
a

6= 0), guards (switching is state-

dependent) or non-constant controls are present (B
a

6= 0)

?

The “small-LMI” approach. When implementing the Kleene
iteration scheme 6, a semi-definite program needs to be solved
for each evaluation of the operator t and �. The number of
variables in each of these semi-definite programs only depends
on the dimension n of the problem, not on the size |W| of the
automaton, in contrast with alternative approaches detailed
in Section 5.1, inspired by state of the art methods. For
this reason, we call the method to compute invariants based
on Theorem 4.1 and on Kleene iteration the “small-LMI”
approach.

Note that Theorem 4.1 is also valid for the map T . As
a consequence, we may be tempted to use this map rather

than T " in the Kleene scheme. However, in practice, most
operators are evaluated by solving semi-definite programs,
which only return approximate optimal solutions. Introduc-
ing the parameter " counters several hurdles that may be
encountered and could endanger confidence in the final in-
variant. First, the parameter " absorbs approximation errors
that appear throughout the computation, and thus gives a
margin of safety if computations are done using finite pre-
cision. Moreover, padding each inclusion constraint ensures
that the set of feasible points has non-empty interior, so that
the a posteriori numerical check presented in [? ] can be used.
Finally, if the parameter " was not present, a fixed point
would only be reached ultimately, i.e. after an infinite number
of iterations. Now, a post-fixed point can be reached in a
finite number of iterations.

The “no-LMI” approach. When the assignments in each
branch are linear (B

a

= 0 and c
a

= 0) and when the switch-
ing condition is non-deterministic (meaning that the test is
replaced by a random boolean), it is possible to get rid of
LMIs altogether, still building on the same principles. In-
deed, it was shown in [? ] that the Löwner ellipsoid of the
union of two centered ellipsoids can be computed from a
Cholesky decomposition, avoiding the use of LMI, resulting
in an important speed-up. We will exploit here the latter
result, by relaxing the computation of t

k

E
k

to a sequential
computation

�
(E1 t E2) · · · t E

w

�
. The variant of the map T "

obtained in this way can now be computed without solving
semi-definite programs. In the sequel, we will refer to this
variant of the present “small-LMI” approach as the “no-LMI”
approach.

5 ALTERNATIVE APPROACHES AND
BENCHMARKS

5.1 The “big-LMI” and “big-BMI”
approaches

For comparison, we next present two alternative approaches,
derived from earlier works [? ? ], leading to larger LMI or to
non-convex programs.

The first approach has been studied in [? ]. It is restricted
to the special case of linear assignments under non-deter-

ministic switching, where the initial state has been approxi-
mated by a centered ellipsoid. In other words, it requires that
B1 = B2 = 0, c1 = c2 = 0, the guard condition fTx 6 g has
been replaced by a non-deterministic switching mechanism
and E

I

= E(Q
I

, 0). Then, the post-fixed point problem can
be rewritten as a single LMI involving the whole collection
of design variables (Q

w

)

w2W :

Q
I

4 Q
w

, 8w 2W ,

A
a

Q
v

AT

a

4 Q
w

, 8w, v, a such that ⌧(v, a) = w .
(8)

The variables in this LMI are highly coupled among them-
selves. Indeed, the variable Q

w

appears N times on the
right-hand-side of an inequality of the form above, but also
N times on the left-hand-side. Thus, unless the transition
map ⌧ is constant (⌧(v, a) = v for all a), it is not possible to
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solve Equation (8) for each word w separately. This case does
not appear in practice: the transition map used in Section 5.2
induces a maximal coupling, where (almost) each word is
related to N other words.

If (Q
w

)

w2W is a solution of this LMI, then the union of the
ellipsoids [

w2WE(Q
w

, 0) is an invariant for the associated
program. It is in fact a variation on the method in [? ],
because the LMI Q

w

� 0 has been replaced by Q
w

< Q
I

.
This only requires that the solution provided in [? ] be scaled
to contain the set of initial states.

The latter optimization problem has |W|n(n+ 1)/2 inde-
pendent variables. We say that this optimization problem is
a “big LMI” because the number of variables depends on the
size of the automaton. Finding an approximate solution via
semi-definite programming thus has an arithmetic complexity
of O(n6.5|W|5), according to the formulae in Section 4.6.3
of [? ]. In comparison, the semi-definite programs used to
compute the operators t and � both have an arithmetic
complexity of O(n6.5

) that does not depend on |W|. Each it-
eration of the Kleene iteration only needs to compute O(|W|)
of these, for a total arithmetic complexity of O(n6.5|W|) per
iteration. As a consequence, when the automaton used in the
computation of the map T " has many states, the “big-LMI”
approach becomes intractable, contrary to the “small-LMI”
method.

The “big-LMI” method may be thought of as dual of a
Lyapunov-type approach, also detailed in [? ]: the latter is
equivalent to representing the unit ball of the Barabanov
norm by an intersection of ellipsoid. Instead, the “big-LMI”
method computes an invariant set given by a union of el-
lipsoids. Both methods lead to semi-definite programs of a
comparable nature and size.

In the case of a single centered ellipsoid, it is still possible
to use LMIs if we assume that B1 or B2 is non-zero (but not
both). We can use a method akin to the one used in [? ],
where bisection is used in order to successively compute a
value for � in Equation (4).

However, the more general case of affine assignments under
non-deterministic switching cannot be dealt with LMIs, since
the stability problem then involves several bilinear inequalities

in terms of the design variables. This can dealt with by solving
a bilinear matrix inequality (BMI for short), which has the
form

A0 +

dX

i=1

x
i

A
i

+

dX

i=1

dX

j=1

x
i

x
j

A
i,j

< 0 . (9)

For instance, when B1 = B2 = 0 and the switching is non-
determi-nistic, the post-fixed point problem can be rewritten

Program 2: A simple switched affine program
x E

I

;
while true do

u EU ;
if fTx 6 g then

x :

= A1x+B1u+ c1;
else

x :

= A2x+B2u+ c2;
end

end

as a BMI in the variables (L
w

)

w2W , (�
w

)

w2W and (µ
v,a

)(v,a)2W⇥⌃:

8w, 9�
w

2 R :

0

@
L

w

LT

w

q0 � q
w

L0

(q0 � q
w

)

T

1� �
w

01,n

LT

0 0

n,1 �
w

I
n

1

A < 0 ,

8v, a, 9µ
v,a

2 R :

0

@
L

⌧(v,a)L
T

⌧(v,a) A
a

q
v

+ c
a

� q
⌧(v,a) L

v

(A
a

q
v

+ c
a

� q
⌧(v,a))

T

1� µ
v,a

01,n

LT

v

0

n,1 µ
v,a

I
n

1

A < 0 ,

where E
I

= E(L0L
T

0 , q0). Any solution of this BMI yields
as invariant the union of the ellipsoids E(L

w

LT

w

, q
w

). Un-
like LMI, BMI have generally non-convex feasible sets, and
therefore numerical solvers may return only locally optimal
solutions. Despite the computational drawbacks of the “big-
BMI” method, it is to our knowledge the only state of the art
method that can deal with affine assignments with different
equilibria.

5.2 Benchmarks
We present in this section numerical benchmarks of our
method. The experiments are implemented in Matlab, run-
ning on one core of an 2.2GHz Intel Core i7 with 8Gb
RAM. We use the SDPT-3 solver [? ], in conjunction with
YALMIP [? ] to solve LMIs, and the PENLAB solver [? ]
to solve BMIs. In all subsequent pictures, the initial state is
shown in magenta and the disjunctive invariant I := [

w2WE
w

is shown in red. We show in blue (resp. green) the image
of the invariant I by the abstract operators of the branch 1

(resp. 2), i.e. [
w2W1 · E

w

(resp. [
w2W2 · E

w

), which prove an
over-approximation of the reachable set in branch 1 (resp. 2).
In all examples, it was sufficient to compute 30 iterations to
obtain a post-fixed point, and thus an invariant.

Switched linear system with guards. We next show that
automata A that “keep in memory” the m last switches
that happened produce better invariants than other types
of automata. Moreover, we demonstrate that the invariants
that are produced are more accurate the more switches are
“remembered”. We instantiate the elements from Program 2 as
follows: E

I

= E(0.04I2, ( 1
0.5 )), U = E(0.1I2, 0), A1 = 0.5( 1 1

0 1 ),
B1 = I2, c1 = 0, A2 = 0.5( 1 0

1 1 ), B2 = I2, c2 = 0, f = (

1
0 ),

g = 1. Note that it involves an affine guard, so the analysis of
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(a) De Bruijn automaton

on ⌃0
(1 ellipsoid)

(b) De Bruijn automaton

on ⌃1
(2 ellipsoids)

(c) De Bruijn automaton

on ⌃2
(4 ellipsoids)

(d) Non-De Bruijn au-

tomaton with 3 states (3
ellipsoids)

Figure 1: Invariants (red) computed for a switched

linear system w.r.t. the automaton, their image by

the abstract operators (blue and green) and the ini-

tial state (magenta)

this example is out of reach of a “big-LMI”, or “big-BMI”,-type
method.

We recall that the De Bruijn automaton on the set ⌃

m

is an automaton whose alphabet is ⌃ and whose states are
precisely ⌃

m. Its transition map ⌧ deletes a word’s first
letter and appends the transition letter to its end. In other
words, we have ⌧(v, a) = w if and only if v = a1a2 . . . am

and
w = a2 . . . am

a, with a
i

2 ⌃. By construction, this automaton
“remembers” the last m transitions. For this reason, we expect
invariants computed using larger De Bruijn automata to be
more precise. This has been verified experimentally and is
shown in Figures ??-??. We have also experimented with
non-De Bruijn automata, as shown in Figure ??. Notice that
as the more switches are “remembered”, the more concise
the invariant becomes throughout Figure ??. We also point
out that the transition function for the automaton used in
Figure ?? does not reflect a memory process. Although it
performs slightly better that the De Bruijn automaton on ⌃

0,
using only one ellipsoid, the invariant computed with this
automaton remains convex and thus less accurate than the
previous ones.

Defocused switched affine systems. We demonstrate again
the fact that the “small-LMI” method provides better in-
variants the more states the underlying automaton has. We
consider a discretized version of Example 6.3 in [? ], to which
we have added a guard condition. Using a discretization step
�t = 0.5, we instantiate Program 2 with E

I

= E(0.04I2, ( 0.5
0 )),

EU = E(0, 0), A1 = (

0.68 �0.75
0.19 0.68 ), B1 = 0, c1 =

�
0.5432
�0.0724

�
,

A2 = (

0.72 �0.39
0.39 0.72 ), B2 = 0, c2 = (

0
0 ), f = (

0
1 ), g = 0. This

(a) De Bruijn automaton on

⌃2

(4 ellipsoids)

(b) De Bruijn automaton

on ⌃4

(16 ellipsoids) – invariant

with 4 ellipsoids in dashed

Figure 2: Invariants (red) computed for a defocused

switched system w.r.t. the automaton, their image

by the abstract operators (blue and green) and the

initial state (magenta)

system has two distinct fixed points. Since it involves an
affine guard, the analysis of this example is out of reach of a
“big-LMI”, or “big-BMI”,-type method. We show in Figure ??

two invariants computed by using the De Bruijn automata
on ⌃

2 (4 states) and ⌃

4 (16 states). The invariant computed
with the latter automaton is strictly better than the one
computed with the former.

Observer based controller for a coupled mass system [? ] We
show that our method can also be used to analyze systems
with saturations. The addition of saturation simulates sensors
that measure a physical quantity precisely within some range,
but cannot measure values outside this range. We study the
stability of an affine dynamical system subject to saturation
conditions on the first coordinate of the state vector:

x
k+1/2
1 =

8
><

>:

� if fTxk > � (10a)
�� if fTxk < �� (10b)
xk

1 otherwise (10c)

xk+1
= A

i

xk+1/2
+B

i

uk+1/2
+ c

i

, i 2 I ,

with a bounded control u 2 EU , first in a case without switch-
ing, and then in a case where switching occurs.

The semantics of a program implementing this system are
the same of the program which resets the state vector to an
initial value in the branches (??) and (??). In other words, we
may choose a · E :

= E
I

for all ellipsoid E (the same equation
holds for b). Thus, the map T takes the usual form as in
Equation (5) when the word w ends with c, and is written
T
w

(E) = E
I

when w ends with a or b.
First, we demonstrate our method with I = {1}, c1 = 0,

f = (

1 0 0 0
)

T , � = 0.5,

A1 =

✓ 0.6227 0.3871 �0.113 0.0102
�0.3407 0.9103 �0.3388 0.0649
0.0918 �0.0265 �0.7319 0.2669
0.2643 �0.1298 �0.9903 0.3331

◆
and B1 =

✓
0.3064 0.1826
�0.0054 0.6731
0.0494 1.6138
0.0531 0.4012

◆
.

We use the De Bruijn graph on ⌃

2 (4 ellipsoids). Our algo-
rithm converges towards some collection of matrices E , and
the resulting ellipsoids satisfy E ⇢ E

aa

for all E 2 E , meaning
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(a) Section in the (x1, x2)
plane

(b) Section in the (x3, x4)
plane

Figure 3: Sections of the invariant ellipsoid (red) for

the coupled mass system and the reference in [? ]

(black)

(a) The 4 ellipsoids repre-

senting the invariant

(b) Invariant (red) and its

image by the abstract oper-

ators (green and blue)

Figure 4: Section in the (x1, x2) plane of the invariant

for a switching variant of the coupled mass system

(4 ellipsoids)

that the invariant is a single ellipsoid. Sections of this ellip-
soid, as well as sections of the ellipsoid obtained in [? ] are
depicted in Figure ??.

We also demonstrate our algorithm on a variant of the
system in [? ], that combines a switching mechanism with a
saturation constraint. More precisely, we shall use I = {1, 2},
A1 = A2, B1 = B2, c1 = (

�1/2 0 0 0
)

T and c2 = (

1/2 0 0 0
)

T .
The mode 1 is active if x1 > 0 and the mode 2 is active
otherwise. By design, this system has two fixed points (when
u = 0). In this example, our method yields a non-convex
invariant, whose section in the (x1, x2) plane is shown in
Figure ??.

Comparison in the centered case: big-LMI versus no-LMI. We
compare the “big-LMI” and “no-LMI” methods numerically on
systems switching between implementations of two damped
harmonic oscillators M

i

ẍ+C
i

ẋ+K
i

x = 0, with a discretiza-
tion time �t = 0.1. The matrices M

i

, C
i

,K
i

are randomly
generated positive definite matrices, for dimensions ranging
from 2 to 30. In these examples, we have B1 = B2 = 0,
c1 = c2 = 0 and the guard condition fTx 6 g has been
replaced by a non-deterministic switching process. We use
the De Bruijn automaton on ⌃

3 in all computations, so the
invariants that are computed are given as unions of 8 ellip-
soids. The execution times for the “big-LMI” and “no-LMI”

Dimension n “big-LMI” “no-LMI” relative volume
5 0.4s 0.2s 1.24
10 0.8s 0.3s 1.12
15 5s 0.4s 1.15
20 22s 0.7s -
25 2min 1.0s -
30 6min 1.4s -

Table 1: Invariant computation time of each method

w.r.t. the dimension n of the matrices (8 ellipsoids)

methods are shown in Table ??. We point out that the “no-
LMI” method outperforms the “big-LMI” method by several
orders of magnitude. The fact that the time-complexity rela-
tive to the dimension of the matrices is much smaller for the
“no-LMI” method is also apparent.

Finally, we compare the relative accuracy of the “no-LMI”
method with respect to the “big-LMI” approach by the relative

volume of the computed invariants, defined by the n-th root
of the ratio between the volume of the “no-LMI” invariant by
the volume of the “big-LMI” invariant. We report a difference
in relative volume no larger than 25% in Table ??, where the
volumes have been estimated by a Monte-Carlo approxima-
tion, up to dimension 15 (no results for higher dimensions,
due to lack of precision of the Monte-Carlo approach).

Comparison in the uncentered case: big-BMI versus small-
LMI. We compare the “big-BMI” and “small-LMI” methods
numerically on systems switching between implementations
of two damped harmonic oscillators with a non-deterministic
control M

i

ẍ + C
i

ẋ + K
i

x = u, with a discretization time
�t = 0.1 and the control u is bounded in a non-centered
ellipsoid. The matrices M

i

, C
i

,K
i

are randomly generated
positive definite matrices, for dimensions ranging from 2

to 14. The switching process is non-deterministic. We have
used the De Bruijn automaton on ⌃

2 in all computations,
so the invariants that are computed are given as unions of 4
ellipsoids. The execution times for the “big-BMI” and “small-
LMI” methods are shown in Table ??. Although the “big-BMI”
is more efficient on lower dimensional examples, one can see
that it is very time-costly for 14 ⇥ 14 matrices, as solving
the BMI takes 2000 times longer than for 2 ⇥ 2 matrices.
In contrast, the “small-LMI” method has a base time cost
per iteration that only grows from 1s in dimension 2 to 4s
in dimension 14. Finally, we compare the relative accuracy
of the “small-LMI” method with respect to the “big-BMI”
approach by the relative volume of the computed invariants.
We report an difference in relative volume no larger than 8%

in Table ??, where the volumes have again been estimated
by a Monte-Carlo approximation.

6 CONCLUDING REMARKS
We introduced a new method to compute invariants of nu-
merical programs, taking switched affine affine systems with
guards as a target application. This relies on two ingredients:
developing abstract interpretation techniques in a domain
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Dimension n “big-BMI” “small-LMI” relative volume
2 3.5s 24s 1.08
4 9.2s 26s 1.04
6 34s 36.3s 1.03
8 2.8min 42.5s 1.03
10 9.5min 1.2min 1.03
12 20.5min 1.5min 1.02
14 2.1h 2.1min 1.05
16 > 3h 3.8min 1.04

Table 2: Invariant computation time of each method

w.r.t. the dimension n of the matrices (4 ellipsoids)

(unions of ellipsoids) which is not a lattice, and allowing the
invariant to depend on a finite execution trace, to improve
the accuracy. It is the combination of these two ideas which
leads to an accurate and scalable method. In particular, a key
feature of the method is the replacement of the solution of
large scale LMI which would be obtained by earlier methods
by an iterative scheme, combine Kleene iteration and smaller
LMI solving. This iterative scheme is based on successive
approximations by Löwner ellipsoids. This has also an ad-
vantage in terms of the increase of expressivity: we can solve
instances with affine guards, for which there is no natural
global (“big-LMI”) formulation. In the special case in which
the big-LMI approach is feasible, the no-LMI variant of our
approach is also feasible, and it yields a speed-up by an order
of magnitude, at the price of a potential additional loss of
accuracy (“relaxation gap”) induced by the approximation by
Löwner ellipsoids.

Let us finally mention directions for future research. First,
we would like to quantify a priori the latter “relaxation gap”.
Next, it would be interesting to find more explicit quantitative
conditions ensuring the convergence of the iterative scheme
and estimates on the convergence rate, in the general case. We
would like to experiment the known methods for generalizing
our invariant computation to deal with general programs:
as such, there is no difficulty in extending the work to deal
with nested or sequentially composed loops; for polynomial
assignments, we could also use linearization methods such
as [? ]. Finally, we would like to generalize this method to
other abstract domains, such as polyhedral templates or
intersections of ellipsoids with half-spaces.

7 ACKNOWLEDGEMENTS
We thank all the reviewers for their comments, which have
led us to make a number of clarifications and changes.

A APPENDIX
A.1 Proof of Proposition 3.2
Let E denote an ellipsoid containing X . We denote the invert-
ible affine map f by x 7! Ax+b. Since the map f is invertible,
we have E ◆ f(X ) () f�1

(E) ◆ X . Moreover, the volume
of the ellipsoid E is equal to the volume of the ellipsoid f�1

(E)
multiplied by detA. Combined with the uniqueness of the

Löwner ellipsoid, we deduce that E = Löw

�
f(X )

�
if and only

if f�1
(E) = Löw(X ).

A.2 Proof of Theorem 4.1
By definition, the set I :

= [
w2WE

w

is an invariant if and
only if E

I

⇢ I and
S

a2⌃

h
f
a

�
I \ \

j

H
a,j

�
+

�
B

a

EU
�i
✓ I .

Hence, we must show that
[

a2⌃

[

v2W

h
f
a

�
E
v

\ \
j

H
a,j

�
+

�
B

a

EU
�i
✓

[

w2W

E
w

.

Since the abstract operations t, u and � over-approximate
their concrete counterpart [, \ and +, we have for all a 2 ⌃

and v 2W

f
a

�
E
v

\ \
j

H
a,j

�
+

�
B

a

EU
�
✓ f

a

� guard
a

(E
v

)�
�
B

a

EU
�
.

Let w 2W. We have the inclusion
[

⌧(v,a)=w

h
f
a

�
E
v

\ \
j

H
a,j

�
+

�
B

a

EU
�i

✓ E
I

t
G

⌧(v,a)=w

h
f
a

� guard
a

(E
v

)�
�
B

a

EU
�i

,

where we have again used the same abuse of notation as
in Equation (5). On the right-hand side, we recognize the
w-th coordinate of T (E). Recall that T "

w

(E) is defined as
E(Q

w

+"I
n

, q
w

) when T
w

(E) = E(Q
w

, q
w

). Since the ellipsoids
T "

w

(E) and T
w

(E) have the same center, and Q
w

+ "I
n

< Q
w

,
we deduce that T

w

(E) ✓ T "

w

(E). Finally, since E is a fixed
point of the map T ", we have T "

w

(E) = E
w

and
[

a2⌃

[

v2W

h
f
a

�
E
v

\ \
j

H
a,j

�
+

�
B

a

EU
�i
✓

[

w2W

E
w

.

Moreover, we have E
I

✓ T
w

(E) for all w 2 W. We deduce
from the same arguments as before that E

I

✓ [
w2WE

w

.

A.3 Proof of Theorem 4.3
Since all ellipsoids are centered, we may abuse the notation
and write Q1 tQ2 instead of E(Q1, 0)t E(Q2, 0), and T "

w

(Q)

instead of T "

w

(E). We denote E
I

= E(Q
I

, 0).
The map T " is written

T "

w

(Q) = Q
I

t
G

⌧(v,a)=w

(A
a

Q
v

AT

a

+ "I
n

) .

First, we show that there are positive reals �0 < �1 such
that the set of X such that for all Q 2 (S++

n

)

W ,
⇣
8w. �0In 4 Q

w

4 �1In
⌘

=)
⇣
8w. �0In 4 T "

w

(Q) 4 �1In
⌘
.

The map T "

w

is bounded below by Q
I

, which is positive
definite, so there is �0 > 0 such that T "

w

(Q) < �0In for all X.
Moreover, one can deduce from the explicit formulation of
t in [? ] that t

k

Q
k

4 P
k

Q
k

if t is evaluated sequentially.
Thus we have Assuming that the spectral norm (largest
singular value denoted by k · k) of the matrices A

i

are strictly
less than N�1/2, then the desired property is satisfied for
�1 :

= "+ kQ
I

k2(1�
P

a

kA
a

k)�1.
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Moreover, there is a natural metric on the space of positive
definite matrices given by the Riemann metric [? ]:

d
R

(X,Y ) =

hX

k

�
log �

k

�2i1/2
,

where �
k

are the (real) eigenvalues of the matrix X�1Y .
The set K :

= {X 2 S++
n

: �0In 4 X 4 �1In} is bounded
in Riemann’s metric (its diameter is less than n log(�1�

�1
0 )).

This metric is a Finsler metric [? ], meaning that it behaves
like a norm in a local setting: we have d

R

(X,Y ) ⇠ kZ�1
(X�

Y )k2 when X,Y ! Z, and k · k2 is the euclidean norm on
S
n

. One can obtain the very coarse bound

(�1/�
2
0)

�1kX � Y k2 6 d
R

(X,Y ) 6 (�2
1/�0)kX � Y k2 .

We also deduce from its Finsler nature and the theory of
Schur multipliers [? ] that the t operator is non-expansive
with respect to the Riemann metric (the details of the proof
will be given elsewhere). Hence the t operator must be
Lipschitz with respect to the euclidean norm on the set K,
with a Lipschitz constant no larger than (�1/�0)

3.
Finally, the Riemann metric has a remarkable property,

which is convenient in the present analysis. It is invariant by a
congruence by an invertible matrix P : d

R

(PXPT , PY PT

) =

d
R

(X,Y ). Combining these results, we deduce, for Q,Q0 2
(S++

n

)

W and ↵ :

= max

a

kA
a

k22,

kT "

w

(Q)� T "

w

(Q0
)k2 6 ↵

��1

�0

�3|W|
max

⌧(v,a)=w

kQ
v

�Q0
v

k2 .

Hence, the Kleene iteration converges if the spectral norms
of the matrices A

a

are small enough.
It is sufficient that kT "

w

(Q) � T "

w

(Q0
)k2 6 " to obtain an

invariant, thus we deduce the number of iterations given in
Equation (7).
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