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Abstract. Delay differential equations are fundamental for modeling
networked control systems where the underlying network induces delay
for retrieving values from sensors or delivering orders to actuators. They
are notoriously difficult to integrate as these are actually functional equa-
tions, the initial state being a function. We propose a scheme to compute
inner and outer-approximating flowpipes for such equations with un-
certain initial states and parameters. Inner-approximating flowpipes are
guaranteed to contain only reachable states, while outer-approximating
flowpipes enclose all reachable states. We also introduce a notion of ro-
bust inner-approximation, which we believe opens promising perspec-
tives for verification, beyond property falsification. The efficiency of our
approach relies on the combination of Taylor models in time, with an
abstraction or parameterization in space based on affine forms, or zono-
topes. It also relies on an extension of the mean-value theorem, which
allows us to deduce inner-approximating flowpipes, from flowpipes outer-
approximating the solution of the DDE and its Jacobian with respect to
constant but uncertain parameters and initial conditions. We present
some experimental resuls obtaines with our C++ implementation.

1 Introduction

Nowadays, many systems are composed of networks of control systems. These
systems are highly critical, and formal verification is an essential element for
their social acceptability. When the components of the system to model are
distributed, delays are naturally introduced in the feedback loop. They may
significantly alter the dynamics, and impact safety properties that we want to
ensure for the system. The natural model for dynamical systems with such delays
is Delay Differential Equations (DDE), in which time derivatives not only depend
on the current state, but also on past states. Reachability analysis, which involves
computing the set of states reached by the dynamics, is a fundamental tool for the
verification of such systems. As the reachable sets are not exactly computable,
approximations are used. In particular, outer (also called over)-approximating
flowpipes are used to prove that error states will never be reached, whereas
inner (also called under)-approximating flowpipes are used to prove that desired
states will actually be reached, or to falsify properties. We propose in this article
a method to compute both outer- and inner-approximating flowpipes for DDEs.

We concentrate on systems that can be modeled as parametric fixed-delay
systems of DDEs, where both the initial condition and right-hand side of the



system depend on uncertain parameters, but with a unique constant and exactly
known delay: {

ż(t) = f(z(t), z(t− τ), β) if t ∈ [t0 + τ, T ]

z(t) = z0(t, β) if t ∈ [t0, t0 + τ ]
(1)

where the continuous vector of variables z belongs to a state-space domain D ⊆
Rn, the (constant) vector of parameters β belongs to the domain B ⊆ Rm, and
f : D×D×B → D is C∞ and such that Equation (1) admits a unique solution1

on the time interval [t0, T ]. The initial condition is defined on t ∈ [t0, t0 + τ ]
by a function z0 : R+ × B → D. The method introduced here also applies in
the case when the set of initial states is given as the solution of an uncertain
system of ODEs instead of being defined by a function. Only the initialization of
the algorithm will differ. When several constant delays occur in the system, the
description of the method is more complicated, but the same method applies.

Example 1. We will exemplify our method throughout the paper on the system{
ẋ(t) = −x(t) · x(t− τ) =: f (x(t), x(t− τ), β) t ∈ [0, T ]

x(t) = x0(t, β) = (1 + βt)2 t ∈ [−τ, 0]

We take β ∈
[
1
3 , 1
]
, which defines a family of initial functions, and we fix τ = 1.

This system is a simple but not completely trivial example, for which we
have an analytical solution on the first time steps, as detailed in Example 4.

Contributions and outline. In this work, we extend the method introduced by
Goubault and Putot [16] for ODEs, to the computation of inner and outer flow-
pipes of systems of DDEs. We claim, and experimentally demonstrate with our
prototype implementation, that the method we propose here for DDEs is both
simple and efficient. Relying on outer-approximations and generalized interval
computations, all computations can be safely rounded, so that the results are
guaranteed to be sound. Finally, we can compute inner-approximating flowpipes
combining existentially and universally quantified parameters, which offers some
strong potential for property verification, beyond falsification.

In Section 2, we first define the notions of inner and outer-approximating
flowpipes, as well as robust inner-approximations, and state some preliminar-
ies on generalized interval computations, which are instrumental in our inner
flowpipes computations. We then present in Section 3 our method for outer-
approximating solutions to DDEs. It is based on the combination of Taylor
models in time with a space abstraction relying on zonotopes. Section 4 relies
on this approach to compute outer-approximations of the Jacobian of the so-
lution of the DDE with respect to the uncertain parameters, using variational
equations. Inner-approximating tubes are obtained from these using a general-
ized mean-value theorem introduced in Section 2. We finally demonstrate our
method in Section 5, using our C++ prototype implementation, and show its
superiority in terms of accuracy and efficiency compared to the state of the art.

1 We refer the reader to [12, 27] for the conditions on f .



Related work. Reachability analysis for systems described by ordinary differen-
tial equations, and their extension to hybrid systems, has been an active topic
of research in the last decades. Outer-approximations have been dealt with ellip-
soidal [20], sub-polyhedral techniques, such as zonotopes or support functions,
and Taylor model based methods, for both linear and non-linear systems [26, 14,
4, 17, 10, 6, 2, 5]. A number of corresponding implementations exist [22, 25, 13,
29, 7, 3, 1]. Much less methods have been proposed, that answer the more diffi-
cult problem of inner-approximation. The existing approaches use ellipsoids [21]
or non-linear approximations [19, 8, 31, 16], but they are often computationally
costly and imprecise. Recently, an interval-based method [24] was introduced for
bracketing the positive invariant set of a system without relying on integration.
However, it relies on space discretization and has only been applied successfully,
as far as we know, to low dimensional systems.

Taylor methods for outer-approximating reachable sets of DDEs have been
used only recently, in [28, 32]. We will demonstrate that our approach improves
the efficiency and accuracy over these interval-based Taylor methods.

The only previous work we know of for computing inner-approximations of
solutions to DDEs, is the method of Xue et al. [30], extending the approach
proposed for ODEs in [31]. Their method is based on a topological condition and
a careful inspection of what happens at the boundary of the initial condition.
We provide in the section dedicated to experiments a comparison to the few
experimental results given in [30].

2 Preliminaries on Outer and Inner Approximations

Notations and definitions. Let us introduce some notations that we will
use throughout the paper. Set valued quantities, scalar or vector valued, corre-
sponding to uncertain inputs or parameters, are noted with bold letters, e.g x.
When an approximation is introduced by computation, we add brackets: outer-
approximating enclosures are noted in bold and enclosed within inward fac-
ing brackets, e.g. [x], and inner-approximations are noted in bold and enclosed
within outward facing brackets, e.g. ]x[.

An outer-approximating extension of a function f : Rm → Rn is a func-
tion [f ] : P(Rm) → P(Rn), such that for all x in P(Rm), range(f,x) =
{f(x), x ∈ x} ⊆ [f ](x). Dually, inner-approximations determine a set of val-
ues proved to belong to the range of the function over some input set. An
inner-approximating extension of f is a function ]f [: P(Rm) → P(Rn), such
that for all x in P(Rm), ]f [(x) ⊆ range(f,x). Inner and outer approxima-
tions can be interpreted as quantified propositions: range(f,x) ⊆ [z] can be
written (∀x ∈ x) (∃z ∈ [z]) (f(x) = z), while ]z[⊆ range(f,x) can be written
(∀z ∈ ]z[) (∃x ∈ x) (f(x) = z).

Let ϕ(t, β) for time t ≥ t0 denote the time trajectory of the dynamical system
(1) for a parameter value β, and z(t,β) = {ϕ(t, β), β ∈ β} the set of states
reachable at time t for the set of parameter values β. We extend the notion of
outer and inner-approximations to the case where the function is the solution



ϕ(t, β) of system (1) over the set β. An outer-approximating flowpipe is given by
an outer-approximation of the set of reachable states, for all t in a time interval:

Definition 1 (Outer-approximation). Given a vector of uncertain (constant)
parameters or inputs β ∈ β, an outer-approximation at time t of the reachable set
of states, is [z](t,β) ⊇ z(t,β), such that (∀β ∈ β) (∃z ∈ [z](t,β)) (ϕ(t, β) = z).

Definition 2 (Inner-approximation). Given a vector of uncertain (constant)
parameters or inputs β ∈ β, an inner-approximation at time t of the reachable
set, is ]z[(t,β) ⊆ z(t,β) such that (∀z ∈]z[(t,β)) (∃β ∈ β) (ϕ(t, β) = z).

In words, any point of the inner flowpipe is the solution at time t of system (1),
for some value of β ∈ β. If the outer and inner approximations are computed
accurately, they approximate with arbitrary precision the exact reachable set.

Our method will also solve the more general robust inner-approximation
problem of finding an inner-approximation of the reachable set, robust to uncer-
tainty on an uncontrollable subset βA of the vector of parameters β:

Definition 3 (Robust inner-approximation). Given a vector of uncertain
(constant) parameters or inputs β = (βA, βE) ∈ β, an inner-approximation of the
reachable set z(t,β) at time t, robust with respect to βA, is a set ]z[A(t,βA,βE)
such that (∀z ∈]z[A(t,βA,βE)) (∀βA ∈ βA) (∃βE ∈ βE) (ϕ(t, βA, βE) = z).

Outer and inner interval approximations. Classical intervals are used in
many situations to rigorously compute with interval domains instead of reals,
usually leading to outer-approximations of function ranges over boxes. We denote
the set of classical intervals by IR = {[x, x], x ∈ R, x ∈ R, x ≤ x}. Intervals are
non-relational abstractions, in the sense that they rigorously approximate inde-
pendently each component of a vector function f . We thus consider in this section
a function f : Rm → R. The natural interval extension consists in replacing real
operations by their interval counterparts in the expression of the function. A
generally more accurate extension relies on a linearization by the mean-value
theorem. Suppose f is differentiable over the interval x. Then, the mean-value
theorem implies that (∀x0 ∈ x) (∀x ∈ x) (∃c ∈ x) (f(x) = f(x0)+f ′(c)(x−x0)).
If we can bound the range of the gradient of f over x, by [f ′](x), then we can
derive the following interval enclosure, usually called the mean-value extension:
for any x0 ∈ x, range(f,x) ⊆ f(x0) + [f ′](x)(x− x0).

Example 2. Consider f(x) = x2−x, its range over x = [2, 3] is [2, 6]. The natural
interval extension of f , evaluated on [2, 3], is [f ]([2, 3]) = [2, 3]2 − [2, 3] = [1, 7].
The mean-value extension gives f(2.5)+ [f ′]([2, 3])([2, 3] − 2.5) = [1.25, 6.25],
using x0 = 2.5 and [f ′](x) = 2x− 1.

Modal intervals and Kaucher arithmetic. The results introduced in this
section are mostly based on the work of Goldsztejn et al. [15] on modal intervals.
Let us first introduce generalized intervals, i.e., intervals whose bounds are not
ordered, and the Kaucher arithmetic [18] on these intervals.



The set of generalized intervals is denoted by IK = {x = [x, x], x ∈ R, x ∈
R}. Given two real numbers x and x, with x ≤ x, one can consider two general-
ized intervals, [x, x], which is called proper, and [x, x], which is called improper.
We define dual ([a, b]) = [b, a] and pro ([a, b]) = [min(a, b), max(a, b)].

Definition 4 ([15]). Let f : Rm → R be a continuous function and x ∈ IKm,
which we can decompose in xA ∈ IRp and xE ∈ (dual IR)q with p + q = m. A
generalized interval z ∈ IK is (f,x)-interpretable if

(∀xA ∈ xA) (Qzz ∈ pro z) (∃xE ∈ pro xE) (f(x) = z) (2)

where Qz = ∃ if (z) is proper, and Qz = ∀ otherwise.

When all intervals in (2) are proper, we retrieve the interpretation of classi-
cal interval computation, which gives an outer-approximation of range(f,x), or
(∀x ∈ x) (∃z ∈ [z]) (f(x) = z). When all intervals are improper, (2) yields an
inner-approximation of range(f,x), or (∀z ∈ ]pro z[) (∃x ∈ pro x) (f(x) = z).

Kaucher arithmetic [18] provides a computation on generalized intervals that
returns intervals that are interpretable as inner-approximations in some simple
cases. Kaucher addition extends addition on classical intervals by x+ y = [x+
y, x+ y] and x− y = [x− y, x− y]. For multiplication, let us decompose IK in
P = {x = [x, x], x > 0 ∧ x > 0}, −P = {x = [x, x], x 6 0 ∧ x 6 0}, Z = {x =
[x, x], x 6 0 6 x}, and dual Z = {x = [x, x], x > 0 > x}. When restricted to
proper intervals, the Kaucher multiplication coincides with the classical interval
multiplication. Kaucher multiplication xy extends the classical multiplication to
all possible combinations of x and y belonging to these sets. We refer to [18] for
more details.

Kaucher arithmetic defines a generalized interval natural extension (see [15]):

Proposition 1. Let f : Rm → R be a function, given by an arithmetic ex-
pression where each variable appears syntactically only once (and with degree
1). Then for x ∈ IKm, f(x), computed using Kaucher arithmetic, is (f,x)-
interpretable.

In some cases, Kaucher arithmetic can thus be used to compute an inner-
approximation of range(f,x). But the restriction to functions f with single
occurrences of variables, that is with no dependency, prevents a wide use. A
generalized interval mean-value extension allows us to overcome this limitation:

Theorem 1. Let f : Rm → R be differentiable, and x ∈ IKm which we can
decompose in xA ∈ IRp and xE ∈ (dual IR)q with p + q = m. Suppose that for
each i ∈ {1, . . . ,m}, we can compute [∆i] ∈ IR such that{

∂f

∂xi
(x), x ∈ pro x

}
⊆ [∆i]. (3)

Then, for any x̃ ∈ pro x, the following interval, evaluated with Kaucher arith-
metic, is (f,x)-interpretable:

f̃(x) = f(x̃) +

n∑
i=1

[∆i](xi − x̃i). (4)



When using (4) for inner-approximation, we can only get the following sub-
set of all possible cases in the Kaucher multiplication table: (x ∈ P) × (y ∈
dual Z) = [xy, xy], (x ∈ −P) × (y ∈ dual Z) = [xy, xy], and (x ∈ Z) × (y ∈
dual Z) = 0. Indeed, for an improper x, and x̃ ∈ pro x, it holds that (x − x̃)
is in dual Z. The outer-approximation [∆i] of the Jacobian is a proper interval,
thus in P, −P or Z, and we can deduce from the multiplication rules that the
inner-approximation is non empty only if [∆i] does not contain 0.

Example 3. Let f be defined by f(x) = x2−x, for which we want to compute an
inner-approximation of the range over x = [2, 3]. Due to the two occurrences of x,
f(dualx), computed with Kaucher arithmetic, is not (f,x)-interpretable. The in-
terval f̃(x) = f(2.5)+f ′([2, 3])(x−2.5) = 3.75+[3, 5](x−2.5) given by its mean-
value extension, computed with Kaucher arithmetic, is (f,x)-interpretable. For
x = [3, 2], using the multiplication rule for P × dual Z, we get f̃(x) = 3.75 +
[3, 5]([3, 2] − 2.5) = 3.75 + [3, 5][0.5,−0.5] = 3.75 + [1.5,−1.5] = [5.25, 2.25],
that can be interpreted as: (∀z ∈ [2.25, 5.25]) (∃x ∈ [2, 3]) (z = f(x)). Thus,
[2.25, 5.25] is an inner-approximation of range(f, [2, 3]).

In Section 4, we will use Theorem 1 with f being each component (for a
n-dimensional system) of the solution of the uncertain dynamical system (1): we
need an outer enclosure of the solution of the system, and of its Jacobian with
respect to the uncertain parameters. This is the objective of the next sections.

3 Taylor Method for Outer Flowpipes of DDEs

We now introduce a Taylor method to compute outer enclosures of the solution
of system (1). The principle is to extend a Taylor method for the solution of
ODEs to the case of DDEs, in a similar spirit to the existing work [28, 32]. This
can be done by building a Taylor model version of the method of steps [27], a
technique for solving DDEs that reduces these to a sequence of ODEs.

3.1 The method of steps for solving DDEs

The principle of the method of steps is that on each time interval [t0+iτ, t0+(i+
1)τ ], for i ≥ 1, the function z(t−τ) is a known history function, already computed
as the solution of the DDE on the previous time interval [t0 + (i− 1)τ, t0 + iτ ].
Plugging the solution of the previous ODE into the DDE yields a new ODE on
the next tile interval: we thus have an initial value problem for an ODE with
z(t0 + iτ) defined by the previous ODE. This process is initialized with z0(t) on
the first time interval [t0, t0 + τ ]. The solution of the DDE can thus be obtained
by solving a sequence of IVPs for ODEs. Generally, there is a discontinuity in
the first derivative of the solution at t0 + τ . If this is the case, then because of
the term z(t− τ) in the DDE, a discontinuity will also appear at each t0 + iτ .



Example 4. Consider the DDE defined in Example 1. On t ∈ [0, τ ] the solution
of the DDE is solution of the ODE

ẋ(t) = f(x(t), x0(t− τ, β)) = −x(t)(1 + β(t− τ))2, t ∈ [0, τ ]

with initial value x(0) = x0(0, β) = 1. It admits the analytical solution

x(t) = exp

(
− 1

3β

(
(1 + (t− 1)β)

3 − (1− β)
3
))

, t ∈ [0, τ ] (5)

The solution of the DDE on the time interval [τ, 2τ ] is the solution of the ODE

ẋ(t) = −x(t) exp

(
− 1

3β

(
(1 + (t− τ − 1)β)

3 − (1− β)
3
))

, t ∈ [τ, 2τ ]

with initial value x(τ) given by (5). An analytical solution can be computed,
using the transcendantal lower γ function.

3.2 Finite representation of functions as Taylor models

A sufficiently smooth function g (e.g. C∞), can be represented on a time interval
[t0, t0 + h] by a Taylor expansion

g(t) =

k∑
i=0

(t− t0)ig[i](t0) + (t− t0)k+1g[k+1](ξ), (6)

with ξ ∈ [t0, t0 + h], and using the notation g[i](t) := g(i)(t)
i! . We will use such

Taylor expansions to represent the solution z(t) of the DDE on each time interval
[t0 + iτ, t0 + (i + 1)τ ], starting with the initial condition z0(t, β) on [t0, t0 + τ ].
For more accuracy, we actually define these expansions piecewise on a finer time
grid of fixed time step h. The function z0(t, β) on time interval [t0, t0 + τ ] is thus
represented by p = τ/h Taylor expansions. The lth such Taylor expansion, valid
on the time interval [t0 + lh, t0 + (l + 1)h] with l ∈ {0, . . . , p− 1}, is

z0(t, β) =

k∑
i=0

(t− t0)iz[i](t0 + lh, β) + (t− t0)k+1z[k+1](ξl, β), (7)

for a ξl ∈ [t0 + lh, t0 + (l + 1)h].

3.3 An abstract Taylor model representation

In a rigorous version of the expansion (7), the z[i](t0+lh, β) as well as g[k+1](ξl, β)
are set-valued, as the vector of parameters β is set valued. The simplest way
to account for these uncertainties is to use intervals. However, this approach
suffers heavily from the wrapping effect, as these uncertainties accumulate with
integration time. A more accurate alternative is to use a Taylor form in the



parameters β for each z[i](t0 + lh, β). This is however very costly. We choose in
this work to use a sub-polyhedric abstraction to parameterize Taylor coefficients,
expressing some sensitivity of the model to the uncertain parameters: we rely on
affine forms [9]. The result can be seen as Taylor models of arbitrary order in
time, and order close to 1 in the parameters space.

The vector of uncertain parameters or inputs β ∈ β is thus defined as a vector
of affine forms over m symbolic variables εi ∈ [−1, 1]: β = α0+

∑mj
i=1 αiεi, where

the coefficients αi are vectors of real numbers. This abstraction describes the set
of values of the parameters as given within a zonotope. In the sequel, we will use
for zonotopes the same bold letter notation as for intervals, that account for set
valued quantities.

Example 5. In Example 1, β = [ 13 , 1] can be represented by the centered form
β = 2

3 + 1
3ε1. The set of initial conditions x0(t,β) is abstracted as a func-

tion of the noise symbol ε1. For example, at t = −1, x0(−1,β) = (1 − β)2 =
(1 − 2

3 −
1
3ε1)2 = 1

9 (1 − ε1)2. The abstraction of affine arithmetic operators is
computed componentwise on the noise symbols εi, and does not introduce any
over-approximation. The abstraction of non affine operations is conservative: an
affine approximation of the result is computed, and a new noise term is added,
that accounts for the approximation error. Here, using ε21 ∈ [0, 1], affine arith-
metic [9] will yield [x0](−1,β) = 1

9 (1− 2ε1 + [0, 1]) = 1
9 (1.5− 2ε1 + 0.5ε2), with

ε2 ∈ [−1, 1]. We are now using notation [x0], denoting an outer-approximation.
Indeed, the abstraction is conservative: [x0](−1,β) takes its values in 1

9 [−1, 4],
while the exact range of x0(−1, β) for β ∈ [ 13 , 1] is 1

9 [0, 4].

Now, we can represent the initial solution for t ∈ [t0, t0 + τ ] of the DDE (1)
as a Taylor model in time with zonotopic coefficients, by evaluating in affine
arithmetic the coefficients of its Taylor model (7). Noting r0j = [t0 + jh, t0 +
(j + 1)h], we write, for all j = 0, . . . , p− 1,

[z](t) =

k−1∑
l=0

(t− t0)l[z0j ]
[l] + (t− t0)k[z0j ]

[k], t ∈ r0j (8)

where the Taylor coefficients

[z0j ]
[l] :=

[z0](l)(t0 + jh,β)

l!
, [z0j ]

[l] :=
[z0](l)(r0j ,β)

l!
(9)

can be computed by differentiating the initial solution with respect to t ([z0](l)

denotes the l-th time derivative), and evaluating the result in affine arithmetic.

Example 6. Suppose we want to build a Taylor model of order k = 2 for the
initial condition in Example 1 on a grid of step size h = 1/3. Consider the
Taylor model for the first step [t0, t0 + h] = [−1,−2/3]: we need to evaluate
[x00][0] = [x0](−1,β), which was done Example 5.

We also need [x00][1] and [x00][2]. We compute [x00][1] = [ẋ0](−1,β) = 2β(1−
β) and [x00][2] = [x0](2)(rl)/2 = [ẍ0](rl)/2 = β2, with β = 2

3 + 1
3ε1. We evaluate

these coefficients with affine arithmetic, similarly to Example 5.



3.4 Constructing flowpipes

The abstract Taylor models (8) introduced in Section 3.3, define piecewise outer-
approximating flowpipes of the solution on [t0, t0+τ ]. Using the method of steps,
and plugging into (1) the solution computed on [t0+(i−1)τ, t0+iτ ], the solution
of (1) can be computed by solving the sequence of ODEs

ż(t) = f(z(t), z(t− τ), β), for t ∈ [t0 + iτ, t0 + (i+ 1)τ ] (10)

where the initial condition z(t0 + iτ), and z(t− τ) for t in [t0 + iτ, t0 + (i+ 1)τ ],
are fully defined by (8) when i = 1, and by the solution of (10) at previous step
when i is greater than 1.

Let the set of the solutions of (10) at time t and for the initial conditions
z(t′) ∈ z′ at some initial time t′ ≥ t0 be denoted by z(t, t′, z′). Using a Taylor
method for ODEs, we can compute flowpipes that are guaranteed to contain the
reachable set of the solutions z(t, t0 + τ, [z](t0 + τ)) of (10), for all times t in
[t0 + τ, t0 + 2τ ], with [z](t0 + τ) given by the evaluation of the Taylor model (8).
This can be iterated for further steps of length τ , solving (10) for i = 1, . . . , T/τ ,
with an initial condition given by the evaluation of the Taylor model for (10) at
the previous step.

We now detail the algorithm that results from this principle. Flowpipes are
built using two levels of grids. At each step on the coarser grid with step size
τ , we define a new ODE. We build the Taylor models for the solution of this
ODE on the finer grid of integration step size h = τ/p. We note ti = t0 + iτ the
points of the coarser grid, and tij = t0 + iτ + jh the points of the finer grid. In
order to compute the flowpipes in a piecewise manner on this grid, the Taylor
method relies on Algorithm 1. All Taylor coefficients, as well as Taylor expansion
evaluations, are computed in affine arithmetic.

Build by (9) the [z0j ]
[l], j ∈ {0, . . . , p− 1} that define the Taylor model on

[t0, t0 + τ ], and Initialize next flowpipe: [z10] = [z0](t10, β) at t10 = t0 + τ
For all i = 0, . . . , T/τ do

For all j = 0, . . . , p− 1 do
Step 1: compute an a priori enclosure [zij ] of z(t) valid on [tij , ti(j+1)]
Step 2: build by (12), (14), a Taylor model valid on [tij , ti(j+1)]
Using (11), initialize next flowpipe: [zi(j+1)] = [z](ti(j+1), tij , [zij ]) if

j < p− 1, [z(i+1)0] = [z](t(i+1)0, tij , [zij ]) if j = p− 1

Algorithm 1: Sketch of the computation of outer reachable sets for a DDE

Step 1: computing an a priori enclosure. We need an a priori enclo-
sure [zij ] of the solution z(t), valid on the time interval [tij , ti(j+1)]. This is
done by a straightforward extension of the classical approach [26] for ODEs
relying on the interval Picard-Lindelöf method, applied to Equation (10) on



[tij , ti(j+1)] with initial condition [zij ]. If [f ] is Lipschitz, the natural inter-
val extension [F ] of the Picard-Lindelöf operator defined by [F ](z) = [zij ] +
[tij , ti(j+1)][f ](z, [zi(j−1)],β), where the enclosure of the solution over ri(j−1) =
[ti(j−1), tij ] has already be computed as [zi(j−1)], admits a unique fixpoint. A
simple Jacobi-like iteration, z0 = [zij ], zl+1 = F (zl) for all l ∈ N, suffices to
reach the fixpoint of this iteration which yields [zij)], and ensures the existence
and uniqueness of a solution to (10) on [tij , ti(j+1)]. However, it may be necessary
to reduce the step size.

Step 2: building the Taylor model. A Taylor expansion of order k of the
solution at tij which is valid on the time interval [tij , ti(j+1)], for i ≥ 1, is

[z](t, tij , [zij ]) = [zij ] +

k−1∑
l=1

(t− tij)l[f ij ][l] + (t− tij)k[f ij ]
[k], (11)

The Taylor coefficients are defined inductively, and can be computed by auto-
matic differentiation, as follows:[

f ij
][1]

= [f ]
(
[zij ], [z(i−1)j ],β

)
(12)[

f1j

][l+1]
=

1

l + 1

([
∂f [l]

∂z

] [
f1j

][1]
+ [z0j ]

[
f0j

][1])
(13)

[
f ij
][l+1]

=
1

l + 1

([
∂f [l]

∂z

] [
f ij
][1]

+

[
∂f [l]

∂zτ

] [
f (i−1)j

][1])
if i ≥ 2 (14)

The Taylor coefficients for the remainder term are computed in a similar way,
evaluating [f ] over the a priori enclosure of the solution on rij = [tij , ti(j+1)].

For instance, [f ij ]
[1] = [f ]([zij ], [z(i−1)j ]). The derivatives can be discontinuous

at ti0: the [f i0]
[l]

coefficients correspond to the right-handed limit, at time t+i0.
Let us detail the computation of the coefficients (12), (13) and (14). Let z(t)

be the solution of (10). By definition, dzdt (t) = f(z(t), z(t−τ), β) = f [1](z(t), z(t−
τ), β) from which we deduce the set valued version (12). We can prove (14) by
induction on l. Let us denote ∂z the partial derivative with respect to z(t), and
∂zτ with respect to the delayed function z(t− τ). We have

f [l+1](z(t), z(t− τ), β) = 1
(l+1)!

d(l+1)z
dt(l+1) (t) = 1

l+1
d
dt

(
f [l](z(t), z(t− τ), β)

)
= 1

l+1

(
ż(t)∂f

[l]

∂z + ż(t− τ)∂f
[l]

∂zτ

)
= 1

l+1

(
f(z(t), z(t− τ), β)∂f

[l]

∂z +

f(z(t− τ), z(t− 2τ), β)∂f
[l]

∂zτ

)
from which we deduce the set valued version (14). For t ∈ [t0 + τ, t0 + 2τ ], the
only difference is that ż(t− τ) is obtained by differentiating the initial solution
of the DDE on [t0, t0 + τ ], which yields (13).



Example 7. As in Example 6, we build the first step of the Taylor model of order
k = 2 on the system of Example 1. We consider t ∈ [t0 + τ, t0 + 2τ ], on a grid of
step size h = 1/3. Let us build the Taylor model on [t0 + τ, t0 + τ +h] = [0, 1/3]:
we need to evaluate[x10], [f10][1] and [f10][2] in affine arithmetic.

Following Algorithm 1, [x10] = [x0](t10,β) = [x0](t0 +τ,β) = [x0](0,β) = 1.
Using (12) and the computation of [x00] of Example 5, [f10][1] = [f ]([x10], [x00]) =
[f ](1, 19 (1.5−2ε1 +0.5ε2)) = − 1

9 (1.5−2ε1 +0.5ε2). Finally, using (13), [f10][2] =

0.5ḟ(r10, r00), where ri0 for i = 0, 1 (with r00 = r10 − τ) is the time interval of
width h equal to [ti0, ti1] = [−1+ i,−1+ i+1/3], and ḟ(t, t− τ) = ẋ(t)x(t− τ)+
x(t)ẋ(t−τ) = f(t, t−τ)x(t−τ)+x(t)ẋ0(t−τ) = −x(t)x(t−τ)2+2x(t)β(1+βt).
Thus, [f10][2] = −0.5[x(r10)][x(r00)]2+[x(r10)]β(1+βr10). We need enclosures
for x(r00) and x(r10), to compute this expression. Enclosure [x(r00)] is directly
obtained as [x0](r00) = (1 + βr00)2, evaluated in affine arithmetic. Evaluating
[x(r10)] requires to compute an a priori enclosure of the solution on interval r10,
following the approach described as Step 1 in Algorithm 1. The Picard-Lindelöf
operator is [F ](x) = [x10] + [0, 13 ][f ](x, [x(r00)],β) = 1 + [0, 13 ](1 + βr00)2x.
We evaluate it in interval rather than affine arithmetic for simplicity: [F ](x) =

1 + [0, 13 ]
(
1 + [ 13 , 1][−1,− 2

3 ]
)2
x = 1 + [0, 7

2

35 ]x. Starting with x0 = [x10] = 1, we

compute x1 = [F ](1) = [1, 1 + 72

35 ], x2 = [F ](x1) = [1, 1 + 72

35 + ( 72

35 )2], etc. This
is a geometric progression, that converges to a finite enclosure.

Remark. A fixed step size yields a simpler algorithm. However it is possible to
use a variable step size, with an additional interpolation of the Taylor models.

4 Inner-Approximating Flowpipes

We will now use Theorem 1 in order to compute inner-approximating flowpipes
from outer-approximating flowpipes, extending the work [16] for ODEs to the
case of DDEs. The main idea is to instantiate in this theorem the function f as
the solution z(t, β) of our uncertain system (1) for all t, and x as the range β of
the uncertain parameters. For this, we need to compute an outer-approximation
of z(t, β̃) for some β̃ ∈ β, and of its Jacobian matrix with respect to β at any
time t and over the range β. We follow the approach described in Section 3.4.

Outer-approximation of the Jacobian matrix coefficients. For the DDE
(1) in arbitrary dimension n ∈ N and with parameter dimension m ∈ N, the
Jacobian matrix of the solution z = (z1, . . . , zn) of this system with respect to
the parameters β = (β1, . . . , βm) is

Jij(t) =
∂zi
∂βj

(t)

for i between 1 and n, j between 1 and m. Differentiating (1), we obtain that
the coefficients of the Jacobian matrix of the flow satisfy

J̇ij(t) =

p∑
k=1

∂fi
∂zk

(t)Jkj(t) +

p∑
k=1

∂fi
∂zτk

(t)Jkj(t− τ) +
∂fi
∂βj

(t) (15)



with initial condition Jij(t) = (Jij)0(t, β) = ∂(zi)0
∂βj

(t, β) for t ∈ [t0, t0 + τ ].

Example 8. The Jacobian matrix for Example 1 is a scalar since the DDE is
real-valued and the parameter is scalar. We easily get J̇11(t) = −x(t−τ)J11(t)−
x(t)J11(t− τ) with initial condition (J11)0(t, β) = 2t(1 + βt).

Equation (15) is a DDE of the same form as (1). We can thus use the
method introduced in Section 3.4, and use Taylor models to compute outer-
approximating flowpipes for the coefficients of the Jacobian matrix.

Computing inner-approximating flowpipes. Similarly as for ODEs [16], the
algorithm that computes inner-approximating flowpipes, first uses Algorithm 1
to compute outer-approximations, on each time interval [tij , ti(j+1)], of

1. the solution z(t, β̃) of the system starting from the initialization function
z0(t, β̃) defined by a given β̃ ∈ β

2. the Jacobian J(t, β) of the solution, for all β ∈ β

Then, we can deduce inner-approximating flowpipes by using Theorem 1. Let
as in Definition 3 β = (βA, βE) and note JA the matrix obtained by extracting
the columns of the Jacobian corresponding to the partial derivatives with re-
spect to βA. Denote by JE the remaining columns. If the quantity defined by
Equation (16) for t in [tij , ti(j+1)] is an improper interval

]z[A(t, tij ,βA,βE) = [z](t, tij , [z̃ij ]) + [J ]A(t, tij , [J ij ])(βA − β̃A)

+ [J ]E(t, tij , [J ij ])(dual βE − β̃E) (16)

then the interval (pro ]z[A(t, tij ,βA,βE)) is an inner-approximation of the reach-
able set z(t,β) valid on the time interval [tij , ti(j+1)], which is robust with re-
spect to the parameters βA, in the sense of Definition 3. Otherwise the inner-
approximation is empty. If all parameters are existentially quantified, that is
if the subset βA is empty, we obtain the classical inner-approximation of Def-
inition 2. Note that a unique computation of the center solution [z̃] and the
Jacobian matrix [J ] can be used to infer different interpretations as inner-
approximations or robust inner-approximations. With this computation, the ro-
bust inner flowpipes will always be included in the classical inner flowpipes.

The computation of the inner-approximations fully relies on the outer-approxi-
mations at each time step. A consequence is that we can soundly implement most
of our approach using classical interval-based methods: outward rounding should
be used for the outer approximations of flows and Jacobians. Only the final com-
putation by Kaucher arithmetic of improper intervals should be done with inward
rounding in order to get a sound computation of the inner-approximation.

Also, the wider the outer-approximation in Taylor models for the center and
the Jacobian, the tighter and thus the less accurate is the inner-approximation.
This can lead to an empty inner-approximation if the result of Equation (16)
in Kaucher arithmetic is not an improper interval. This can occur in two way.



Firstly, the Kaucher multiplication [J ]E(dual βE − β̃E) in (16), yields a non-
zero improper interval only if the Jacobian coefficients do not contain 0. Sec-
ondly, suppose that the Kaucher multiplication yields an improper interval. It
is added to the proper interval [z](t, tij , [z̃ij ]) + [J ]A ∗ (βA − β̃A). The center

solution [z](t, tij , [z̃ij ]) can be tightly estimated, but the term [J ]A(βA − β̃A)
that measures robustness with respect to the βA parameters can lead to a wide
enclosure. If this sum is wider than the improper interval resulting from the
Kaucher multiplication, then the resulting Kaucher sum will be proper and the
inner-approximation empty.

5 Implementation and Experiments

We have implemented our method using the FILIB++ C++ library [23] for in-
terval computations, the FADBAD++2 package for automatic differentiation, and
(a slightly modified version of) the aaflib3 library for affine arithmetic.

Let us first consider the running example, with order 2 Taylor models, and
an integration step size of 0.05. Figure 1 left presents the results until t = 2
(obtained in 0.03 seconds) compared to the analytical solution (dashed lines): the
solid external lines represent the outer-approximating flowpipe, the filled region
represents the inner-approximating flowpipe. Until time t = 0, the DDE is in its

Fig. 1. Running example (Taylor model order 2, step size 0.05)

initialization phase, and the conservativeness of the outer-approximation is due
to the abstraction in affine arithmetic of the set of initialization functions. Using
higher-order Taylor models, or refining the time step improves the accuracy.
However, for the inner-approximation, there is a specific difficulty: the Jacobian

2 http://www.fadbad.com
3 http://aaflib.sourceforge.net



contains 0 at t = −1, so that the inner-approximation is reduced to a point.
This case corresponds to the parameter value β = 1. To address this problem,
we split the initial parameter set in two sub-intervals of equal width, compute
independently the inner and outer flowpipes for these two parameters ranges, and
then join the results to obtain Figure 1 center. It is somehow counter intuitive
that we can get this way a larger, thus better quality, inner-approximating set, as
the inner-approximation corresponds to the property that there exist a value of
β in the parameter set such that a point of the tube is definitely reached. Taking
a larger β parameter set would intuitively lead to a larger such inner tube.
However, this is in particular due to the fact that we avoid here the zero in the
Jacobian. More generally, such a subdivision yields a tighter outer-approximation
of the Jacobian, andthus better accuracy when using the mean-value theorem.

In order to obtain an inner-approximation without holes, we can use a subdi-
vision of the parameters with some covering. This is the case for instance using 10
subdivisions, with 10 per cent of covering. Results are now much tighter: Figure 1
right represents a measure γ(x, t) of the quality of the approximations (computed
in 45 seconds) for a time horizon T = 15, with Taylor Model of order 3, a step size

of 0.02. This accuracy measure γ(x, t) is defined by γ(x, t) = γu(x)
γo(x)

where γu(x)

and γo(x) measure respectively the width of the inner-approximation and outer-
approximation, for state variable x. Intuitively, the larger the ratio (bounded by
1), the better the approximation. Here, γ(x, t) almost stabilizes after some time,
to a high accuracy of 0.975. We noted that in this example, the order of the Tay-
lor model, the step size and the number of initial subdivisions all have a notable
impact on the stabilized value of γ, that can here be decreased arbitrarily.

Example 9. Consider a basic PD-controller for a self-driving car, controlling the
car’s position x and velocity v by adjusting its acceleration depending on the
current distance to a reference position pr, chosen here as pr = 1. We consider a
delay τ to transfer the input data to the controller, due to sensing, computation
or transmission times. This leads, for t ≥ 0, to:{

x′(t) = v(t)

v′(t) = −Kp

(
x(t− τ)− pr

)
−Kd v(t− τ)

Choosing Kp = 2 and Kd = 3 guarantees the asymptotic stability of the con-
trolled system when there is no delay. The system is initialized to a constant
function (x, v) ∈ [−0.1, 0.1]× [0, 0.1] on the time interval [−τ, 0].

This example demonstrates that even small delays can have a huge impact
on the dynamics. We represent in the left subplot of Figure 2 the inner and outer
approximating flowpipes for the velocity and position, with delay τ = 0.35, until
time T = 10. They are obtained in 0.32 seconds, using Taylor models of order
3 and a time step of 0.03. The parameters were chosen such that the inner-
approximation always remains non-empty. We now study the robustness of the
behavior of the system to the parameters: Kp and Kd are time invariant, but now
uncertain and known to be bounded by (Kp,Kd) ∈ [1.95, 2.05]× [2.95, 3.05]. The
Jacobian matrix is now of dimension 2×4. We choose a delay τ = 0.2, sufficiently



Fig. 2. Left and center: velocity and position of controlled car (left τ = 0.35, center
τ = 0.2); Right: vehicles position in the platoon example

small to not induce oscillations. Thanks to the outer-approximation, we prove
that the velocity never becomes negative, in contrast to the case of τ = 0.35
where it is proved to oscillate. In Figure 2 center, we represent, along with the
over-approximation, the inner-approximation and a robust inner-approximation.
The inner-approximation, in the sense of Definition 2, contains only states for
which it is proved that there exists an initialization of the state variables x and
v in [−0.1, 0.1] × [0, 0.1] and a value of Kp and Kd in [1.95, 2.05] × [2.95, 3.05],
such that these states are solutions of the DDE. The inner-approximation which
is robust with respect to the uncertainty in Kp and Kd, in the sense of Defini-
tion 3, contains only states for which it is proved that, whatever the values of
Kp and Kd in [1.95, 2.05] × [2.95, 3.05], there exist an initialization of x and v
in [−0.1, 0.1] × [0, 0.1], such that these states are solutions of the DDE. These
results are obtained in 0.24 seconds, with order 3 Taylor models and a time
step of 0.04. The robust inner-approximation is naturally included in the inner-
approximation.

We now demonstrate the efficiency of our approach and its good scaling
behavior with respect to the dimension of the state space, by comparing our
results with the results of [30] on their seven-dimensional Example 3:

Example 10. Let ẋ(t) = f(x(t), x(t − τ)), t ∈ [τ = 0.01, T ], where f(x(t), x(t −
τ) = (1.4x3(t) − 0.9x1(t − τ), 2.5x5(t) − 1.5x2(t), 0.6x7(t) − 0.8x3(t)x2(t), 2 −
1.3x4(t)x3(t), 0.7x1(t)− x4(t)x5(t), 0.3x1(t)− 3.1x6(t), 1.8x6(t)− 1.5x7(t)x2(t)),
and the initial function is constant on [−τ, 0] with values in a box4 [1.0, 1.2] ×
[0.95, 1.15]× [1.4, 1.6]× [2.3, 2.5]× [0.9, 1.1]× [0.0, 0.2]× [0.35, 0.55]. We compute
outer and inner approximations of the reachable sets of the DDE until time t =
0.1, and compare the quality measure γ(x1), . . . , γ(x7) for the projection of the
approximations over each variable x1 to x7, of our method with respect to [30].
We obtain for our work the measures 0.998, 0.996, 0.978, 0.964, 0.97, 0.9997, 0.961,
to be compared to 0.575, 0.525, 0.527, 0.543, 0.477, 0.366, 0.523 for [30]. The re-
sults, computed with order 2 Taylor models, are obtained in 0.13 seconds with

4 The first component is different from that given in [30], but is the correct initial
condition, after discussion with the authors.



our method, and 505 seconds with [30]. Our implementation is thus both much
faster and much more accurate. However, this comparison should only be taken
as a rough indication, as it is unfair to [30] to compare their inner boxes to our
projections on each component.

Example 11. Consider now the model, adapted from [11], of a platoon of n au-
tonomous vehicles. Vehicle Ci+1 is just after Ci, for i = 1 to n − 1. Vehicle C1

is the leading vehicle. Sensors of Ci+1 measure its current speed vi+1 as well as
the speed vi of the vehicle just in front of it. There respective positions are xi+1

and xi. We take a simple model where each vehicle Ci+1 accelerates so that to
catch up with Ci if it measures that vi > vi+1 and acts on its brakes if vi < vi+1.
Because of comunications, accelerations are delayed by some time constant τ :

ẋi(t) = vi(t) i = 2, · · · , n
v̇i+1(t) = α(vi(t− τ)− vi+1(t− τ)) i = 2, · · · , n− 1

We add an equation defining the way the leading car drives. We suppose it adapts
its speed between 1 and 3, following a polynomial curve. This needs to adapt
the acceleration of vehicle C2:

ẋ1(t) = 2 + (x1(t)/5− 1)(x1(t)/5− 2)(x1(t)/5− 3)/6
v̇2(t) = α(2 + (x1(t)/5− 1)(x1(t)/5− 2)(x1(t)/5− 3)/6− v2(t− τ))

We choose τ = 0.3 and α = 2.5. The initial position before time 0 of car Ci is
slightly uncertain, taken to −(i− 1) + [−0.2, 0.2], and its speed is in [1.99,2.01].
We represent in the right subplot of Figure 2 the inner and outer approximations
of the position of the vehicles in a 5 vehicles platoon (9-dimensional system) until
time T=10, with a time step of 0.1, and order 3 Taylor models, computed in
2.13 seconds. As the inner-approximations of different vehicles intersect, there are
some unsafe initial conditions, such that the vehicules will collide. This example
allows us to demonstrate the good scaling of our method: for 10 vehicles (19-dim
system) and with the same parameters, results are obtained in 6.5 seconds.

6 Conclusion

We have shown how to compute, efficiently and accurately, outer and inner flow-
pipes for DDEs with constant delay, using Taylor models combined with an
efficient space abstraction. We have also introduced a notion of robust inner-
approximation, that can be computed by the same method. We would like to
extend this work for fully general DDEs, including variable delay, as well as study
further the use of such computations for property verification on networked con-
trol systems. Indeed, while testing is a weaker alternative to inner-approximation
for property falsification, we believe that robust inner-approximation provides
new tools towards robust property verification or control synthesis.
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