
A scalable algebraic method to infer quadratic invariants
of switched systems

Xavier Allamigeon
INRIA and CMAP, École

polytechnique, CNRS
xavier.allamigeon@inria.fr

Stéphane Gaubert
INRIA and CMAP, École

polytechnique, CNRS
stephane.gaubert@inria.fr

Eric Goubault
LIX, École polytechnique,

CNRS
goubault@lix.polytechnique.fr

Sylvie Putot
LIX, École polytechnique,

CNRS
putot@lix.polytechnique.fr

Nikolas Stott
INRIA and CMAP, École

polytechnique, CNRS
nikolas.stott@inria.fr

ABSTRACT
We present a new numerical abstract domain based on ellip-
soids designed for the formal verification of switched linear
systems. Unlike the existing approaches, this domain does
not rely on a user-given template. We overcome the diffi-
culty that ellipsoids do not have a lattice structure by ex-
hibiting a canonical operator over-approximating the union.
This operator is the only one which permits to perform anal-
yses that are invariant with respect to a linear transforma-
tion of state variables. Moreover, we show that this operator
can be computed efficiently using basic algebraic operations
on positive semidefinite matrices. We finally develop a fast
non-linear power-type algorithm, which allows one to de-
termine sound quadratic invariants on switched systems in
a tractable way, by solving fixed point problems over the
space of ellipsoids. We test our approach on several bench-
marks, and compare it with the standard techniques based
on linear matrix inequalities, showing an important speedup
on typical instances.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Invariants

General Terms
Verification, Algorithms

Keywords
Static analysis, abstract interpretation, invariant genera-
tion, stability, hybrid and switched linear systems, matrix
information geometry

.

1. INTRODUCTION

Motivation.
Program verification has long relied on affine methods.

Analyzers based on abstract interpretation [11] have mostly
been using polyhedric or subpolyhedric domains, as in e.g. [21,
27]. Ellipsoidal (or quadratic) invariants have led to more
accurate analyses for some classes of programs. They have
been used in linear control applications [25] and in program
verification of linear recursive filters [14], they are also used
locally in the static analyzer Astrée [12]. More general ap-
plications of ellipsoids in program validation can be found
in [10, 2]. The latter reference develops a template approach,
based on the linear template original idea of [36]. In tem-
plate based methods, the shape of the ellipsoid has to be de-
cided in advance by the user. Still, this is an approach which
is adapted to control codes: we may use as (quadratic) tem-
plates the (quadratic) Lyapunov functions that the control
theorist would have introduced to prove the stability of the
underlying algorithms, as put forward in [15, 16].

Recently, some methods have been proposed in program
validation for synthesizing invariant ellipsoids for linear sys-
tems e.g. [34, 35, 33], using linear matrix inequalities (LMI)
techniques of control theory suitably adapted to program
analysis.

Contribution.
In this paper, we are motivated by the analysis of more

general systems and programs, including the important class
of switched linear systems. Our main objective is develop
scalable methods adapted to large scale instances. Also, we
wish to avoid requiring extra information from the user, as
in template based methods.

To this end, we develop a numerical abstract domain based
on ellipsoids. The novelty of this domain does not consist in
the use of ellipsoids as abstractions, but rather in the fact
that we overcome two key difficulties which so far have lim-
ited the use of ellipsoids in abstract interpretation. The first
issue is that the ordered set of ellipsoids does not constitute
a lattice. This implies that there is a priori no canonical
choice of the abstraction of the union of two sets, making
the analysis less predictable as it relies on the selection of
good upper bounds. The second issue is that most recent
works using on ellipsoids rely on LMI methods. The latter



are efficient on moderate size examples but they are inher-
ently limited by the complexity of interior point algorithms,
which, in the case of matrix inequality problems, do not
scale as well as for linear programming or second order cone
programming problems.

Our main contributions are the following.
First, we reduce the question of abstracting by an ellip-

soid the union of two sets to the selection of a minimal upper
bound of two positive semidefinite (PSD) matrices with re-
spect to the Löwner order (recall that the Löwner order is
the canonical order on PSD matrices, corresponding to the
inclusion of ellipsoids). We show in Theorem 4 that there
is a unique selection procedure which has the property of
being invariant with respect to linear transformations of the
program variables. This invariance property is essential to
guarantee that the analysis is robust. We call invariant join
the minimal upper bound which is selected in this way. We
show that the invariant join can be computed with the same
cost as performing a Cholesky decomposition, i.e., in O(n3)
arithmetic operations. We also show that the invariant join
of two ellipsoids coincides with the minimal volume ellip-
soid enclosing these two ellipsoids, so that, surprisingly, two
distinct natural approaches lead to the same choice of selec-
tion. Then, we show that the invariant join operation can
be used as a building block, to construct in a systematic way
an abstract functional associated with a program.

Our second main contribution is to show that an an in-
variant ellipsoid can be computed by a scalable algorithm.
This is based on a non-linear generalization of the power al-
gorithm which is classically used to compute the dominant
eigenvalue of a matrix. Indeed, we replace the fixed point
problem of abstract interpretation by a nonlinear eigenvalue
problem. The eigenvalue represents a stability margin and
allows us to absorb errors due to finite precision compu-
tations. Then, the classical Kleene algorithm of abstract
analysis is replaced by the power iteration. We present two
variants of this iteration, based on additive and multiplica-
tive perturbations ideas, respectively. We show that the
multiplicative iteration does converge by exploiting metric
geometry techniques: there is a known metric on the space
of positive definite matrices, called Thompson’s part metric,
for which geodesic triangles satisfy a nonpositive curvature
condition. This entails that for suitably chosen perturba-
tion parameters, the multiplicative power iteration is con-
tracting. This leads to a fast algorithm as performing one
power iteration is not harder than evaluating the abstract
interpretation functional.

We finally illustrate our approach by applying it to exam-
ples of switched linear systems. We show that the power iter-
ation leads to important speedups by comparison with LMI
based methods, at the price of a limited loss of precision.
Indeed, for many typical examples, the ellipsoids computed
by both methods yield stability certificates of comparable
precision.

Discussion of the results and related work.
An obvious limitation of the present approach is that we

only considered centered ellipsoids. However, our results ap-
ply to the class of linear switched systems, which is already
considered to be a challenging and significant one in control
applications. Whereas the present ideas may be useful as
well for non centered ellipsoids, a systematic study of the
non centered cased is left for a further work.

For general hybrid systems, or switched linear systems as
in this article, there are several classical approaches from
control theory [26], such as piecewise (linear or quadratic)
Lyapunov function [22, 1], common (quadratic) Lyapunov
functions [31], or multiple Lyapunov functions [8, 4] when
the switching may depend on the current state. The ques-
tion of checking, in an optimal way, the stability of switched
linear systems is a well known hard problem, which essen-
tially boils down to computing the joint spectral radius of
a set of matrices. The standard approach is to use the the-
ory of Barabanov norms. Computing or approximating the
Barabanov norm, for instance by using polyhedral norm ap-
proximation [23], or SOS methods for approximating it [30],
can be a highly demanding computational task. This pa-
per follows a different path, by achieving much coarser but
scalable stability proofs.

The question of selecting minimal upper bound of matri-
ces with respect to the Löwner ordered as appeared in in-
formation geometry and mathematical morphology, see spe-
cially [9, 3]. Whereas the minimal volume ellipsoid has been
considered in this context, its characterization as the in-
variant join, as well as the fast algorithm to compute it, is
new. Also, the idea of studying dynamical systems on the
cone positive definite matrices by means of metric geome-
try techniques was used in [18] in the context of repeated
games. Whereas some similarities exist between the fixed
point functionals encountered in the present static analysis
and the ones encountered in game theory, the former turn
out to be less well behaved as they are no longer order pre-
serving. We finally emphasize that the Thompson’s part
metric used here is a classical notion which has been widely
studied [28]. To our knowledge, such metric geometry ideas
were not applied previously to invariant synthesis for pro-
grams and systems.

Organization of the paper.
In Section 2, we specify the class of programs and switched

systems addressed in this paper. In Section 3, we present
the domain of ellipsoids and give an abstract semantics to
general programs, exploiting the equivalence between the
poset of the ellipsoid and the poset of positive semidefinite
matrices equipped with the Löwner order. In Section 4, we
establish the main properties of the invariant join of two
matrices. In Section 5, we describe the power iteration and
establish convergence properties. Benchmarks on programs
implementing switched linear systems or taken from the lit-
erature are presented in Section 6. Some technical proofs
are omitted owing to the lack of space.

2. PROGRAMS AND SYSTEMS OF INTER-
EST

The programs we are considering in the sequel consist of
a sequence of possibly nested while loops of the form:

while (rand_bool) {

switch (rand_bool) {

case 0:

I0

case 1:

I1

...

case k:

Ik



}

}

meaning that any I0, I1 to Ik can be of a similar form,
or an instruction. Instructions can be either, variable ini-
tialization (or declaration) or (parallel linear) assignments.
Variables have a local scope, in the same way as in C or Java
for instance. This will be semantically encoded by a vari-
able deletion operator, in Section 3.2.3 (but has no specific
syntax, as in C or Java). The expression rand_bool stands
for a boolean with random value.

A variable declaration corresponds to the introduction of
a new variable in the program. In addition, this variable is
initialized according to two possible modes: (i) either with
the constant 0, (ii) or with an arbitrary value within a sym-
metric interval [−R,R]. The latter possibility allows in par-
ticular to handle the declaration of a variable associated with
a sensor measuring a physical value.

The programs may contain general assignments of the
form (x_1,...,x_n) <- P(x_1,...,x_n), where P is an
(n × n)-matrix. This operation corresponds to n parallel
assignments of the variables xi to linear terms

∑
j Pijxj re-

spectively (note that the assignment xi <- xi encodes the
fact that the variable xi remains unchanged).

Programs expressed in this grammar encompass many
classical situations we may find in embedded systems. For
instance, linear control programs, with (uninterpreted) mo-
des, that is a controller which might have several control
modes. They can also represent (discrete) simulation schemes
to compute the state of a switched linear system, modelling
some complex physical phenomenon. Let us recall that a
discrete-time switched linear system can be modeled as a
finite collection of equations

xk+1 = Aixk, k ∈ N, i ∈ I = {1, ..., N}

where x ∈ Rn is the state, {Ai}i∈I are transition matrices
and I enumerates the different modes. Our method will also
allow for conservative proofs of stability of such systems, by
constructing invariant ellipsoids which do not exploit the
knowledge of the switching mechanism.

For example, we may consider a system switching between
two damped harmonic oscillators:{

ẍ+ ω0ẋ+ ω2
0x = 0

ẍ+ ω1ẋ+ ω2
1x = 0

. (1)

Using ω0 = 1 and ω1 = 0.8, we can simulate this system
with the program in Figure 1.

3. THE DOMAIN OF ELLIPSOIDS

3.1 Poset of ellipsoids and Löwner order
We begin by introducing some usual notation in linear

algebra. We denote by In the identity matrix of size n×n, or
simply I when the dimension is clear from the context. The
transpose of a matrix M is denoted by MT . In particular,
if x = (xi) ∈ Rn is a column vector, the notation xT simply
stands for the associated row vector with entries xi.

Recall that a matrix M = (Mij) ∈ Rn×n is said to be
symmetric when M = MT , i.e. Mij = Mji for all i, j. We
will denote by Sn the set of symmetric matrices of size n×
n. A matrix U ∈ Rn×n is orthogonal if UUT = UTU =
I. Every symmetric matrix A can be diagonalized by an
orthogonal change of basis. This means that we can write A

(* h, ω0 and ω1 are numerical constants *

* h = 0.01, ω0 = 1, ω1 = 0.8 *)

declare x = [-1,1];

declare v = [-1,1];

while (rand_bool) {

switch (rand_bool) {

case 0:

(x, v) <- (x+h*v, -(hω2
0)*x+(1-hω0)*v);

case 1:

(x, v) <- (x+h*v, -(hω2
1)*x+(1-hω1)*v);

}

}

Figure 1: Implementation of system (1) using an explicit
Euler integration scheme

under the form UTDU , where D is a diagonal matrix, and
U is orthogonal. The group of invertible matrices of Rn×n
is denoted by GLn(R).

A symmetric matrix A = (Aij) ∈ Sn is said to be positive
semidefinite (shortened PSD) if for all x ∈ Rn, we have
xTAx =

∑
ij Aijxixj > 0. This is equivalent to any of

the two following properties: all the eigenvalues of A are
non-negative; A can be written as A = MMT for some
M ∈ Rm×n where m 6 n is the rank of M . We write
A < 0 to mean that A is PSD, and we denote by S+

n the
set of PSD matrices. The relation < extends to any pair of
matrices A,B ∈ Sn by writing A < B when A−B < 0. This
provides a partial ordering over Sn, referred to as the Löwner
order. When xTAx > 0 holds for all non-zero x ∈ Rn, the
matrix A is said to be positive definite. A matrix is positive
definite if and only if it is PSD and invertible. In this case,
its inverse is also positive definite. We shall write A � 0 to
mean that A is positive definite.

We now review some properties on PSD matrices which
will be useful in the sequel.

First, PSD matrices have square roots, just as non-negative
numbers. More precisely, if A is a PSD matrix, there exists
a unique PSD matrix A1/2 such that (A1/2)2 = A. Writing

A under the form UTDU as above, then A1/2 is given by the
matrix UT

√
DU , where

√
D stands for the diagonal matrix

with diagonal entries
√
Dii. More generally, for all positive

scalars s, we define As to be the matrix UTDsU , where Ds

is the diagonal matrix obtained by raising to the power s
every diagonal entry of D. We shall refer to As as the s-th
power of A, as it coincides with the usual s-th power for
integer values of s.

Moreover, given A,B ∈ S+
n , the combination λA + µB

also lies in S+
n for all λ, µ ∈ R+. In other words, the set Sn+

of PSD matrices forms a convex cone. It is also a pointed
cone, meaning that there is no A ∈ Sn+ such that A < 0 and
−A < 0, unless A = 0. Any convex and pointed cone C
induces a partial ordering defined by “x > y” if x − y ∈ C.
The most famous cone is certainly the orthant Rn+ of Rn;
the associated partial order gives rise to systems of linear
inequalities and to linear programming. Other cones play a
major role in optimization, such as the Lorentz cone used in
quadratic programming, and the PSD cone S+

n in semidefi-
nite programming.

We point out that the cone S+
n does not yield a lattice

structure on Sn. Indeed, S+
n is not a polyhedral cone: it

has infinitely many extreme rays, generated by the matrices
of rank 1. In contrast, cones providing a lattice structure



A =

(
4 −2
−2 1

)
B =

(
3 1
1 3

)

Figure 2: Flat ellipsoids

are characterized by the following result of Krein and Rut-
man [24]: a finite dimensional cone yields a lattice order
if and only if it is simplicial, i.e. it is generated by finitely
many linearly independent extreme rays.

We now introduce ellipsoids and relate them with PSD
matrices. Recall that, in this paper, we restrict our attention
to centered ellipsoids.

Formally, a (centered) ellipsoid is defined as the image of
the unit ball B(0, 1) := {x ∈ Rn | xTx 6 1} under a linear
map x 7→ Mx, where M ∈ Rn×n. When the matrix M is
invertible, this ellipsoid is given by the set

{x ∈ Rn | xTA−1x 6 1} , (2)

where A is the matrix MMT . Note in particular that A
is positive definite. However, it will be convenient for our
purposes to allow M to be singular. Equivalently the matrix
A = MMT will be allowed to be only PSD (not necessarily
definite). In this case, we can show that the former ellipsoid
is characterized as the following set

EA := {x ∈ Rn | xxT 4 A} . (3)

Equivalently, EA is the set of vectors x ∈ Rn satisfying
(yTx)2 6 yTAy for all y ∈ Rn.

The benefit of relaxing the condition on the invertibil-
ity of A is that it allows to consider ellipsoids which are
not necessarily full-dimensional, while this is not possible
with the former representation (2) in which A is positive
definite. Indeed, the ellipsoid EA is contained in the range
{Ay | y ∈ Rn} of the matrix A. Thus, when A is not
invertible, the ellipsoids EA are “flat”, see Figure 2 for an
example. Handling non-full dimensional ellipsoids will be
useful in the setting of formal verification by abstract inter-
pretation, since we also have to handle destructive updates,
i.e. non invertible assignments such as an assignment of a
variable to 0.

We are now ready to present (centered) ellipsoids in the
framework of abstract interpretation. In essence, we use
PSD matrices to over-approximate bounded subsets of Rn
by ellipsoids. Following the terminology of abstract inter-
pretation, our concrete domain is defined as ℘bounded(Rn),
the lattice of bounded subsets of Rn equipped with the sub-
set partial order ⊆. The abstract domain is the cone S+

n of
PSD matrices. The concretization operator γ, which maps
an abstract element to a concrete one, is defined as the func-
tion γ : S+

n → ℘bounded(Rn) which associates a PSD matrix
A to the corresponding ellipsoid EA. In other words, every
PSD matrix A ∈ S+

n “abstracts” the subsets contained in
EA.

We first check that the concretization operator is mono-
tone:

Lemma 1. The map γ is order-preserving.

Figure 3: Non-monotony of the minimum volume ellipsoid

Proof. Let 0 4 A 4 B and let x ∈ EA. By transitivity
of 4, we get xxT 4 A 4 B, thus x ∈ EB .

Like several other abstract domains (convex polyhedra [13],
zonotopes [19], etc.), the domain of ellipsoids cannot be
equipped with an abstraction operator α. Indeed, this op-
erator would be supposed to map any bounded subset S to
the “smallest” PSD matrix A such that S ⊂ EA.1 Such a
matrix A does not exist in general since the cone S+

n of PSD
matrices does not constitute a lattice in the Löwner order.

An important result on ellipsoids, by John, states that
given a bounded full-dimensional subset S of Rn, there is
a unique ellipsoid of minimal volume containing S, see [5,
p. 19]. Note that this can be extended to any bounded sub-
set S (not necessarily full-dimensional), by solving the min-
imization problem in a subspace of Rn, and then mapping
back to the initial space, which ultimately yields a flat ellip-
soid. As illustrated in Figure 3, the function which maps S
to the minimum volume ellipsoid containing S is not order
preserving. Indeed, the minimum volume ellipsoid contain-
ing the square C is the disk EA, and the minimum volume
ellipsoid containing an ellipsoid EB is itself. However, we
have here C ⊆ EB but EA 6⊆ EB .

3.2 Abstract primitives
We present here our abstractions for the following oper-

ations: declaration of a variable, linear assignment, dele-
tion of a variable, switch/case statement and the while loop.
More precisely, each of these operations can be modeled by
a function [[op]] mapping the concrete states to the new ones
arising after the operation. Then our goal is to define a cor-
responding operator [[op]]] dealing with abstract states and
which is sound, i.e. such that [[op]](γ(A)) ⊂ γ([[op]]](A)) for
all PSD matrix A. The latter condition ensures that the ab-
stract primitive propagates over-approximations of the con-
crete states in a correct way. When the inclusion turns to be
an equality, the abstract operator is said to be exact, which
means that it does not introduce an additional approxima-
tion of the concrete states.

3.2.1 Variable declaration
In both cases, starting from a PSD matrix A ∈ S+

n , the
abstraction of the introduction of a new variable corresponds
to an augmentation of A in block form:

A 7→
[
α1A

α2

]
∈ S+

n+1 (4)

for some well-chosen α1, α2 > 0. If the variable is set to 0,
we take α1 = 1 and α2 = 0. In this case, the ellipsoid is
1In this case, (α, γ) forms a Galois connection.



unchanged, but is now flat with respect to the new variable.
When the variable is initialized with the interval [−R,R],
we set

α1 :=

{
1 + 1/ rkA if A 6= 0 ,

1 otherwise,
α2 := (1 + rkA)R , (5)

where rkA stands for the rank of A. It can be proved
that with this choice, the extended matrix given in (4) cor-
responds to the minimum volume ellipsoid containing the
truncated cylinder EA × [−R,R]. By construction, we de-
duce that our abstract primitive is sound.

Let us give an example from the first two variable decla-
rations in Figure 1. Initially, since no variable is declared,
the abstract state A is the (0 × 0)-matrix. After the dec-
laration of x, this matrix is augmented to a (1 × 1)-matrix
A′, whose only entry is equal to 1 + rkA = 1. At this point,
the abstraction is exact since this precisely corresponds to
the set of concrete states, formed by the interval [−1, 1].
Next, for the declaration of v, Eq. (5) provides the param-
eters α1 = α2 = 2 (as rkA′ = 1). Hence, the new abstract
element is the PSD matrix A′′ = ( 2 0

0 2 ). This encodes the

disk of radius
√

2, which tightly over-approximates the set
of concrete states, given by the square [−1, 1]× [−1, 1].

3.2.2 Linear assignment
We consider here linear assignment operations applied

to vectors, i.e. of the form (x1, . . . , xn) <- P (x1, . . . , xn),
where P is an (n × n)-matrix. As an example, the first
parallel assignment in Figure 1 corresponds to the matrix

P =
(

1 h
−hω0 1−hω2

0

)
. We define the corresponding abstract

operator as the function A 7→ PAPT . The following lemma
shows that this operator is sound and even exact:

Lemma 2. We have {Px | x ∈ EA} = EPAPT .

Proof. Let M such that A = MMT . We know that EA
and EPAPT respectively correspond to the image of the unit
ball B(0, 1) under the linear maps x 7→Mx and x 7→ PMx.
The expected result follows straightforwardly.

3.2.3 Variable deletion
The deletion of a variable xi consists in the projection of

the state on the other remaining variables. This is also a
linear transformation and its matrix P is the identity whose
i-th line has been deleted. For instance, deleting w from the
state [x , v , w]T would yield the matrix P = ( 1 0 0

0 1 0 ). As for
the assignment operation, the abstract operator for deleting
a variable is the function mapping A ∈ S+

n to PAPT ∈ S+
n−1.

Again, this operator can be shown to be exact, using the
same argument as in the proof of Lemma 2.

3.2.4 Switch statement
As described in Section 2, we are interested in switched

systems (or programs) with an arbitrary switching rule. This
means that our abstraction of a switch/case statement that
tests the value of an expression does not guard the state
space with respect to the outcome of this expression. In-
stead, we choose a coarser abstraction by considering that
the expression has a random value. In the standard frame-
work, this abstract operator would return the supremum
of the abstract elements resulting from each branch of the
switch/case statement. But as ellipsoids do not form a lat-
tice, this supremum may not exist in general. Nevertheless,

we would like to settle for a minimal upper bound of the re-
sults from each branch. We develop in Section 4 the selection
of such a minimal upper bound of two positive semidefinite
matrices, denoted by t. Note that this operator only takes
two arguments and is not associative (as is the general case
for non-lattice abstract domains [17]). If there are more
than two branches A1, . . . , An, we simply join the branches
sequentially by computing

(
(A1 tA2) tA3

)
· · · tAn.

3.2.5 While loop
Consider a while loop of the form while (e < r) { s }

where e and r are general arithmetic expressions, and s is
a sequence of instructions corresponding to the body of the
loop. Like for the switch statement, our abstraction ignores
the boolean expression e < r and replaces it with a random
exit of the loop. We can do this without loss of generality
under the assumption that the loop condition is eventually
verified. If we were in the usual lattice based framework, the
loop invariant could be determined as the least post-fixpoint
of the function X 7→ A t s(X), where A corresponds to the
abstract state at the entry of the loop, and s to the abstract
operator of the body of the loop. However, in our setting, the
join operator is not defined, and the least fixed point of the
latter function may not exist. Instead, we define an abstract
primitive which, given the abstract element A, returns an
abstract element X satisfying A 4 X and s(X) 4 X.

To this end, we first look for a positive definite matrix
T satisfying s(T ) 4 T (i.e. a post-fixpoint of the abstract
operator s) using the power-like algorithm described in Sec-
tion 5. The matrix T is then scaled in order to “contain”
the abstract element A, i.e. we return the abstract element
X := µTT , where µT = inf{µ ∈ R+ | µT < A}. This
approach yields a sound invariant, because essentially every
operator s presented here is positively homogeneous: for all
nonnegative λ and Y ∈ S+

n , we have s(λY ) = λs(Y ). (The
only one that is not positively homogeneous is the bounded
variable declaration, however, we assume this type of dec-
laration do not appear in loops.) Consequently, we deduce
that the abstract element X that we have computed also
satisfies s(X) 4 X.

As a consequence, the matrix T somehow serves as a tem-
plate which is here computed in an automatic way. A similar
scaling technique appeared in [34], in which the template is
computed using semidefinite programming.

We point out that our method is open for a possible refine-
ment, by scaling individually the semi-axes of the ellipsoid
ET , instead of applying the same scaling factor µ.

4. SELECTION OF MINIMAL UPPER
BOUNDS IN THE LÖWNER ORDER

A binary operation defined on a poset will be called a se-
lection of a minimal upper bound or quasi-join if it sends ev-
ery pair of elements of this poset to a minimal upper bound
of this pair. The question of the selection of a minimal
upper bound of positive definite matrices, with respect to
the Löwner order, has arisen in several fields. In particular,
the following selection has been considered in mathematical
morphology [9]:

A tm B =
A+B

2
+

1

2

(
(A−B)(A−B)T

)1/2
.

This is the analogue of the usual expression of the maximum
of two scalars: max(a, b) = a+b

2
+ 1

2
|a− b| . Based on this,



switch (rand_bool)

case 0: x <- Px;
case 1: x <- Qx;

switch (rand_bool)

case 0: y <- UPU−1y;

case 1: y <- UQU−1y;

Figure 4: Linear change of variables in a switch statement

we introduce an operation (A,B) 7→ A t B on the set of
PSD matrices. For simplicity, we assume that one of the
two matrices, say A, is invertible. Then,

A tB := X
(
In tm X−1B(X−1)T

)
XT , (6)

where X denotes a square matrix (not necessarily PSD) such
that A = XXT . It can be shown that AtB does not depend
on the choice of X.

Proposition 3. The matrix A t B is a minimal upper
bound of A and B.

Proof. This is a consequence of the following two prop-

erties: (i) In tm X−1BX−1T is a minimal upper bound of
In and X−1B(X−1)T ; (ii) The Löwner ordering is compat-
ible w.r.t. any invertible linear transformation L ∈ GLn(R),
meaning that

∀X,Y ∈ S+
n , X 4 Y ⇐⇒ LXLT 4 LY LT . (7)

An essential property of the selection (A,B) 7→ A t B,
which we shall establish below, is that it is invariant under
invertible linear transformations, meaning that

∀U ∈ GLn(R),
(
UAUT

)
t
(
UBUT

)
= U

(
A tB

)
UT . (8)

This entails that the precision of the operator is not affected
by a linear change of variables in the program. Let us il-
lustrate the latter property on the programs given in Fig-
ure 4. The right-hand side program is obtained from the
left-hand side one by applying the linear change of variables
Ux → y. We denote by X0 the initial abstract state in the
analysis of the left-hand side program, i.e. before the execu-
tion of the switch statement. Accordingly, we assume that
the abstract state of the right-hand side program is given
by Y0 = UX0U

T . Following the definition of the abstract
primitives in Section 3.2, the analysis of the two programs
respectively provides the following final invariants:

Xf = (PX0P
T ) t (QX0Q

T )

Yf = (UPU−1Y0(U−1)TPTUT ) t (UQU−1Y0(U−1)TQTUT )

= (UPX0P
TUT ) t (UQX0Q

TUT ) .

Then it can be verified using (8) that the final invariant of
the second program corresponds to a rewriting of the invari-
ant of the first program, i.e. Yf = UXfU

T .
The following theorem justifies the term invariant join for

the operator t.

Theorem 4. The binary operator t defined in (6) is the
only selection of a minimal upper bound, with respect to the
Löwner order, that is invariant by invertible linear transfor-
mations.

The proof of this result will appear elsewhere.
As a consequence of Theorem 4, we can show that A tB

corresponds to the minimum volume ellipsoid containing EA
and EB . Usually, this ellipsoid is computed as the inverse

of the optimal solution C∗ of the following semidefinite pro-
gram:

minimize − log detC

subject to C 4 A−1, C 4 B−1 .

C � 0

(9)

The fact that (C∗)−1 coincides with A tB results from the
fact that this selection is invariant by linear transformation.
The minimum volume ellipsoid enclosing EA ∪ EB is usually
determined by solving an LMI problem. As a surprising by-
product of Theorem 4, we obtain a new way to compute
this minimum volume ellipsoid by using basic algebraic op-
erations.

We point out in (6), it is convenient to use the Cholesky
decomposition of A into XXT where X is a lower triangular
matrix, so that the inverse X−1 in (6) can be easily com-
puted in O(n2) arithmetic operations by back-substitution.
We conclude this section with the characterization of the
time complexity of the invariant join operator.

Proposition 5. The invariant joint A t B can be com-
puted in O(n3) arithmetic operations.

Theorem 4 shows that selecting the minimal volume ellip-
soid yields a canonical abstraction of the union of two ellip-
soids. However, since the invariant join t is not a monotone
map, using this selection locally, in an analysis, may not
necessarily lead to the tightest global invariant.

5. A SCALABLE NONLINEAR FIXPOINT
ALGORITHM

5.1 Additive and multiplicative power itera-
tions

In this section, we present two scalable algorithms which
will allow us to find an ellipsoid invariant. As explained in
Section 3.2.5, if s denotes the abstract operator of the body
of the loop, this boils down to finding a non-zero positive
semidefinite matrix X such that s(X) 4 X. To this end,
we shall consider an auxiliary nonlinear spectral problem,
which consists in finding a non-zero matrix X ∈ S+

n and a
scalar λ > 0 such that

s(X) = λX . (10)

If we find a matrix X for which λ 6 1, then the original
problem s(X) 4 X is solved. An interest of introducing
the extra degree of freedom λ is to allow for finite precision
computations. If s(X) = λX holds for λ < 1 and X positive
definite, then, the relation s(X) 4 X remains valid under a
small perturbation of X.

A simple idea to solve (10) is to choose an order preserving
linear form ψ : S+

n → R+, and to define the following fixed
point scheme

Xk+1 =
s(Xk)

ψ(s(Xk))
(11)

initialized with a positive definite X0. A convenient choice
of ψ is the trace functional. The latter has the property that
it does not vanish on S+

n except at the zero matrix. So, a
division by zero will not occur in (11), unless s(Xk) vanishes
at some iteration, which will not be the case for the abstract
operators considered here. By construction, ψ(Xk+1) = 1



holds for all k. Moreover, the set of positive semidefinite
matrices X of trace one is bounded. Therefore, an additional
advantage of the trace functional is that the sequence Xk
remains bounded. If Xk converges to a matrix X, we get

X = s(X)
ψ(s(X))

and so, s(X) = λX with λ = ψ(s(X)), which

solves problem (10).
The algorithm (11) is a non-linear analogue of the power

algorithm which is familiar in matrix theory [20]. The latter
allows one to compute an eigenvector associated to a dom-
inant eigenvalue (eigenvalue of maximal modulus) of a real
matrix M by computing the sequence

xk+1 =
Mxk
‖Mxk‖2

(12)

where x0 is a non-zero vector. This is similar to (11), except
that we replaced the Euclidean norm ‖·‖2 by the linear func-
tional ψ. The well known advantage of the power algorithm
is its scalability. To implement it, the matrix M need not
be explicitly stored, it suffices to have an oracle which takes
x as input and return Mx, hence, it is adapted to instances
of large dimension (e.g., the “pagerank” algorithm is a vari-
ant of the power iteration). The classical power iteration
is known to converge for generic values of the initial vec-
tor x0, provided that the matrix M has a unique eigenvalue
of maximal modulus. This is the case in particular when
the matrix M has positive entries. It is straightforward to
find examples in which the power iteration (12) does not
converge if the latter positivity condition is relaxed.

Therefore, in order to guarantee that the non-linear it-
eration (11) converges, we need to find an analogue of the
classical positivity condition. Geometrically speaking, the
latter means that the map x 7→ Mx sends the cone Rn+ to
its interior. By analogy, it is natural to require that the ab-
stract operator s sends the cone of PSD matrices S+

n to its
interior, i.e., to require that s(X) is positive definite as soon
as X is a non-zero PSD matrix. We can always make sure
that this assumption is satisfied by introducing a damping
parameter ε > 0 and replacing the operator s by

x 7→ s(x) + εIψ(x) .

This leads to the damped non-linear power iteration

Xk+1 =
s(Xk) + εψ(Xk)I

ψ [s(Xk) + εψ(Xk)I]
. (13)

We shall refer to (13) as the non-linear additive power itera-
tion in the sequel, for the ε-perturbation acts in an additive
way on s.

The choice of ε will be a trade off between making the
perturbation small, which requires to choose a small ε, and
ensuring a fast convergence, which is the case when ε is
large. For the present experimental purposes, we will see
that taking ε ∈ [10−2, 10−1] leads to satisfactory results.
The interest of the non-linear additive power iteration is its
simplicity of implementation. However, in the present set-
ting, its convergence study is not-immediate. Indeed, most
studies concerning non-linear power type algorithms over
cones [28] require the map s to be order preserving, and
this assumption is not satisfied here. However, the simple
modification of the perturbation idea that we next present
leads to a variant of the power algorithm which will be eas-
ier to analyze theoretically, and which experimentally gives
comparable results. This variant uses a multiplicative per-

turbation instead of an additive one:

Xk+1 =
s(Xk)1−ε

ψ [s(Xk)1−ε]
. (14)

Recall that for all PSD matrices Y and for all s > 0, Y s

denotes the s-th power of Y defined in Section 3.1. For
brevity, we write s(Xk)1−ε for (s(Xk))1−ε. We refer to (14)
as the non-linear multiplicative power iteration.

5.2 Convergence analysis of the multiplicative
power iteration

The reason for considering the multiplicative power iter-
ation is that, when Y is positive definite and 0 < s < 1,
the map Y 7→ Y s is a contraction with respect to a classical
metric on the cone, called Thompson’s (part) metric [28].

Let us recall the definition of this metric. Given two pos-
itive definite matrices X and Y , the Thompson’s distance
dT (X,Y ) is defined by

dT (X,Y ) = log min{α > 0 | α−1X 4 Y 4 αX} .

It can be easily computed as

dT (X,Y ) = max(log λmax(X−1Y ), log λmax(Y −1X)) ,

where λmax denotes the largest eigenvalue of a matrix, see
e.g. [18].

It is known (ibid.) that a geodesic for Thompson’s metric
linking I and a positive matrix X is given by the curve
sending t ∈ [0, 1] to t 7→ Xt. By geodesic, we mean that
the equality holds in the triangular inequality dT (I,Xt) 6
dT (I,Xs) + dT (Xs, Xt) for all 0 < s < t. The Thompson’s
part metric has the remarkable property of being invariant
with respect to the action of the linear group, that is,

dT (PXP>, PY P>) = dT (X,Y )

for all P ∈ GLn(R). This is similar to the invariance prop-
erty (7) which we required for the selection operator t, and
this is the reason for using this metric.

The geodesics between I and two positive matrices X and
Y have the following property, which is known in metric ge-
ometry as nonpositive curvature in the sense of Busemann,

dT (Xt, Y t) 6 t dT (X,Y ) . (15)

This can be deduced either from [6] or from classical log-
majorization inequalities for matrix eigenvalues [38], see [18]
for details. This inequality means that the triangles are
thin, it is illustrated Figure 5. We warn the reader that
non positive curvature in the sense of Busemann is a milder
condition than other nonpositive curvature conditions more
commonly used like being CAT(0), see [29] for background.

The property given in (15) is the core of the multiplicative
perturbation method. Indeed, in the case where the body
of the loop contains at least two case branches, the abstract
loop operator s involves the invariant join. In addition of
not preserving the Löwner order, the latter is also possi-
bly expansive: it is easy to find positive definite matrices
Xi and Yi (1 6 i 6 2) for which dT (X1 t X2, Y1 t Y2) >
dT (X1, Y1) ∨ dT (X2, Y2). Let Cn denote the Lipschitz con-
stant of the invariant join operator, i.e., the infimum of the
positive numbers C such that

dT (X1 tX2, Y1 t Y2) 6 C
[
dT (X1, Y1) ∨ dT (X2, Y2)

]



Figure 5: The nonpositive curvature property of Thomp-
son’s metric on the space of positive definite matrices.

holds for all positive definite matrices X1, X2, Y1, Y2. We
show in a companion work that Cn 6 1 + 2(logn)/π.

The next result shows that the power algorithm does con-
verge for a large enough ε. This is mostly of theoretical
interest. In the present experiments, we use a much smaller
value of ε.

Theorem 6. Let N denote the number of invariant join
operations involved in the abstract loop operator s. If ε >
1 − 1/(2CNn ), then the sequence Xk produced by the multi-
plicative power algorithm satisfies

dT (Xk+1, X∞)

dT (Xk, X∞)
6 2CNn (1− ε) < 1 , where X∞ = lim

k→∞
Xk .

This follows by combining the nonpositive curvature prop-
erty (15) with standard metric estimates. The details of the
proof will be given elsewhere.

Remark 1. The limit X∞ can be approximated with an
accuracy η in p∗ := dlog(η/dT (X0, X∞))/ log(2CNn (1 − ε))e
iterations, leading to O(n3Np∗) arithmetic operations.

6. BENCHMARKS
We now experiment the methods that we have introduced,

and we compare them with alternative techniques based on
LMI. The experiments are implemented in MATLAB, run-
ning on one core of an 2.2GHz Intel Core i7 with 8Gb RAM.

We compare in Figure 6a the execution time of the two
possible implementations of the invariant join given in Sec-
tion 4: (i) the original algebraic definition (6), depicted in
green, (ii) the implementation based on the LMI formula-
tion (9), plotted in red. The comparison is made on random
matrices of dimension up to 25. We first observe that at any
dimension, the algebraic definition provided a speed-up by
a factor of order 103–104. Moreover, we note that asymp-
totically, the time to solve the LMI increases as the time to
solve the algebraic equation squared (beware that the time
is given in logarithmic scale).

We next show in Figure 6b the average time to find an
invariant using LMIs (in red), the additive nonlinear power
algorithm (in blue) and the multiplicative power algorithm
(in green). These results were obtained on randomly gener-
ated programs of the form:

while (rand_bool) {

switch (rand_bool) {

case 0:

x <- S0x;

case 1:

x <- S1x;

}

}

where S0 and S1 are invertible matrices. For the bench-
marks, the power algorithms are always initialized at In and
the LMI approach for finding an invariant is done by testing
the feasibility of the following LMI: X < S0XS

T
0

X < S1XS
T
1

X � 0
. (16)

Such a feasible element X is an invariant for the programs
described above. We observe that the power type algorithms
bring a significant speed-up over the LMI technique.

Furthermore, we compare in Figure 6c the execution time
of the power algorithms with the resolution of an LMI on a
set of high-dimensional linear systems without any switch.
The linear systems correspond to parallel simulations of dam-
ped oscillators ẍi + ciẋi + kixi = 0, i.e. given by S0 =(

In hIn
−hK In−hC

)
, where h = 0.05, and C,K ∈ Rn×n are diag-

onal matrices, respectively with positive diagonal elements
ci and ki. Unlike Figure 6b, the additive power algorithm
seems to be faster: here, there is no invariant join computa-
tion, hence the cost of the matrix power in the multiplica-
tive algorithm becomes visible. This example highlights an-
other scalability aspect of the power algorithms: while the
semidefinite program approach runs out of memory for sys-
tems of dimension 140 and beyond, the computation of an
invariant through the power-methods is successful and still
runs in less than 2s even when there are 200 variables. Note
that when there is no switch, the present power algorithm
essentially reduces to the classical power algorithm applied
to the linear operator X 7→ SXST .

In Table 1, we compare our method with an LMI-based
approach on a specific set of instances. On top of pro-
viding the execution time of the analyses, we also provide
the relative stability margin of the invariants that we ob-
tain. Given an invariant X, the latter quantity is defined
as λmin

(
X − s(X)

)
/λmax(X), where λmin(M) and λmax(M)

respectively denote the smallest and largest eigenvalues of
the matrix M . This quantity is nonnegative and well defined
as an invariant X satisfies X � 0 and X < s(X). A large
relative margin ensures that the invariant is stable with re-
spect to rounding errors. Except in the last example, the
invariants that we obtain using the two approaches are not
comparable. However, we give an estimate of the precision
of each invariant by using its largest eigenvalue once it has
been rescaled to contain the identity matrix, or, in terms of
ellipsoids, the unit ball: a size of 1 means that the invariant
is very close to the unit ball, while greater sizes mean that
the ellipsoid spans far from the unit ball in some directions.

The switched oscillator refers to the example of Figure 1.
We also consider another switched linear system, already
studied in [37], characterized by the matrices

S0 =
(−0.06515 −0.4744 0.3041
−0.4744 0.4872 0.3732
0.3041 0.3732 −0.1271

)
,

S1 =
(

0.04419 0.3155 −0.04247
0.1451 −0.04931 −0.2805
0.2833 −0.01418 0.1554

)
.

This system allows us to show the importance of the pa-
rameter ε by its action on the final quality of the invariant.
Indeed, if the power algorithms use ε = 0.1, then the quality
of the invariants is quite bad relative to the one computed by



(a) Invariant join with the LMI
(red) and the algebraic definition
(green)

(b) Program invariant, with LMI
(red), additive power (blue) and
multiplicative power (green)

(c) Program invariant in high dimensions, with
an LMI (red), additive power (blue) and mul-
tiplicative power (green)

Figure 6: Computation times (in s) w.r.t. the dimension of the problem.

Example ε Time (ms) Relative stability margin Invariant size
LMI add mult LMI add mult LMI add mult

Switched oscillator 0.05 160 5 80 4.10−3 4.10−4 9.10−3 1.52 1.91 2.48

Switched system
0.1 190 6 15 0.36 0.07 0.02 1.56 23.37 9.78
0.8 190 3 14 0.36 0.36 0.36 1.56 2.19 1.50

Symplectic integrator 0.1 100 1 3 6 5.10−3 6 5.10−3 6 5.10−3 1 1 1
Table 1: Benchmarks on specific examples

the LMI. In contrast, if they use ε = 0.8, then, with even less
computation time, the quality of the new invariants similar
to the one computed by the LMI.

Finally, we apply the power algorithms to the simulation
of the non-damped oscillator ẍ + cẋ + x = 0 with c = 0.
In this case, the energy of the oscillator is preserved. How-
ever, the Euler scheme used in the example in Figure 1 is
not energy-preserving and even diverges when applied to
this system. This is why we use a variant of a symplec-
tic integration scheme (xn+1, vn+1)T = S(xn, vn)T , where

S =
(

1−τ2/2 τ3/4−τ
τ 1−τ2/2

)
and τ = 0.001. This integration

method preserves a quadratic energy function represented
by a positive definite matrix Q, i.e. (x, v)STQS(x, v)T =
(x, v)Q(x, v)T . This means that there is no stability margin.
In spite of that, all three methods return an invariant, scalar

multiples of the same matrix
(

1 0
0 1−τ2/4

)
which is very close

to the identity matrix. It is remarkable that both power
algorithms successfully compute that invariant, as other al-
gorithms may not even find a bounded invariant [2].

7. CONCLUSION
We developed a static analysis method to synthesize ellip-

soidal invariants, avoiding the use of pre-defined templates.
We showed by experiments that this method is scalable. For
the moment, it is limited to centered ellipsoids. The latter,
however, are already very useful invariants, as they have
been extensively used in the context of hybrid systems. In
particular, our method allows one to find common quadratic
Lyapunov functions for switched linear systems, a problem
which is receiving attention in the control community.

Apart from dealing with the non centered case, our future
work comprises the implementation of a guaranteed version
of these computations. We have shown convergence of our
algorithms in the real numbers domain, and both experi-

ments and theory show robustness under numerical errors,
up to some point. Still, we may rely on guaranteed methods
as in e.g. [32] to deliver fully guaranteed computations in
this ellipsoidal domain.

We replaced here the invariance problem s(X) 4 X by
an eigenvalue problem s(X) = λX, where λ < 1 represents
a stability margin. This may be related to a perturbation
technique already introduced in ASTREE to absorb round-
ing errors (Section 7.1.4 of [7]). It would be interesting to
embed both approaches in a common framework. We also
believe that the damping idea behind the power type algo-
rithm of Section 5.1 could be useful to handle other domains
(for instance combining ellipsoids and linear templates).
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