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Abstract—We describe a set-based approach, relying on
mean-value extensions, for computing guaranteed under-
approximations of ranges (or images) of continuously differ-
entiable functions f from Rm to Rn, including what we call
robust ranges, i.e. ranges of functions under adversarial un-
certainties. Our method is capable of computing efficiently, at
a low computational cost, full n-dimensional subsets of the
image of f . As an application, we show how to compute under-
approximations of robust reachable sets of non-linear controlled
dynamical systems under time-varying uncertainties, which is
central to many verification problems in control theory.

Index Terms—Uncertain systems, Computer-aided control de-
sign

I. INTRODUCTION

COMPUTING the set of values a function can reach
for some input domain is central to many problems

in control, such as robust control of dynamical systems,
or in global optimization. Computing the exact image of a
domain by a function is intractable in general. This is all the
more true when this function is the flow of a continuous or
hybrid system. Moreover, for general controlled systems, the
reachability properties will depend on the initial conditions of
the system, but also on the sensitivity of the system to some
control inputs and external disturbances, as reflected by the
notions of minimal and maximal reachability [1], which we
generalize here to robust reachability, when both control inputs
and adversarial disturbances are present.

Most existing approximation techniques, often based on
extensions of interval methods, compute over-approximations
of images or reachable sets. We are interested here in the much
less studied problem of computing under-approximations, that
is sets of states guaranteed to be reached for some inputs.
When the over-approximation is not sufficient to prove a prop-
erty, computing in addition an under-approximation is helpful
to state the quality of the over-approximation. Additionally,
when an under-approximation of the reachable set intersects
the set of error states, it provides counter-examples to the
property, by proving that error states are actually reached.

We start Section II by recalling the general formulation of
function image under disturbances. Solving the under and over
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approximation problem for robust ranges of functions relies
mostly on mean-value theorems, revisiting some work of A.
Goldsztejn on modal intervals [2], [3]. With respect to our
previous work on the under-approximation of reachable sets
for control systems [4], [5], we develop a systematic way to
under-approximate the image of vector-valued functions f and
no longer just projections of f , without resorting to computer
intensive set inversion methods [6]. This is necessary to be
able to verify more general properties of control systems. In
Section III, these results are used, combined with a Taylor-
based over-approximating reachability analysis, for computing
under-approximations of reachable sets of non-linear contin-
uous systems, with controls and time-varying uncertainties.
Section IV discusses a variety of examples and results obtained
with our prototype RINO.

Related work: Our approach is related to over-
approximations of non-linear continuous and controlled
systems, since we rely on such over-approximations to
compute under-approximations. Many methods for over-
approximating reachable sets have been developed, among
which Taylor methods [7] or polytopes [8].

There are far less methods for under-approximating images
of functions or sets of reachable states. Interval-based methods,
relying on space discretization, have been used for under-
approximating the image of functions [9]. They were also used
to over and under approximate solutions of differential systems
with uncertain initial conditions [10]. Our approach is directly
linked to previous work on modal intervals and mean-value
theorems [2], [3].

Tight approximations for reachable sets of continuous sys-
tems can be found via expensive Eulerian methods: the zero
sub-level set of the Lipschitz viscosity solution to a Hamilton-
Jacobi (HJB) partial differential equation gives the (backward)
reachable set [11]. We hence refer to some of their examples
in Section IV as grounds for asserting the precision of our
analyses. Some decomposition methods have been designed to
reduce the curse of dimensionality for HJB [12], [11], which
is solved in general by finite difference or finite elements
methods, involving gridding of the state space. HJB has
also been used for under-approximations with time-varying
uncertainties [14], using LMI relaxations to reduce the com-
putational cost. Other approaches using SoS methods and LMI
relaxations have been proposed for inner approximations [15].

In comparison, our method is a fairly inexpensive La-
grangian method. Taylor models are also used on the in-
verse flow map to derive inner-approximations [16], but



using topological conditions that are checked with interval
constraints solving, which have difficulties to scale up with
dimension. Our work includes the calculation of under and
over approximations of robust reachable sets as defined in
e.g. [5], with time-varying inputs and disturbances. Other
methods for under-approximating reachable sets include [17]
and [13] for robust under-approximations, based on an analysis
of the boundary of the reachable sets. Finally, any method for
integrating differential inclusions with error bounds, such as
[18] could be used to derive inner-approximations of reachable
sets of differential inclusions.

II. MEAN-VALUE AE EXTENSIONS

The results of this section are inspired by work on modal
intervals [2], [3]. We avoid for simplicity this formalism.

Notations and Preliminaries: For a vector-valued func-
tion f : Rm → Rn, we note fi its i-th component and
∇f = (∇jfi)ij = ( ∂fi∂xj

)1≤i≤n,1≤j≤m its Jacobian matrix. We
note 〈x, y〉 the scalar product of vectors x and y. Set valued
quantities, scalar or vector valued will be noted with bold
letters, e.g x, throughout the paper. An over-approximating
extension, also called outer-approximating extension, of a
function f : Rm → Rn is a function f : P(Rm) → P(Rn),
such that for all x in P(Rm), range(f,x) = {f(x), x ∈
x} ⊆ f(x). Dually, under-approximations determine a set
of values proved to belong to the range of the function
over some input set. An under-approximating extension, also
called inner-approximating extension, of f is a function
f : P(Rm) → P(Rn), such that for all x in P(Rm),
f(x) ⊆ range(f,x). Under- and over-approximations can be
interpreted as quantified propositions: range(f,x) ⊆ z can be
written ∀x ∈ x, ∃z ∈ z, f(x) = z, while z ⊆ range(f,x)
can be written ∀z ∈ z, ∃x ∈ x, f(x) = z. Both these
propositions are what we will call throughout the paper
AE propositions, for quantified propositions where universal
quantifiers (A) precede existential quantifiers (E).

Intervals are used in many situations to rigorously compute
with interval domains instead of reals, usually leading to over-
approximations of function ranges over boxes. We denote
IR = {x = [x, x], x ∈ R, x ∈ R, the set of intervals with
real-valued bounds. If x < x, then the corresponding interval
represents the empty set.

A. Mean-value AE extensions for real-valued functions

We consider in this section a function f : Rm → R. The
natural interval extension consists in replacing real operations
by their interval counterparts in the expression of the function.
A generally more accurate extension relies on a linearization
by the mean-value theorem.

1) Mean-value AE extensions: Suppose f is differentiable
over the box x. The mean-value theorem implies that ∀x0 ∈
x, ∀x ∈ x,∃ξ ∈ x, f(x) = f(x0) + 〈∇f(ξ), x − x0〉. If we
can bound the range of absolute value of the gradient of f
over x, by ∇f(x), then we can derive an interval enclosure,
called the mean-value extension. Let us choose x0 to be the
center c(x) = (x+ x)/2 of x and note r(x) = (x− x)/2 its
radius.

Theorem 1: Let f : Rm → R be a continuously differen-
tiable function, x ∈ IRm. Let f0 = [f0, f0] include f(c(x))
and ∇ a vector of intervals ∇i = [∇i,∇i] for i ∈ {1, . . . ,m}
such that {|∇if(c(x1), . . . , c(xi−1), xi, . . . , xm)| , x ∈ x} ⊆
∇i. We have the over- and under-approximating extensions

range(f,x) ⊆ [f0, f0] + 〈∇, r(x)〉[−1, 1] (1)

[f0 − 〈∇, r(x)〉, f0 + 〈∇, r(x)〉] ⊆ range(f,x) (2)

Proof: The mean-value theorem implies that |f(x) −
f(c(x))| = |〈∇f(ξ), x − c(x)〉| ≤ 〈∇, r(x)〉. As f(c(x)) ∈
[f0, f0], f(x) ∈ [f0, f0] + 〈∇, r(x)〉[−1, 1].

If ∇ = 0 then the inner approximation estimate is trivial,
so suppose ∇ 6= 0, meaning f is either strictly increasing
or decreasing over x. Consider the first case, the other
one being symmetric. Function f being continuous, and x
being connected, the image of f over x is connected, thus
includes the pair of segments L linking f(x) to f(c(x))
and f(c(x)) to f(x) on the real line. By the mean-value
theorem applied to x = x and x = x, f(x) − f(c(x)) ≤
−〈∇, r(x)〉 implying [f(c(x)) − 〈∇, r(x)〉, f(c(x)] is in-
cluded in L, and 〈∇, r(x)〉 ≤ f(x) − f(c(x)) implying
[f(c(x)), f(c(x)) + 〈∇, r(x)〉] ⊆ L. Therefore [f(c(x)) −
〈∇, r(x)〉, f(c(x)) + 〈∇, r(x)〉] is included in L, thus in
range(f,x) . Finally, [f0 − 〈∇, r(x)〉, f0 + 〈∇, r(x)〉] ⊆
[f(c(x))− 〈∇, r(x)〉, f(c(x)) + 〈∇, r(x)〉].

Note that the wider, lesser quality, are the over-
approximations of f and its derivatives, the tighter, lesser
quality, are the under-approximations. In particular, this allows
us to soundly use floating-point implementations. The under-
approximation can even become empty if the width f0−f0 of
the approximation of f(c(x)) exceeds 2〈∇, r(x)〉: the lower
bound of the resulting interval is larger than the upper bound,
which we identify with the empty interval.

Note also that when 0 ∈∇if , then ∇i = 0 and if this is the
case for all i, the under-approximation is empty or reduced to
a point. The extensions (1) and (2) are a simplified formulation
of the results presented with modal intervals and generalized
interval arithmetic in [2], [3] and Theorem 3.3 in [5]. We will
refer to them as AE extensions, as they can be interpreted as
AE propositions.

Example 1: Let us consider the range of f defined by
f(x) = x2 − x over x = [2, 3]. We can compute f(2.5) =
3.75 and ∇f([2, 3]) ⊆ [3, 5]. Then (1) and (2) yield
3.75 + 1.5[−1, 1] ⊆ range(f, [2, 3]) ⊆ 3.75 + 2.5[−1, 1],
from which we deduce [2.25, 5.25] ⊆ range(f, [2, 3]) ⊆
[1.25, 6.25]. The result is illustrated on the figure below:



2) Robust mean-value AE extensions: We now introduce
a generalization of the mean-value AE extensions to compute
ranges that are robust to disturbances, identified as some input
components. Let us partition the indices of the input space in
two subsets IA and IE , where IA defines the indices of the
inputs that correspond to disturbances, and IE the remaining
dimensions. We decompose the input box x accordingly by
x = xA × xE . We define the robust range of function f
on x, robust on xE with respect to disturbances xA, as
range(f,x, IA, IE) = {z | ∀w ∈ xA, ∃u ∈ xE , z = f(w, u)}.
Intuitively, u will be control components, w disturbances to
which the output range should be robust. When IA is empty,
the robust range equals the classical range.

Theorem 2: Let f : Rm → R be continuously differentiable,
x = xA × xE ∈ IRm. Let f0, ∇w and ∇u be vectors of
intervals such that f(c(x)) ⊆ f0, {|∇wf(w, c(xE))| , w ∈
xA} ⊆∇w and {|∇uf(w, u)| , w ∈ xA, u ∈ xE} ⊆∇u.

The mean-value AE extensions for the robust range are

range(f,x, IA, IE) ⊆ [f0 − 〈∇u, r(xE)〉+ 〈∇w, r(xA)〉,
f0 + 〈∇u, r(xE)〉 − 〈∇w, r(xA)〉] (3)

[f0 − 〈∇u, r(xE)〉+ 〈∇w, r(xA)〉, f0+
〈∇u, r(xE)〉 − 〈∇w, r(xA)〉] ⊆ range(f,x, IA, IE) (4)

Proof: Consider functions gw : u → f(w, u) −
f(w, c(xE)) (for any w ∈ xA) and h : w → f(w, c(xE)). We
see that range(f,x, IA, IE) can be expressed as C = {γ ∈
R | ∀α ∈ range(h,xA),∃β ∈ range(gw,xE), γ = α + β}.
Under and over-approximating C = range(f,x, IA, IE) C
thus means under and over-approximating C(A,B) = {γ ∈
R | ∀α ∈ A,∃β ∈ B, γ = α + β}. First note that
C(A,B) = AB where AB = [A + B,A + B]. Let us prove
that AB ⊆ C(A,B). Take γ ∈ AB, now solving for γ = α+β
means that β = γ − α ∈ [A + B − A,A + B − A] which is
B, therefore we have a solution β in B and AB ⊆ C(A,B).
Conversely, take γ ∈ C(A,B), and consider first α = A, then
β = γ − A must be in B so γ − A ≥ B and γ ≥ B + A.
Similarly, consider α = A, then β = γ − A must be in B so
we must have γ − A ≤ B. This implies γ ≤ A + B. This
means that C(A,B) ⊆ AB, thus C = AB.

Moreover, suppose we have an under approximation IA
(resp. over approximation OA) of A and an under approx-
imation IB (resp. over approximation OB) of B. We have
C(OA, IB) ⊆ C(A,B) ⊆ C(IA, OB).

We can now use Theorem 1 on function gw. The absolute
value of its gradient is bounded by ∇u and ∇u, thus, for
a given w ∈ xA, range(gw,xE) ⊆ 〈∇u, r(xE)〉[−1, 1] and
[−〈∇u, r(xE)〉, 〈∇u, r(xE)〉] ⊆ range(gw,xE).

We now apply Theorem 1 on function h to get
range(h,xA) ⊆ [h0, h0] + 〈∇w, r(xA)〉[−1, 1] and [h0 −
〈∇w, r(xA)〉, h0 + 〈∇w, r(xA)〉] ⊆ range(h,xA). Note that
we can take h0 = f0 and h0 = f0.

We can now use OA = [f0, f0] + 〈∇w, r(xA)〉[−1, 1],
IB = [−〈∇u, r(xE)〉, 〈∇u, r(xE)〉] as an over approxi-
mation of range(h,xA) and an under approximation of
range(gw,xE). We obtain C(OA, IB) = [f0+ 〈∇w, r(xA)〉−

〈∇u, r(xE)〉, f0 − 〈∇w, r(xA)〉 + 〈∇u, r(xE)〉] ⊆ C =
range(f,x, IA, IE).

Finally, we use IA = [f0−〈∇w, r(xA)〉, f0+〈∇w, r(xA)〉]
and OB = 〈∇u, r(xE)〉[−1, 1] as an inner approxi-
mation of range(h,xA) and an outer approximation of
range(gw,xE). We obtain C(IA, OB) = [f0+ 〈∇w, r(xA)〉−
〈∇u, r(xE)〉, f0 − 〈∇w, r(xA)〉 + 〈∇u, r(xE)〉 as an over
approximation of C = range(f,x, IA, IE).
Note that changing the order of the components on which the
mean-value theorem is applied sequentially, either here or in
Theorem 1, leads to different variations of (3) and (4).

Example 2: Let us consider the range of f defined by
f(x1, x2) = x22 − 2x1 for x ∈ [2, 3] × [2, 3]. Let us first ap-
proximate range(f,x). We have f(2.5, 2.5) = 1.25, ∇f(x) ⊆
([−2,−2], [4, 6]), and Theorem 1 yields 1.25+4∗0.5[−1, 1]+
2 ∗ 0.5[−1, 1] ⊆ range(f,x) ⊆ 1.25 + 6 ∗ 0.5[−1, 1] + 2 ∗
0.5[−1, 1] which simplifies to [−1.75, 4.25] ⊆ range(f,x) ⊆
[−2.75, 5.25]. Let us now consider range(f,x, 1, 2), which
means we take f(w, u) = u2 − 2w. Theorem 2 yields
[1.25 − 2 + 1, 1.25 + 2 − 1] ⊆ range(f,x, 1, 2) ⊆ [1.25 −
3 + 1, 1.25 + 3 − 1], which simplifies to [0.25, 2.25] ⊆
range(f,x, 1, 2) ⊆ [−0.75, 3.25].

B. Mean-value AE extensions for vector-valued functions

The mean-value extensions of Theorem 1 give us interval
under and over-approximations of projections of the image of
the function. The Cartesian product of the over-approximations
of each component provides an over-approximation of a
vector-valued function f : Rm → Rn. This is not the
case for under-approximation. Suppose for example that we
have ∀z1 ∈ z1,∃x1 ∈ x1, ∃x2 ∈ x2, z1 = f1(x) and
∀z2 ∈ z2,∃x1 ∈ x1, ∃x2 ∈ x2, z2 = f2(x). We obviously
cannot deduce directly that for all ∀z1 ∈ z1 and ∀z2 ∈ z2

there exist x1 and x2 such that z = f(x).
Suppose now that we have the following properties: ∀z1 ∈

z1,∀x1 ∈ x1, ∃x2 ∈ x2, z1 = f1(x) and ∀z2 ∈ z2,∀x2 ∈
x2, ∃x1 ∈ x1, z2 = f2(x) with continuous selections x2
and x1 (it is the case, by a result of [2] when f is an
elementary function). This means that there exist functions
g2(z1, x1) : z1 × x1 → x2 and g1(z2, x2) : z2 × x2 →
x1 that are continuous in x1 (resp. x2), and such that
∀(z1, z2) ∈ z, ∀(x1, x2) ∈ x, z1 = f1(x1, g2(z1, x1))
and z2 = f2(g1(z2, x2), x2). Using the Brouwer fixed point
theorem, for each z1 ∈ z1 and z2 ∈ z2, on the continuous
map g : (x1, x2)→ (g1(z2, x2), g2(z1, x1)) from the compact
set x1 × x2 into itself, we know that g has a fixed point
(xz1, x

z
2) ∈ x1×x2. This means that for all (z1, z2) ∈ z there

exist (xz1, x
z
2) ∈ x such that (z1, z2) = f(xz1, x

z
2).

This result can be generalized to functions f : Rm → Rn
for any n, as shown in Theorem 3. However, in some cases,
only the projection of a subset of the n output components
will be non-empty: for example, we cannot include a full n
dimensional box within the image of f if n > m.

Theorem 3: Let f : Rm → Rn be an elementary function
and π : {1, . . . ,m} → {1, . . . , n}. Let us note, for all i ∈
{1, . . . n}, J (zi)

E = {j ∈ {1, . . . ,m}, π(j) = i} and J
(zi)
A =



{j ∈ {1, . . . ,m}} \ J (zi)
E . Consider the n AE-extensions i ∈

{1, . . . , n}, built from Theorem 2,

∀zi ∈ zi, (∀xj ∈ xj)j∈J(zi)

A

, (∃xj ∈ xj)j∈J(zi)

E

, zi = fi(x)

(5)
Then z = z1 × z2 × . . . × zn, if non-empty, is an under-
approximation of the image of f : ∀z ∈ z, ∃x ∈ x, z = f(x).

Proof: The principle is the same as in the case of
2 components. Function π associates to each xj for j ∈
{1, . . . ,m} the index i ∈ {1, . . . , n} of the unique out-
put component of the function in which it will be ex-
istentially quantified. First suppose π surjective. For each
AE-extension (5) for zi, for all ki ∈ J

(zi)
E we can

associate the continuous selection gki(zi, (xj)j∈J(zi)

A

) by
[3], since f is elementary. For a given (z1, . . . , zn) ∈
z, let us define the continuous map g that associates
to each (x1, . . . , xm) ∈ x, ((gk1(z1, (xj)j∈J(z1)

A

))
k1∈J

(z1)

E

,

. . . , (gkn(zn, (xj)j∈J(zn)
A

))
kn∈J(zn)

E

) in x ⊆ Rm, since π

being surjective, {J (zi)
E |i = 1, . . . , n} forms a partition of

{1, . . . ,m}. By Brouwer fixed point theorem, ∀z ∈ z, there
is a fixed point xz ∈ x of g, which thus satisfies z = f(xz).

Finally, if π is not surjective, there exist zi in which no
input variable is existentially quantified. The corresponding
under-approximation will be empty or reduced to a point and
the previous proof still holds on the other components.

Remark 1: Theorem 3 gives an under-approximation of
range(f,x) for f : Rm → Rn. It can also be used to compute
an under-approximation of the robust range(f,x, IA, IE). For
this, we need to choose π : {1, . . . ,m} → ({1, . . . , n} \ IA),
which means that the disturbance part of the input components
will always be quantified universally.

We now illustrate these computations and the choice of π.
Example 3: We consider f(x) = (5x21+x

2
2−2x1x2−4, x21+

5x22 − 2x1x2 − 4)ᵀ with x = [0.9, 1.1]2. We have

∇f(x) = (
∂fi
∂xj

) =

(
10x1 − 2x2 2x2 − 2x1
2x1 − 2x2 10x2 − 2x1

)
Evaluation on x yields ∇f(x) ⊆
(([6.8, 9.2], [−0.4, 0.4])ᵀ, ([−0.4, 0.4], [6.8, 9.2])ᵀ). Using
Theorem 2 yields range(f,x) ⊆ [−0.96, 0.96]2.
The projection of the under-approximation on
each component is [−0.68, 0.68]. For example,
f1(1, 1)+0.1∗6.8∗[−1, 1]+0 = [−0.68, 0.68] ⊆ range(f1,x).
The under-approximation for π : (1 → 2, 2 → 1) is empty:
the contributions of x1 on the under-approximation of f2
and of x2 on f1 are 0, as the corresponding coefficients
in the Jacobian contain 0. Choosing π : (1 → 1, 2 → 2)
yields under-approximation [−0.64, 0.64]2: for AE extension
∀z1 ∈ z1,∀x2 ∈ x2,∃x1 ∈ x1, z1 = f(x), we have
[−0.68 + 0.4 ∗ 0.1, 0.68− 0.4 ∗ 0.1] ⊆ range(f1,x, 2).

Preconditioning for computing inner skewed boxes: The
n-dimensional inner boxes that we compute can sometimes
be small or empty, in particular when the image cannot
be precisely approximated by a centered box. This problem
can be partly solved by computing a skewed box as under-
approximation, that is the image of a box by a linear map,
instead of a box. Let C ∈ Rn×n be a non-singular matrix. If

Fig. 1: Example 4: samples, under and over-approximation.

z is an interval vector such that z ⊆ range(Cf,x) , we can
deduce the skewed box {C−1z|z ∈ z} to be in range(f,x). A
natural choice for C is the inverse of the center of the interval
Jacobian matrix C = (c(∇))−1.

Example 4: We consider f(x) = (2x21 − x1x2 − 1, x21 +
x22−2)ᵀ with x = [0.9, 1.1]2. We only find empty inner boxes
with the mean-value extension. Using the preconditioning and
π : (1 → 1, 2 → 2), we obtain for (f1, f2) the yellow under-
approximating parallelotope of Figure 1.

We also estimate range(f,x) by sampling points in the input
domain. This sampling-based estimation is represented as the
dark dots-filled region. The green parallelotope and box are
the over-approximations with and without preconditioning.

Implementation: Successfully applying the results of this
section implies bounding the partial derivatives over x. Our
implementation relies on a combination of automatic differen-
tiation and evaluation with affine arithmetic. When the partial
derivatives vary a lot over x, it may be interesting to reduce
the input set or use quadrature formulae to evaluate the mean-
value theorem, but this is out of the scope here, and the results
described in this work do not use such techniques. Finally, for
these examples, we could easily enumerate the possible π, but
future work includes defining heuristics.

III. APPLICATION TO REACHABLE SETS

We consider general non-linear systems of ODEs{
ż(t) = f(z(t), u(t)) if t ≥ 0

z(t) = z0 if t = 0
(6)

where z(t) ∈ Rn, the initial value is defined by z(0) = z0,
and the input signal u(t) belongs to U = {φ : R+ →
U piecewise constant with finitely many discontinuities} with
U ⊆ Rp. Function f : Rn × U → Rn is assumed sufficiently
smooth on Rn (at least C1, and more when we will use
higher order Taylor models). We suppose that given an initial
state z(0) = z0 and an input signal u, there exists a unique
solution or trajectory ϕf (t; z0, u) to system (6) for all time
t ∈ T = [0, Tmax]. We are interested in reachable sets, the
sets of states reachable by trajectories of the system, starting
with z0 in a set Z0. Following [1], we define maximal and
minimal reachability.

Maximal reachability: Given a vector of uncertain input
signal u defined in the set U, we note RfE(t;Z0,U) = {z ∈
Rn| ∃u ∈ U,∃z0 ∈ Z0, z = ϕf (t; z0, u)} the maximal



reachable set, where we seek the input signal that maximizes
the size of the reachable set. In this case, u will correspond
to a controllable input signal, which is existentially quantified,
hence the E subscript notation.

Minimal reachability: We note RfA(t;Z0,U) = {z ∈
Rn| ∀u ∈ U,∃z0 ∈ Z0, z = ϕf (t; z0, u)} the minimal
reachable set, that contains only states that trajectories will
reach whatever the input signal. Here, u will correspond to an
uncontrollable disturbance, with respect to which the behavior
of the system must be robust, and it is universally quantified,
hence the subscript A.

Robust reachability: We generalize the above definitions
by using the subscript AE to define the reachable set which
is maximal with respect to some dimensions uE of the input
(vector) u that represent the control, and minimal or robust
with respect to the remaining dimensions uA, that represent
the disturbance part of the input signal. Let u = (uA, uE) ∈
U = (UA,UE). We define the robustly reachable set by

RfAE(t;Z0,U) = {z ∈ Rn | ∀uA ∈ UA,∃uE ∈ UE ,
∃z0 ∈ Z0, z = ϕf (t; z0, u)}

Let IAE and OAE be two sets such that IAE ⊆
RfAE(t;Z0,U) ⊆ OAE . We call IAE a robust under-
approximation and OAE a robust over-approximation.

We now use the results of Section II to compute robust
under-approximations and over-approximations from maximal
over-approximations, following [4], [5]. The main idea is to
instantiate in the generalized mean-value theorem, the function
f as the solution of system (6), and parameter x as the uncer-
tain initial condition z0 together with inputs and perturbations
u. We need u to be finitely representable for computing under-
approximations. Here we consider piecewise constant u, but
could also handle more general piecewise continuous u, see [5]
in the case of projected under-approximations. We first need
to compute:

1) a maximal over-approximation ÕfE(t) of the trajectory
ϕf (t; z̃0, ũ) for a given (z̃0, ũ) ∈ Z0 × U .

2) a maximal over-approximation OFE (t) of the sensitivity
matrix with respect to uncertain initial condition z0 and
input u, over the range Z0 × U .

Computing these over-approximations is classical. We can use
any approach, for instance Taylor model methods, which are
well suited for non-linear systems. In terms of complexity, the
overhead of our approach for under-approximation compared
to over-approximation corresponds to the computation of the
reachable sets for the sensitivity matrix (a (n+ p) multiplica-
tive coefficient, n being the dimension of the state-space, p
the dimension of the parameter space).

IV. IMPLEMENTATION AND EXAMPLES

The approach is implemented using Taylor models in
the RINO C++ prototype, available from https://github.com/
cosynus-lix/RINO. The examples are available in the reposi-
tory. The timings are given on a Macbook Pro 2.6GHz Intel
Core i7 (6 cores) and 32Gb of RAM.

We choose π(i) = i for each state space-component i.

(a) With no disturbances (b) With disturbances

Fig. 2: Joint px, py and θ for Dubbins, constant controls

1) Dubbins vehicle: We consider the classical Dubbins
vehicle studied in [12] with constant speed v and angular
control a, giving the dynamics of its position (px, py) and its
heading θ. We set here v = 5, a ∈ [−1, 1], and disturbances
b1, b2, b3 to be added to each component of the dynamical
system: −1 ≤ b1 ≤ 1, −1 ≤ b2 ≤ 1 and −5 ≤ b3 ≤ 5.

To compare with the HJB methods of [12], we com-
pute the backward reachable set at time t G(t) =
{x0|∀uA,∃uE ,∃x ∈ G0, x = ϕf (t;x0, u))} from the target
set G0 = {(px, py, θ)||px| ≤ 0.5, |py| ≤ 0.5, 0 ≤ θ ≤ 2π}.
This is equivalent to computing {x0|∀uA,∃uE ,∃x ∈ G0, x0 =
ϕ−f (t;x, u))}, the forward reachable set with the opposite
vector flow. Figure 2a shows the robust under-approximation,
computed in 2 seconds, with a Taylor method of order 3, a
time horizon of 0.5 seconds and step size of 0.025 seconds,
50 subdivisions on the heading angle θ, with constant controls
and no disturbances. The results are very similar to those
shown in [12]. Without disturbances, the maximal and robust
reachable sets are equal. We then analyze the same system,
but with disturbances, with the same parameters. The results,
also obtained in 2 seconds, are shown in Figure 2b. The robust
approximation, in orange, is now smaller, as expected. Indeed,
reaching the small centered unit square from any direction,
under some disturbances, limits the potential initial positions,
given the (controlled) angular speed’s bounds. The maximal
under-approximation, in blue, is comparable to that of the
unperturbed case.

2) 10D hover quadrotor: We now consider the model of
a hovering quadrotor described in [12] and consisting of a
10-dimensional system

defining the 3D position (px, py, pz), the linear velocities
(vx, vy, vz), the pitch and roll (θx, θy), the pitch and roll rates
(ωx, ωy). The controls are Sx, Sy in [− π

180 ,
π

180 ] representing
the desired pitch and roll angle, and Tz ∈ [0, 19.62], the
vertical thrust. Disturbances (dx, dy, dz) represent for instance
the wind in the three axes. The target set is given as −1 ≤
px, py ≤ 1, −2.5 ≤ pz ≤ 2.5, vx = −1.5, θx = 0,
ωx = 0, vy = −1.8, θy = 0, ωy = 0, vz = 1.2. The results
shown in Figure 3a are for the model without disturbances:
they are computed in 1.28 seconds for an order 4 Taylor
method, a time horizon of 0.5 seconds with a stepsize of
0.01. The robust inner image in orange (the maximal range
is equal here to the robust range and thus hidden as there
is no disturbance) is very similar to the corresponding one in
[12], without the need to consider a decomposition into smaller

https://github.com/cosynus-lix/RINO
https://github.com/cosynus-lix/RINO


(a) Joint px, py and pz , no
disturbance, constant controls

(b) Joint py and pz , distur-
bances, time-varying controls

Fig. 3: 10D hovering example

Ex. d p T δ k a v sd time
Bru 2 2 4 0.02 4 1.26
B24 2 1 1 0.1 3 X X 0.02
Dub 3 4 1 0.01 3 0.14
− − − − − − 100 11.58
− − − − − − X X 100 428.1
6D 6 2 1 0.01 4 0.87
− − − − − − X 15.56
− − − − − − X X 30.52
L− L 7 0 20 0.1 3 24.04
10D 10 6 1 0.01 5 1.26
− − − − − − X 9.98

TABLE I: Timings on various examples

dimensional subsystems. Similar results are obtained for time-
varying controls, but in 6.49 seconds. In the disturbed model,
where dx, dy and dz are taken to be between -0.5 and 0.5
(analysis time of 1.22 seconds), we see in Figure 3b that the
minimal under-approximation of the image in red is close to
the robust and maximal under-approximations in orange and
blue and maximal over-approximations in grey. It demonstrates
both that the analysis is very accurate and the hovering is very
stable under the disturbances.

3) Other benchmarks: We show in Table I the results with
the RINO prototype on various examples: d is the dimension
of the system, p the number of parameters, T the time
horizon under which the analysis is done, δ is the step-size
of the Taylor-model method, k is the order of the Taylor-
model method, a is checked if the analysis is done with
adversarial disturbances, sd is the number of subdivisions
used, v is checked when (some, at least) uncertainties are
time-varying (in all examples below, they are then piecewise-
constant on stepsize seconds), time is the total analysis time
in seconds. Dub and 10D are respectively the Dubbins and
10D hovering examples we just described in full detail. 6D
is a 6-dimensional simplified model of a quadrotor, taken
from [12]. L-L is the classical Laub-Loomis example for over-
approximations of reachable sets, taken here from [19]. We use
them to demonstrate that our under-approximating analysis is
not much more costly than classical over-approximation; as
an example, Laub-Loomis takes between 1 and 20 seconds
on different reachability tools (Flow*, Dynibex, CORA etc.)
whereas our analysis took 24 seconds with similar parameters
as those reported in [19]. Bru is the classical Brusselator
benchmark for reachability tools, that has been considered for
under-approximations in [16]. Our analysis takes 1.26 seconds

whereas it is reported to take 89 seconds in [16], with a
lower precision (γ the minimal relative width of the under-
approximation with respect to the over-approximation in the
axes directions is 27.7% for us instead of 55% in [16]) with
the same parameters (stepsize, time, order etc.). B24 is the
first example of [14], which takes us only 0.02 seconds to
solve (on a slightly different target set since our analyzer
cannot represent exactly Euclidean balls) for a good final
precision instead of the 334.20 seconds (plus, from 0.69 to
89.23 seconds for the LMI part) reported in [14]. Still, the full
comparison is difficult to make since we do not have the exact
results obtained, just pictures, as is also the case when trying to
compare Dubbins and 10D with [12]. Generally speaking, the
analyzer provides fast results, and only needs rather low orders
for the Taylor methods. Adversarial disturbances or controlled
inputs yield similar computation time. Time-varying inputs
however increase the computational cost, as each degree of
liberty adds a column in the Jacobian matrix involved in the
mean-value extension.
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[10] T. L. Mézo, L. Jaulin, and B. Zerr, “Bracketing the solutions of an
ordinary differential equation with uncertain initial conditions,” Applied
Mathematics and Computation, vol. 318, 2018.

[11] M. Chen, S. Herbert, and C. J. Tomlin, “Exact and efficient hamilton-
jacobi-based guaranteed safety analysis via system decomposition,” in
ICRA, 2017.

[12] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin,
“Decomposition of reachable sets and tubes for a class of nonlinear
systems,” IEEE Trans. Aut. Control, vol. 63, no. 11, Nov 2018.

[13] B. Xue, Q. Wang, S. Feng, and N. Zhan, “Over- and under-
approximating reach sets for perturbed delay differential equations,”
IEEE Transactions on Automatic Control, 2020.

[14] B. Xue, M. Fränzle, and N. Zhan, “Inner-approximating reachable
sets for polynomial systems with time-varying uncertainties,” IEEE
Transactions on Automatic Control, vol. 65, 2020.

[15] M. Korda, D. Henrion, and C. N. Jones, “Inner approximations of the
region of attraction for polynomial dynamical systems,” in NOLCOS,
2013.

[16] X. Chen, S. Sankaranarayanan, and E. Ábrahám, “Under-approximate
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