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Chapter 1

Introduction

Software-driven systems are pervasive in today’s world, and grow more complex every day. While their -
frequent - dysfunctions are mainly a hassle in most applications, the safety-critical systems can not allow
bugs, their correct behavior has to be proved thoroughly. In that respect, the norms of the safety-critical
industries, such as DO-178B [142] and its recent update DO-178C [143] for the aeronautic industry, are
evolving towards replacing part of the tests by methods providing guarantees for all possible executions,
such as static analysis.

Meanwhile, the complexity of computation in these safety-critical systems is quickly increasing. For
instance, Airbus has been using fly-by-wire systems, that is flight control computers, to replace manual
flight control, for all its commercial airplanes since the A320 program, officially launched in 1984. Of
course, if correct, these computer-driven systems increase the safety and performance of the flight control.
But proving their correction, whatever the conditions driven by the airplane’s environment, is a challenge at
the state of the art of validation. These systems now involve millions of lines of programs, and, this will be
the point of this document, quite intricate numerical computations.

Indeed, the control and monitoring of physical systems needs computations in real numbers. Of course,
these can only be approximated on a computer: most applications now use floating-point approximations, a
flexible and efficient representation, well specified by the IEEE-754 standard [1]. By specifying in particular
the size of the mantissa and the exponent of floating-point numbers, this norm greatly improved the portabil-
ity of programs: we know how the rounding error committed at each arithmetic operation is bounded. But,
even though these approximations are well specified at the arithmetic operations level, their propagation
through a chain of computation is, as we will see, difficult to predict. They can lead to subtle problems -
with potentially catastrophic consequences - all the more so because some of the good algebraic properties
of real arithmetic, such as, for instance, associativity, are no longer true in floating-point arithmetic. The
consequences can be of two natures. First, a result computed in finite precision can be only a rough approx-
imation of the real result. But also, the behavior of the program using finite precision can be unexpected:
for instance, an algorithm that was proved to converge very well in real numbers, can no longer converge in
finite precision, especially if some stopping criterion is not well suited to the precision.

The impact of rounding errors on numerical computations, and particularly in algebraic processes, has
been receiving attention since the very beginning of computers and numerical analysis, in a famous 1947
article by Von Neumann and Goldstine [156]. The interest has not dropped since, let us for instance mention
two classic surveys, by Wilkinson [157] and Higham [99]. Also, trying to build automatic methods to

7



8 CHAPTER 1. INTRODUCTION

estimate the rounding errors was already of interest as early as 1958 [54], and has remained so ever since;
let us highlight the work of Miller [127] which in 1975 aimed at searching numerical instabilities in a spirit
close to our present work.

Moreover, this problem of the propagation of rounding errors is only part of the larger problem of
validating numerical software. A difficulty, and not the least one actually when considering this larger
problem of validating numerically a possibly large program, is to decide and specify which properties have
to be proved, to increase the level of assurance that the software meets its goal. The absence of run-time
errors, with a semantics handling floating-point computations, addressed for instance by the Polyspace1

or Astree [42] analyzers, is the first property that must be ensured in this context. But then, how can we
know for sure that the program computes what it is supposed to, and not just something that does not
produce an execution error? Of course, in general, the question is really hard to answer. But we have
information at our disposal, as the safety-critical software obey very strict rules of development, involving
a lot of documentation and requirement specifications. There can then be different and complementary
answers, that correspond to different levels of view on the software. Locally, we may have specifications
of functional behavior on elementary symbols or portions of software. For instance, that such function, for
a given range of inputs, should compute approximately some mathematical function, with not more than a
given approximation error. Then, globally on a large part of the software, we may for instance want to prove
that the values of some variables representing physical quantities remain within their expected ranges. Of
course, this supposes to be able to model the environment precisely enough. And finally, locally or globally,
we can prove that the use of finite precision in the computation does not significantly alter the result from
the one that would be computed in real numbers. So that the end-user can decide whether his software meets
the accuracy requirements, including modeling and computation errors.

My work takes inspiration from two worlds that take into account the use of finite precision numbers: the
first is reliable computing, in which set-based methods are used to build computations that are guaranteed
by construction to contain the real result; the second is static analysis by abstract interpretation, which aims
at proving properties on existing programs.

Reliable computing The first tool for guaranteed computations, introduced by Moore, is interval arith-
metic [133], which he used to mechanize error analysis in computations as soon as 1959 [134]. Directly
rewriting the methods of numerical analysis with intervals gives very poor results, as dependencies be-
tween numerical values are not taken into account. This motivated some methods that became classic, such
as the interval Newton method and methods to solve interval linear systems, for which Hansen was pio-
neer [92, 96, 93, 95]. Many extensions of interval arithmetic have been developed since then, in order to
overcome the dependency problem: let us mention Hansen’s generalized interval arithmetic [94] and affine
arithmetic [33, 45], on which most of the work presented here is based. More accurate models include for in-
stance Taylor model methods, introduced by Berz and Makino [12, 120], and used in particular for validated
integration of ordinary differential equations. Ellipsoid arithmetic can also be an answer to the dependency
problem, and could be especially interesting in the fixpoint computations induced by static analysis as it is
well suited to determine stability regions of non-linear discrete dynamical systems, as noted for instance
by Neumaier [136]. There is no simple way to compute with ellipsoids, which makes them scarcely used
for verified computation although they received some attention quite early; but approximated computations
with ellipsoids have been used successfully [137, 108], and we hope to use them in the future, in conjunction

1http://www.mathworks.com/products/polyspace/
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with affine forms. These set-based methods can be supplemented for bounded program verification by con-
straint solving on real or floating-point numbers [126, 32]. Let us finally refer to Rump’s survey article [144]
for a large overview on the field of reliable computing. The main direction of my work is to try to build
abstractions for static analysis on some of these methods.

Static analysis by abstract interpretation In contrast to dynamic analysis, which tests the program
around possible executions, static analysis aims at proving properties on programs without execution, for
potentially infinite sets of behaviors. But designing an analysis that can answer exactly and automatically,
on all programs, whether a non-trivial property holds, is not possible. To make the problem tractable, one
can make different choices. A first choice is to lose automation: for instance, interactive theorem provers
can be used to assist the development of formal proofs: we will come back later to their use in the context
of floating-point computation analysis. A second choice is to lose soundness and possibly miss some errors.
In this case, tools are rather used as bug-finders, or to give some level of confidence on the correctness of
programs. This is for instance the choice made by Grammatech2 for its CodeSonar analysis tool. Finally,
and this is the choice we made for the work presented here, we can lose completeness by abstracting (over
or under approximating) the properties of interest. The analyzer may not be able to conclude about the
satisfaction of a property and produce false alarms, that is indicate possible erroneous behavior, that cannot
occur in reality. For a given property of interest, the art of abstraction is to find the optimal trade-off be-
tween expressiveness and cost of the analysis. When my work started, this problem of false alarms indeed
sullied the reputation of the first commercial sound static analyzer for run-time errors, Polyspace verifier3,
which handles floating-point semantics. Demonstrating that a static analyzer could prove the absence of
run-time errors for large scale aeronautic programs was actually the starting point of Cousot, Cousot, Feret,
Mauborgne, Miné, Monniaux and Rival, in their design of Astrée [42].

Our work also makes the choice of soundness by abstract interpretation, but aims at verifying refined
numerical properties, for safety-critical systems of a possibly large size. We introduced a new class of
zonotopic abstract domains well suited to the analysis of numerical properties, and built a static analyzer
named Fluctuat which is not specialized to programs from the aeronautic industry - the price to pay being
less scalability for the analyses on these particular programs. Still, Fluctuat is able to analyze several dozens
of thousands of lines of typical control command software in a few hours (of course, this is only indicative
as the analysis time highly depends on the software analyzed).

Most of the work I present here is motivated by the practical verification needs of actors of the safety-
critical industry, such as Airbus and IRSN (French Expert in nuclear and radiological risk). Both have been
supporting our work since its starting point in 2000-2001 and ever since, Airbus first by its participation to
the European project DAEDALUS4, then through direct projects. However, in the long term, we can hope
that these advances, developed in the context of safety-critical systems, will benefit to the numerically very
complex programs from numerical simulation.

2http://en.wikipedia.org/wiki/GrammaTech
3http://www.mathworks.com/products/polyspace/
4Daedalus European IST project (2000-2002), http://www.di.ens.fr/ cousot/projects/DAEDALUS/
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1.1 Analyzing the impact of rounding errors

Approximations and uncertainties lie everywhere in the numerical software that aim at modeling real phe-
nomena. An additional source of approximation is due to the representation of real numbers on the computer,
most of the time by floating-point numbers. The error due to the use of finite precision in computations is
often overlooked for at least two reasons. First, considered locally on a particular operation, the rounding
error as specified by the IEEE-754 norm [1], can seem insignificant compared to the other sources of uncer-
tainties. Second, considered globally on a program, its accurate estimation is difficult. And most of the time
its impact is indeed negligible.

Still, experience tells us that an issue directly due to rounding error, with potentially catastrophic con-
sequences, can occur even on numerically not very complex programs. Take for instance the example of
the Patriot anti-missile during the Gulf war, that widely missed its target because of an inaccurately com-
puted time counter, that caused a major localisation problem [58]. The accident actually occurred with an
implementation in 24 bits fixed point arithmetic, but a similar problem - with different amplitude though -
would have occurred with floating-point numbers. Indeed, this time counter was regularly incremented by
the constant 0.1, representing a time elapse. But constant 0.1, as harmless as it may seem to human eyes, is
not represented exactly in a binary finite format, whatever the precision. This causes a new rounding error
at each time increment, errors that accumulate. The computation of the time counter is thus affected, at each
time increment, by the rounding of the result of the addition of the floating-point representation of 0.1 to the
time counter, result which in general is also not representable and must be rounded. This makes the error
actually not so obvious to predict manually, even for such a simple program5. And what makes things worse
is that the problematic parts are most of the time buried among thousands of harmless lines of program,
which calls for automatic tools able to extract and analyze the dubious parts.

Rounding error analysis As already mentioned, interest for the impact of the use of finite precision on
the behavior of programs started as early as 1947. The next step, that is designing methods to automatically
estimate this impact, soon followed, in 1958. Still, we cannot say the problem has been fully solved since,
let us quickly discuss contemporary approaches for rounding error analysis.

A well-established dynamic method for the analysis of numerical programs is the CESTAC (Control
and Stochastic Estimation of Rounding Errors) method [155], implemented in the CADNA6 tool. In a
few words, this method can be described as follows: the computation for each input is run several times,
with random rounding: the deviation between these results gives the number of significant digits of the
result, with some probability. But this result is valid only under the hypothesis that the rounding errors
are independent centered random variables, hypothesis that is often wrong, as advocated with examples by
Kahan [105]. Also, this method gives no insurance that a very high error can not occur, which may have
catastrophic consequence even if this is with very small probability.

Another class of approaches to the estimation of the propagation of rounding errors relies on automatic
differentiation, that computes values of function derivatives: a first order estimation of the sensitivity of
the output of a computation to rounding error, or more generally to uncertainties, is given by derivatives or
first order Taylor developments. This was used to estimate the propagation of rounding error [9, 118, 127,
115]. But these estimations of the errors can also be used to try to correct the results of finite precision

5http://proval.lri.fr/gallery/clockdrift.en.html
6http://www-pequan.lip6.fr/cadna/
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computation. This is the aim of the CENA (French acronym for correcting numerical rounding errors)
method [113, 114, 112], which relies on automatic differentiation to compute and compensate the effects of
the first-order rounding errors.

Finally, formal proof using interactive theorem provers is also applied to the verification of floating-
point algorithms. Harrison has been working on floating-point verification using HOL since 1995 [97].
Formalizations of floating-point arithmetics have been designed for several proof assistants [25, 18]. While
we are mainly concerned with software verification in our work, hardware verification is more widely spread
in formal proof, as hardware is most of the time designed in a more modular way, and such proofs as IEEE-
754 compliance are both crucial and quite easily automated [145]. Indeed, the error in the floating-point
division in an Intel Pentium processor in 1994 [139] certainly had a non-negligible impact for Intel. More
recently, Boldo, Filliatre, Melquiond, Ayad and Marché have started developing proofs for floating-point
arithmetic in Coq [15], with efforts towards automation [16, 7]. Pen and paper analyses of rounding errors
constitute starting points for accurate computer-aided analyses of numerical algorithms, such as in Boldo’s
work [14]. But, for the time being, these analyses are not generic, they have to be conducted again for each
new problem. And the construction of the proof may require a lot of work and expertise by the user, and
prevent the analysis of very large programs.

The birth of Fluctuat Eric Goubault conceived, mid 2000, the project to write a static analyzer of finite
precision computations. An idea was, so that the analysis would be the more automatic possible, that
the specification would be implicit: the static analyzer should be able not only to handle floating-point
computation, but also to compute its distance to the reference, the computation in a real number semantics.

He set in 2001 [73] the first ideas of an abstract domain that computes the floating-point value of a
variable, by interval arithmetic, and its distance to the real value, decomposed along the program control
points, by a sum of interval contributions. When I began in Eric Goubault’s team at CEA (now the MEASI
laboratory, standing for Modelling and Analysis of Interacting Systems) in January 2001, with a background
more turned towards scientific computing than theoretical computer science, I was first in charge, by way
of formation, to implement these first ideas. This was done in an emerging static analyzer for which a first
structure had been designed [75], and which soon became FLUCTUAT [77]. Meanwhile Matthieu Martel,
who had joined the team shortly before I did, formalized this same abstract domain [121].

It soon became clear that the analysis we had designed was under-valuing the numerical interest of affine
arithmetic [33, 45], from which it had drawn its inspiration. Indeed, from an arithmetic which had been
proposed in order to use affine relations between variables to improve interval arithmetic, we had reached an
abstract domain that was purely non relational, based on intervals, even though it was adding a very valuable
information: the provenance of rounding and approximation errors. Following that assessment, it took us
several years, starting from 2002 and still on-going work, to design efficient abstract domains that also made
use of the affine relations between variables. Coming back to the abstraction of real values of variables of
programs, we proposed affine arithmetic based abstract domains, with zonotopic concretizations, which we
called affine sets [81, 83, 84, 64, 65].

We then formalized the extension of these abstract domains to handle finite precision computations and
rounding errors along with their provenance [85] (they had been already implemented in Fluctuat for some
time [46]). Indeed, the relations that are true for real values are no longer true for floating-point values: but
instead of using interval linearisation as Mine did [130], we developed an abstract domain relying on affine
sets for both values and errors.
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Let us first quickly introduce the notion of abstract domain, which is central to static analysis by abstract
interpretation.

1.2 From set-based methods to static analysis

Abstract interpretation [38, 40] is a theory of approximation of program semantics. An analysis first relies
on a concrete semantics, that is a description of the property of interest and the way it propagates through
program instructions. In our case, the properties of interest will be the values of variables of numerical pro-
grams at each point of the program, considered both in real and floating-point numbers, and a decomposition
of the discrepancy between these values.

The following step is to abstract this concrete semantics, that is to define a sound approximation of this
concrete semantics, on which the property of interest (here over-approximations of values of variables and
rounding errors) can be automatically inferred on programs. The abstract domain defines this approximation
of discrete values. Abstract operators, that allow to compute sound abstractions of transfer functions must be
defined. Finally, a partial order is needed, allowing to compare, join and intersect abstract elements: we will
compute safety properties of programs, that is invariants, obtained by fixpoint computations in this partially
ordered structures; a key point of abstract interpretation is that fixpoints of the concrete semantics can be
soundly approximated in the abstract world, thus allowing the design of fully automatic abstract interpreters.
Finally, abstract operators, that allow to compute sound abstractions of transfer functions, must be defined.

When using set-based methods, such as affine arithmetic, the abstract arithmetic operators will naturally
follow from the guaranteed computation that was defined for use in numerical analysis. The difficulty is
to define a partially ordered structure, on which abstract elements can be compared, and join and meet
operations defined.

The abstract interpretation framework Classic abstract interpretation relies on Galois connections be-
tween partially ordered sets: a Galois connection between two partially ordered sets (D[,⊆[) and (D],⊆])
is a function pair (α, γ) such that

1. α : D[ → D] is monotonic,

2. γ : D] → D[ is monotonic,

3. ∀(x[, x]) ∈ D[ ×D], α(x[) ⊆] x] ⇔ x[ ⊆[ γ(x])

In this definition, D[ is the concrete domain, D] the abstract domain, α the abstraction function, and γ the
concretization function. Here, α(x[) is the best abstraction for x[, and α(x[) ⊆] x] formalizes the fact that
x] is a sound abstraction for x[.

Let then f [ be an operator on the concrete domain. The best abstraction of f [ is α ◦ f [ ◦ γ, and a sound
abstraction for f [ is any operator f ] such that for all x] ∈ D], (α ◦ f [ ◦ γ)(x]) ⊆] f ](x]).

This framework is well suited to some abstractions, such as intervals. However, it is sometimes too
restrictive, as, for instance, there is sometimes no best abstraction of a concrete element. This will be the
case for the affine arithmetic based abstract domains, and we will use a relaxed framework [40], which
allows to rely on a concretization function only. We will see that the concretization function by which our
abstraction by affine sets is defined, is the zonotope defining the inputs and variables of the program. And
indeed, the union of two zonotopes is not a zonotope, and neither is the intersection of zonotopes.
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Here, a concretization function from the abstract domain (D],⊆]) to the concrete domain (D[,⊆[),
these domains being posets, is simply a monotonic function γ : D] → D[. The abstract value x] is a sound
abstraction for x[ if x[ ⊆[ γ(x]). The abstract operator f ] is a sound abstraction for the concrete operator f [

if for all x] ∈ D], (f [ ◦ γ)(x]) ⊆[ (γ ◦ f ])(x]). There are no best values and operators abstraction. While
in the Galois connection framework, if the best operator abstractions are used, the accuracy of an abstract
domain is directly related to the accuracy of its concretization function, this is no longer the case here.

Numerical abstract domains The more basic abstract domains are non relational: they abstract inde-
pendently the value of each variable. Intervals are a typical example of a non relational abstract domains.
Relational abstract domains additionally abstract some relations between variables. A number of relational
abstract domains have been defined, relying on concretization functions, that is ranges for values of tu-
ples of variables, giving particular polyhedra. The first of these domains is the general convex polyhedra
(
∑

k akxk ≤ c) abstract domain [44], discovering invariant linear inequalities among numerical variables
of a program. In order to find trade-offs between cost and accuracy, were introduced particular polyhe-
dra for which efficient abstract operators could be designed, among which zones (x − y ≤ c) [128],
octagons (±x ± y ≤ c) [129], polyhedra with two variables per equality (ax + by ≤ c) [152], oc-
tahedra (±xj ± . . . ± xk ≥ c) [31], pentagons (a ≤ x ≤ b ∧ x ≤ y) [119], or sub-polyhedra
(a ≤ x ≤ b ∧

∑
k akxk = c) [116]. Another way to yield a scalable analysis is to fix the coefficients ak in∑

k akxk ≤ c: this is the starting idea of the template polyhedra [147]. The implementation of polyhedral
abstract domains in finite precision may need some precaution [28]: part of the interest of interval polyhedra
(
∑

k[ak, bk]xk ≤ c) [29] is to address this issue. The concrete semantics of a program often involves non-
convex behaviors, in particular in the case of conditional branch statements. Designing possibly non-convex
abstractions is thus of interest. Interval polyhedra have non convex concretization, and so have min and max
invariants on max-plus polyhedra (max(λ0, x1 + λ1, . . . , xn + λn) ≤ max(µ0, x1 + µ1, . . . , xn + µn) and
min(λ′0, x1 + λ′1, . . . , xn + λ′n) ≤ min(µ′0, x1 + µ′1, . . . , xn + µ′n)) [4], that are well suited for handling
disjunctions as in algorithms on strings or arrays. Some of these abstract domains aim at capturing specific
patterns or behaviors, such as for instance the relation to a loop counter [50], the output of order 2 linear
filters [49], or linear absolute value relations (

∑
k akxk +

∑
k bk|xk| ≤ c) [30]. Designing a static analyzer

relying on such abstract domains thus requires to combine these abstract domains [43], in order to be able
to handle sufficiently general programs.

We proposed a new class of abstract domains, all connected to affine forms, that are sufficiently non-
specialized to handle a large class of programs, and which accuracy can be parameterized.

Zonotopic abstract domains The concretization function of affine sets - our affine arithmetic based ab-
stract domains - is the zonotope including the inputs and variables of the program: the parameterization of
zonotopes by affine forms defines a functional abstraction, providing linearized input-output relations. Al-
though yielding sub-polyhedric relations only, the comparison of its accuracy to the accuracy of polyhedra
is not straightforward, as the non linear operations can be very conveniently abstracted by first-order Taylor
expansions. Indeed, the accuracy of abstract domains cannot be compared solely based on their geometric
shapes, as would be tempting to do, but depends on the accuracy of operator abstractions.

The main difficulty, as we will see, was to propose efficient set-theoretic operations. This required
several steps: a first ordered structure was proposed in 2006 [81], improved in preprints [83, 84], then
enhanced with a meet operation [65]. This meet operation was handled by a particular logical product [91]
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between the affine sets and an abstract domain on the noise symbols that play a role in the affine sets: this
was the subject of the PhD thesis of Khalil Ghorbal that I co-supervised. In this case, the concretization of
an abstract element is no longer a zonotope, but a more general polyhedron. Affine sets can then be extended
quite easily to handle floating-point computations. We will also demonstrate how these domains can be used
also for the analysis of sensitivity to input uncertainties, or the proof of functional properties of numerical
programs.

Zonotopes are also successfully used in reachability analysis of hybrid systems [66]. Of course, the
same problem of computing unions of zonotopes, and intersections of zonotopes with guards arises [67, 5].

Refining the results An issue of abstract interpretation is the possibility of so-called false alarms: when
the analysis is not able to conclude about some property, or gives possibly larger than expected values or
rounding errors for a program variable, how does the user know if the program can indeed lead to some
erroneous behavior, or if the accuracy of the analysis is at stake? Building abstract domains that are always
more accurate can only be a partial answer. In that purpose, we recently started, in the frame of the ANR
project CPP7 (Confidence, Proof, Probability), some work allowing to combine some deterministic and
probabilistic information [20, 21], when for instance inputs or parameters of a program are only imperfectly
known, but with more information than just a range: we combine this information, using a combination
of probability boxes [53] and more precisely Dempster-Shafer structures [151] with affine sets. In the
future, this can be used to compute sound abstractions of some statistical characteristics of uncertainties of
the outputs of some algorithm: for instance, in many cases, on top of giving a guaranteed range, we will
be able to say that the extreme values will be reached with extremely low probability. We hope to draw
some inspiration from the work on stochastic analysis of uncertainties in numerical programs, for instance
as treated in the MASCOT-NUM8 (Stochastic Analysis Methods for Numerical Programs and Treatments)
research group.

A further solution to complement the information given by over-approximations, is to compute under-
approximations, that is sets of values which we know are reached for some sets of inputs within the specifi-
cation of the inputs. Kaucher arithmetic [106] was designed in order to compute such under-approximations,
but its scope of application is limited. Building on affine sets and recent work revisiting modal intervals and
Kaucher arithmetic [69], we proposed in 2007 [82] an abstract domain to compute under-approximation of
real values of variables. The distance between under and over approximations allows us to qualify the quality
of the analysis. Moreover, as we will see, this under-approximation gives a way to define test cases that aim
at reaching values close to the maximum values of given variables. I co-supervise a PhD student funded by a
Digiteo DIM LSC9 project, SANSCRIT, on these under-approximations, their extension for finite precision
computations, and their application to robust control. This cross-fertilization between guaranteed compu-
tation and static analysis for numerical programs can hopefully benefit to each community. This is also
among the aims of other projects in which I took part, such as the ANR project ASOPT10 (Static analysis
and Optimisation) and the Digiteo DIM LSC project PASO (Proof, Static Analysis and Optimisation).

7CPP (Confidence Proof Probability), ANR 2009-2012, http://www.lix.polytechnique.fr/ bouissou/cpp/
8GdR MASCOT NUM (Methods of stochastic analysis of codes and numerical treatments), http://www.gdr-mascotnum.fr/
9Digiteo research program: Software and Complex Systems, http://www.digiteo.fr/Digiteo dim lsc/

10ASOPT (Analyse Statique et OPTimisation), ANR Arpege 2008, http://asopt.inrialpes.fr/index.php/
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Fixpoint computation As already stated, invariants of the program are computed as fixpoints of the func-
tional describing the behavior of the program. More specifically, we are interested in the least fixpoint
greater than the initial state.

A fixpoint of an operator f is an element x such that f(x) = x. Let lfpxf denote the least fixpoint, if
it exists, of f larger than x. Let D] a complete lattice and f ] a sound abstraction of the concrete function.
The least fixpoint over the concrete domain can be soundly abstracted in the abstract domain, and Kleene’s
theorem gives a constructive way to compute these abstract least fixpoint: if f ] is monotonic, then the
Kleene iteration x]i+1 = f ](x]i) converges towards lfp

x]0
f ]. However, if D] has infinite increasing chains,

this iteration can take infinite time. A way of getting an over-approximation of the fixpoint in finite time in
the general case is to use widening operators [38, 40], that is operators ∇] that compute an upper bound of
two elements, such that the increasing chain y]0 = x]0, y

]
i+1 = yi∇]f ](y]i ) reaches a post fixpoint y]n (such

that f ](y]n) ⊆] y]n) after a finite time.
In our case, where we are not in complete lattices, we will however still use Kleene-like iterations

with potentially a final widening to intervals, which will allow us to compute post fixpoints. One of the
issues in static analysis is to be able to compute these fixpoints efficiently. A first question, which we
partially answered, is on which classes of programs Kleene-like iterations with domains of affine sets give
finite fixpoints. Some particular chaotic iterations can also improve these computations. However, Kleene
iterations with numerical convergence accelerations and widening, can be quite slow. I participated to the
introduction for static analysis of policy iteration methods, for the domain of intervals [37]. They were since
extended to other abstract domains, and we are currently working on their extension for affine sets domains.

1.3 Analyzing real life programs

I implemented these abstract domains, worked on improvements of fixpoint computations, and experimented
different ideas in the FLUCTUAT analyzer, starting from an emerging analyzer [75]. We carried out numer-
ous case studies, on programs from the aeronautic and nuclear industries, for Airbus and IRSN, but also
for Hispano-Suiza, Dassault aviation, EADS Astrium, Delphi, Continental, MBDA, Thales Avionics and
Sagem. These case studies lead to joint papers [87, 46, 19], but also triggered new developments and ideas.
They were conducted either through direct contracts or projects such as MODRIVAL11 or EDONA12 from
the SYSTEMATIC pole, the ITI project of the European Space Agency SSVAI13, the ITEA 2 European
project ES PASS, or the FP7 European project INTERESTED14.

The design of a pre-industrial static analyzer such as Fluctuat, dedicated to complex properties, does not
only require theoretical work and new abstract domains, but also a lot of everyday work to build a methodol-
ogy that makes its use accessible to end-users. Interactions with these end-users lead us to gradually define
a substantial assertion language, for instance allowing interactions with a continuous environment, but also
for instance test case generation or proof of functional properties. The large quantity of information avail-
able for an analysis also required some thinking for the user interface. A glimpse of these aspects will be
given in Chapter 5, but the reader can also refer to the Fluctuat user manual [88].

11MODRIVAL (2006-2008), Usine Logicielle, SYSTEMATIC pole, http://www.usine-logicielle.org/
12EDONA (2007-2009), SYSTEMATIC pole, http://www.edona.fr/
13SSVAI (Space Software Validation using Abstract Interpretation), ITI project from ESA (2007-2008)
14INTERESTED (2008-2010), FP7 European project, http://www.interested-ip.eu/
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1.4 Organization of the document

This document synthesizes my work since I started at CEA-LIST, after my PhD, and mainly relies on
selected parts of my publications during these years. Chapter 2 presents different numerical abstract domains
relying on affine sets for semantics in real numbers [81, 64, 65, 83, 84]. Chapter 3 quickly describes two
extensions of affine sets [82, 21]. Chapter 4 then discusses the crucial issue of fixpoint computations,
and quickly describes a new method [37] based on policy iteration. Chapter 5 presents the Fluctuat static
analyzer, with an emphasis on the extension of the affine sets abstract domains to handle finite precision
and the case studies conducted with it [77, 80, 85, 79, 87, 46, 19, 22]. I conclude in Chapter 6 with some
perspectives on the future of static analysis of numerical programs.



Chapter 2

Zonotopic Abstract Domains for Functional
Abstraction

In this chapter, we describe the zonotopic abstract domains we developed between 2003 and today for the
analysis of numerical properties of programs. These abstract domains are based on affine arithmetic [45],
a more accurate version of interval arithmetic, that propagates affine correlations between variables. If
computations rely on finite precision, these correlations do no longer hold exactly, but only approximately
so. However, accurate abstractions are necessarily relational, that is have to capture relations between
program variables. Even in order to abstract finite precision behavior, we thus have to start from a good
abstraction of the corresponding idealized computations in real values. This is all the more the case if, like
it is the case here, we want to compare the finite precision with the idealized computation. Chronologically,
we first proposed to use affine arithmetic to improve the estimation of the propagation of rounding errors [80,
78], before deciding to concentrate on variables value [81]. This lead us to go in depth into the definition
of a suitable ordered structure with efficient and accurate join and meet operators [83, 64, 84, 65], an aspect
which is of primary importance for a use in static analysis.

We will first discuss in the present chapter these abstract domains for the analysis of programs operating
on real-values variables, as we presented them in [83, 64, 84, 65]. The extension of these abstract domains
to finite precision analysis will then be discussed in Chapter 5.

Classic relational abstract domains most often have abstract values which concretization are sub-
polyhedra. The abstract domains we developed make no exception. We define abstract elements as tuples of
affine forms, which we call affine sets; they describe particular polytopes, called zonotopes [160], which are
bounded and center-symmetric. But these zonotopes are also explicitly parameterized, as affine combina-
tions of symbolic variables, called noise symbols, that stand for uncertainties in inputs and parameters of the
program, or approximations in the analysis. The affine sets then define a sound abstraction of relations that
hold between the current values of the variables, for each control point, and the inputs of a program. This
leads us to domains where abstract values are seen less as geometric envelopes than as enclosures of sets of
functional behaviors in the sense of Jeannet et al. [102], providing linearized input-output relations, at low
cost. The interests of such relations for static analysis are well-known [41], we mention but a few. We can
design precise compositional inter-procedural abstractions, making our domain very scalable as we recently
described [89], and sketched in Section 2.2.4. This information can also be used for proofs of complex
invariants (involving relations between inputs and outputs), sensitivity analysis and test case generation, as

17
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we will demonstrate in Section 3.1.2 and in Chapter 5 devoted to Fluctuat.
We will present in this chapter the abstract domain we built on this arithmetic and highlight the difficult

points we are still working on, such as the join operator. Experimental results with its implementation in the
Fluctuat analyzer will be mostly left for Chapter 5. More exploratory variations on this abstract domain will
be discussed in Chapter 3.

Related work

Affine arithmetic and self validated methods Affine arithmetic, like interval arithmetic, has been
introduced as a model for self-validated numerical analysis, also known as reliable or guaranteed computing.
The aim in that context is to compute sets of values that are guaranteed to contain the real result, even when
computing in finite precision, the reader can refer to Rump’s recent survey paper [144].

The first important developments of interval arithmetic began in the 60’s with Moore’s work [134, 133].
The underlying idea is to compute the result of a function or a program no longer with numbers, but with
intervals of numbers, often defined by their two bounds. Computations can thus be extended on intervals in
such a way that an enclosure which is guaranteed to contain the exact result is obtained. For static analysis,
where the aim is to prove some behavior of a program, one of the first numerical abstract domains [38] indeed
relies on interval arithmetic. However, if applied by a direct extension of elementary operations to their
interval counterpart, as is the natural way to apply it in static analysis for instance, the enclosure obtained is
often too large. One of the main problem is that two correlated variables (for instance having same value in
an interval) are treated as completely uncorrelated in interval arithmetic. Several improvements of interval
arithmetic were proposed, among which affine arithmetic [33, 45], initially introduced for computer graphics
applications. Among other such more accurate methods, we can also mention Hansen’s generalized interval
arithmetic [94], Taylor model methods [12, 120] (affine arithmetic is comparable, though better, to a first
order Taylor method) or ellipsoidal arithmetic [137, 108, 136].

Zonotopes The concretization of an abstract element defined by affine forms is a zonotope. A large
amount of work has been carried out using zonotopes, mostly in control theory [107, 34, 3, 35] and for
reachability analysis in hybrid systems [66]. But in general, in hybrid systems analysis, no union operator
is defined, whereas it is an essential feature of our work. Also, the methods used are purely geometrical: no
information is kept concerning input/output relationships, e.g. as witnessed by the methods used for com-
puting intersections [67]. Zonotopes have also been used in imaging, in collision detection for instance [90],
where purely geometrical joins have been defined.

Contents

In Section 2.1, we quickly introduce the principles of affine arithmetic, and the link to zonotopes. We
then describe in Section 2.2 the steps towards defining an abstract domain relying on this arithmetic: we
will first, in Subsection 2.2.1, differentiate noise symbols that correspond to uncertainty on inputs, from
noise symbols that are introduced to handle uncertainty in the analysis - this underlies a functional input-
output abstraction - and define and characterize a functional order; then, in Subsection 2.2.2, we will shortly
introduce constrained affine sets, that allow us to interpret tests; the join operator is then discussed, before
hinting in Subsection 2.2.4 at the use of our abstract domain for modular analysis. We finally conclude with
some short experiments.
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2.1 Affine arithmetic and zonotopes

2.1.1 Affine arithmetic

Affine arithmetic is an extension of interval arithmetic introduced in 1993 in the context of computer graph-
ics by Comba and Stolfi [33]. It operates over affine forms, that is affine combinations of some primitive
variables called noise symbols, which stand for sources of uncertainty in the data or due to approximations
made during the computation. It automatically derives first-order guaranteed approximations of arithmetic
expressions, thus being especially well suited in the approximation of the enclosure of smooth functions.

An affine form is defined as a formal sum over a set of noise symbols εi

x̂
def
= αx0 +

n∑
i=1

αxi εi,

with αxi ∈ R for all i. Each noise symbol εi stands for an independent component of the total uncertainty
on the quantity x̂, its value is unknown but bounded in [-1,1]; the corresponding coefficient αxi is a known
real value, which gives the magnitude of that component. The same noise symbol can be shared by several
forms, indicating correlations among them. These noise symbols can not only model uncertainty in data
or parameters, but also uncertainty coming from computation. This last point is one more interest of affine
arithmetic compared to interval arithmetic: it allows one to control the over-approximation due to the use of
finite precision in the implementation of the analysis, while keeping a sound implementation.

In all the document, we will use the usual convention, that note affine forms by letters topped by a hat
symbol. The set of values that a variable x defined by an affine form x̂ can take, lies in the interval

[αx0 −
n∑
i=1

|αxi |, αx0 +
n∑
i=1

|αxi |].

The assignment of a variable x whose value is given in a range [a, b], introduces a fresh noise symbol
εi :

x̂ =
(a+ b)

2
+

(b− a)

2
εi.

Affine forms are closed by affine operations: for two affine forms x̂ and ŷ, and a real number r, we get

x̂+ rŷ = (αx0 + rαy0) +

n∑
i=1

(αxi + rαyi )εi

For non affine operations, we select an approximate linear resulting form. Bounds for the error com-
mitted using this approximate form are computed, and using these bounds a new noise term is added to the
linear form. For instance, the non-affine part of the multiplication of x̂ and ŷ, defined on the set of noise
symbols ε1, . . . , εn, can be over-approximated by

n∑
i=1

|αxi α
y
i |[0, 1] +

∑
1≤i<j≤n

|αxi α
y
j + αxjα

y
i |[−1, 1].
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Introducing a new noise symbol εn+1, we then write

x̂×ŷ =

(
αx0α

y
0 +

1

2

n∑
i=1

|αxi α
y
i |

)
+

n∑
i=1

(αxi α
y
0 + αyi α

x
0) εi+

1

2

n∑
i=1

|αxi α
y
i |+

∑
1≤i<j≤n

|αxi α
y
j + αxjα

y
i |

 εn+1.

Example 1 Let us detail the interpretation of the program of example 1 with affine arithmetic.

1 r e a l a = [−2 ,0];
2 r e a l b = [ 1 , 3 ] ;
3 r e a l x = a + b ;
4 r e a l y = −a ;
5 r e a l z = x ∗ y ;

The assignments of a and b to a possible range of value create new noise symbols, say ε1 and ε2: â = −1+ε1

and b̂ = 2 + ε2. Affine expressions are handled exactly, that is we get x̂ = 1 + ε1 + ε2 and ŷ = 1− ε1. The
multiplication produces a new noise symbol, say ε3, and we get ẑ = 0.5 + ε2 + 1.5ε3. The range of z given
by this affine form is [−2, 3] while the exact range is [−2, 2.25], and with interval arithmetic, z can only be
proved to be in [−2, 6].

We could compute a more accurate approximate form for z, using semi-definite programming, but our
experiments [64] showed that this improvement is in general not worth the additional computational price.

Different semantics have been given and studied for the non-affine arithmetic operations, but this is not
central here. We will mostly focus on the use of affine arithmetic in static analysis, and more precisely the
definition of an ordered structure.

2.1.2 Affine sets and zonotopes

In what follows, we introduce matrix notations to handle tuples of affine forms, which we call affine sets.
We then characterize the geometric concretization of sets of values taken by these affine sets.

We noteM(n, p) the space of matrices with n lines and p columns of real coefficients. An affine set
expressing the set of values taken by p variables over n noise symbols εi, 1 ≤ i ≤ n, can be represented by
a matrix A ∈ M(n + 1, p). When these matrices represent affine spaces such as is the case in this section,
we will number their rows starting from 0, while their columns start from 1. For A ∈M(n+ 1, p), we note
A+ ∈ M(n, p) the matrix obtained by keeping all lines but the first one. Finally, for a vector e ∈ Rn, we
will need its l∞ and l1 norms, defined by

‖e‖∞ = max
1≤i≤n

|ei| and ‖e‖1 =
n∑
i=1

|ei|.

Example 2 Consider the affine set

x̂ = 20− 4ε1 + 2ε3 + 3ε4 (2.1)

ŷ = 10− 2ε1 + ε2 − ε4, (2.2)

we have n = 4, p = 2 and : tA =

(
20 −4 0 2 3
10 −2 1 0 −1

)
.
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We formally define the concretization of affine sets by :

Definition 1 (Geometric concretization) Let an affine set with p variables over n noise symbols, defined
by a matrix A ∈M(n+ 1, p). Its geometric concretization is the zonotope

γ(A) =

{
tA

(
1
e

)
| e ∈ Rn, ‖e‖∞ ≤ 1

}
⊆ Rp.

A zonotope [160] defining p variables over n noise symbols, is the affine image of a n-hypercube in
a p-dimensional space: it is a center-symmetric bounded convex polyhedra, which faces are zonotopes of
lower dimension.

Example 3 For instance, Figure 2.1 represents the concretization of the affine set defined by (2.1) and
(2.2). It is a zonotope, with center (20, 10) given by the vector of constant coefficients of the affine forms.
A zonotope inM(n+ 1, p) can also be seen as the Minkowski sum of n segments in Rp: for instance here,
n = 4 and p = 2, we represent in Figure 2.2 the steps of the construction of the zonotope of Figure 2.1,
taking n = 1, n = 2, n = 3. Direction ai is given by the i+ 1-th line of matrix A.

x

y

10 15 20 25 30
5

10

15

Figure 2.1: Geometric concretization γ(A) of affine set {(2.1)-(2.2)}

Definition 2 (Linear concretization) Let an affine set defined by matrix A ∈ M(n, p). We call its linear
concretization the zonotope centered on 0

γlin(A) =
{
tAe | e ∈ Rn, ‖e‖∞ ≤ 1

}
⊆ Rp.
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−a2
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a3−a3

15 20 25
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Figure 2.2: Construction of the geometric concretization of affine set {(2.1)-(2.2)}: from left to right, n
from 1 to 3
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The definition and study of these concretization and linear concretization will be both useful, as the
concretization of an element X of our abstract domain will be the Minkowski sum of a central zonotope
γ(CX) and a perturbation zonotope centered on 0, γlin(PX). There is an easy way to characterize the linear
concretization γlin(A):

Lemma 1 For matrices X ∈ M(nx, p) and Y ∈ M(ny, p), we have γlin(X) ⊆ γlin(Y ) if and only if
‖Xu‖1 ≤ ‖Y u‖1 for all u ∈ Rp.

The following lemma now characterizes the geometric ordering on zonotopes, i.e. extends the result of
the previous lemma to zonotopes that are no longer centered on zero:

Lemma 2 For matrices X ∈ M(nx + 1, p) and Y ∈ M(ny + 1, p), γ(X) ⊆ γ(Y ) if and only if, for all
u ∈ Rp, ∣∣∣∣∣

p∑
i=1

(y0,i − x0,i)ui

∣∣∣∣∣ ≤ ‖Y+u‖1 − ‖X+u‖1

As for polyhedra, there is no pseudo-inverse α to this “concretization” operation, γ, i.e. there is no best
over-approximation of a set of points in Rn by a zonotope. The abstract interpretation we can define with
zonotopes is thus concretization-based, but not based on a Galois connection [40].

2.2 An ordered structure for functional abstraction

Static analysis by abstract interpretation requires the underlying abstract domain to be an ordered structure.
For instance, intervals, where an interval [a, b] with a > b represents the empty interval, and with

[a, b] ⊆ [c, d] ⇔ a ≤ c and d ≤ b
[a, b] ∪ [c, d] = [min(a, c),max(b, d)]

[a, b] ∩ [c, d] = [max(a, c),min(b, d)]

is a complete lattice. The situation with affine sets is more problematic, as the union of two zonotopes is in
general not a zonotope, and neither is the intersection of two zonotopes.

A first idea to build an ordered structure on affine sets, is to transpose the order and join operations
from intervals to the affine sets, by defining affine sets with interval coefficients, and defining the lattice
operations component-wise on these coefficients. This would be sound and presents the interest of handling
in a trivial way the implementation in finite precision of affine sets. However, we would lose much of the
interest of affine forms, and again come across the problem of loss of correlation inherent to intervals.

Another natural idea is to define the order on affine sets by the inclusion order on the corresponding
geometric concretization as zonotopes, that is X ≤ Y iff γ(X) ⊆ γ(Y ). We do not make this choice,
as we want an abstraction that expresses input/output dependencies. We will thus define a stronger order
on affine sets, which preserves this functional abstraction: it will express the inclusion order on the geo-
metric concretization of the affine set augmented by the inputs of the program. For that, we will introduce
perturbed affine sets, on which we define this (pre-)order relation and a join operator. The intersection of
zonotopes, or of a zonotope and a hyper-plane cannot generally well represented as a zonotope, we will thus
then introduce constrained affine sets, that allow to interpret tests quite naturally. Affine arithmetic can be
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naturally extended to define abstract transformers for arithmetic operations for constrained affine sets, this
is not detailed here. Finally, as a natural application, we demonstrate that this abstract domain is well suited
to be used for an accurate modular analysis. For details and proofs on the results stated in this section, we
refer the reader to [83, 84, 65, 89, 74].

2.2.1 Perturbed affine sets and functional order

As stated in Section 2.1, noise symbols in affine arithmetic model uncertainty both on the inputs and on the
analysis: in order to define a functional abstraction, we will for now on distinguish these two kinds of noise
symbols:

• the noise symbols that correspond to uncertain inputs will be called central noise symbols and noted
εi. They model uncertainty in data or parameters, and are used to produce input-output relations.

• the noise symbols handling the uncertainty due to the analysis will be called perturbation noise sym-
bols and noted ηj . We will have more flexibility on these symbols as they do not have any meaning in
terms of input-output relations.

Example 4 For instance, the multiplication in example 1 yields a symbol η1 instead of a ε3: we have
z = 0.5 + ε2 + 1.5η1, where 0.5 + ε2 indicates the linearized correlation to the input, while 1.5η1 indicates
the possible perturbation from this linearized form.

Definition 3 (Perturbed affine sets) We define a perturbed affine set X , expressing p variables over n
central noise symbols and m perturbation noise symbols by the pair of matrices (CX , PX) ∈ M(n +
1, p)×M(m, p). The kth variable of X is described by

x̂k = cX0k +
n∑
i=1

cXikεi +
m∑
j=1

pXjkηj .

In what follows, we will always handle perturbed affine sets, but, for more simplicity, simply call them affine
sets.

The geometric concretization of perturbed affine sets X is thus defined as the Minkowski sum [11] of a
central zonotope γ(CX) and of a perturbation zonotope centered on 0, γlin(PX).

An affine set X = (CX , PX) ∈ M(n+ 1, p)×M(m+ 1, p) over n input noise symbols εi, abstracts
a set of functions of the form x : Rn → Rp, with a relational function-abstraction in the sense of Jeannet
et al. [102]. We write x1, . . . , xp its p components. X gives an over-approximation of the set of values that
(ε1, . . . , εn, x1, . . . , xp) can take conjointly. In terms of sets of functions from Rn to Rp, its concretization
is

γf (X) =

{
f : Rn → Rp | ∀ε ∈ [−1, 1]n, ∃η ∈ [−1, 1]m, f(ε) = tCX

(
1
ε

)
+ tPXη

}
.

The functional order is given naturally, as for any concretization-based abstract interpretation [40], byX ≤f
Y iff γf (X) ⊆ γf (Y ), which is equivalent to γ(X̃) ⊆ γ(Ỹ ), where the augmented zonotope γ(X̃) is defined
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by

X̃ =

 (
t0n
In×n

)
CX

0m×n PX

 (2.3)

with In×n the identity matrix ofM(n, n), 0n the vector with n + 1 components equal to 0, and 0m×n the
null matrix ofM(m,n). γ(X̃) is the zonotope augmented by the input noise symbols.

Now, this order on the augmented zonotopes can be directly reformulated in terms of the current parame-
terization (CX , PX) of abstract values for variables x1, . . . , xp, as formalized in Definition 4 and Lemma 3:

Definition 4 (Order relation) Let two affine sets over p variables, n input noise symbols and m perturba-
tion noise symbols, X = (CX , PX) and Y = (CY , P Y ) inM(n+ 1, p)×M(m, p). We say that X ≤ Y
iff

sup
u∈Rp

(
‖(CY − CX)u‖1 + ‖PXu‖1 − ‖P Y u‖1

)
≤ 0

Lemma 3 The binary relation ≤ of Definition 4 is a pre-order, and we have

• X ≤ Y is equivalent to X ≤f Y ,

• X ≤ Y always implies γ(X) ⊆ γ(Y ).

The equivalence relation X ∼ Y generated by this pre-order can be characterized by CX = CY and
γlin(PX) = γlin(P Y ).

We still denote ≤ / ∼ by ≤ in the rest of the text.

Example 5 Consider the two affine sets: X defined by x1 = 1 + ε1 and x2 = 1 + η1, and Y defined by
y1 = 1 + η2 and y2 = 1 + η1. We have

CX =

(
1 1
1 0

)
, PX =

(
0 1
0 0

)
, CY =

(
1 1
0 0

)
, P Y =

(
0 1
1 0

)
.

Their concretizations are the same: γ(X) = γ(Y ) = [0, 3] × [0, 3], and X ≤ Y , but Y 6≤ X . Indeed,
they do not express the same input-output relations: in X , the first variable has direct dependency to the
input represented by ε1, while there is no known dependency in Y , or between Y and the input. Otherwise
stated, the zonotope representing (ε1, x1, x2) is included in the zonotope for (ε1, y1, y2), but the contrary
does not hold: (ε1, x1) is a line while (ε1, y1) is a box. This can also be seen using Definition 4: for all
u = t(u1, u2),

∥∥(CX − CY )u
∥∥

1
+
∥∥P Y u∥∥

1
−
∥∥PXu∥∥

1
=

∥∥∥∥ 0
u1

∥∥∥∥
1

+

∥∥∥∥ u2

u1

∥∥∥∥
1

−
∥∥∥∥ 0
u2

∥∥∥∥
1

= 2 | u1 | .

So ‖(CX − CY )u‖1 + ‖P Y u‖1 − ‖PXu‖1 > 0 for all u = t(u1, u2) such that u1 6= 0.
But we have X ≤ Y : indeed, ‖(CX − CY )u‖1 + ‖PXu‖1 − ‖P Y u‖1 = 0, for all u.

Note that this order is computable:
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Lemma 4 Let two affine sets X = (CX , PX) and Y = (CY , P Y ) inM(n + 1, p) ×M(m, p). The test
X ≤ Y is decidable, with a complexity bounded by a polynomial in p and an exponential in n+m.

Hopefully, there is no need to use this general decision procedure in practice for static analysis. In some
cases, the order on affine sets can be efficiently computed using the order independently on each affine form:

Lemma 5 Let (tk)k=1,...,p an orthonormal (in the sense of the standard scalar product in Rp) basis of Rp,
and X = (CX , PX) and Y = (CY , P Y ) two affine sets, such that PX and P Y are Minkowski sums of
segments λXk tk and λYk tk respectively, where λXk and λYk are any real numbers. Then X ≤ Y if and only if
for all k = 1, . . . , p,

‖(CY − CX)tk‖1 ≤ ‖P Y tk‖1 − ‖PXtk‖1

A particular case is given by t1 = (1, 0, . . . , 0), . . ., tk = (0, . . . , 1, . . . , 0), . . ., tp = (0, . . . , 0, 1), the
canonical basis of Rp: X ≤ Y is equivalent to component-wise inclusion, that is x̂k ≤ ŷk for all k =
1, . . . , p, which can be decided in O((m+ n)p).

In the general case, component-wise inclusion can still be used as a necessary condition for inclusion. So
that the full inclusion will be computed only if this weaker condition is satisfied. Moreover, we will define
a join operator that introduces a box perturbation, so that we will often be able to use this more efficient
criterion.

Example 6 Consider, for all noise symbols in [−1, 1], affine sets X and Y defined by x1 = 1 + ε1, x2 =
1 + ε2, and y1 = 1 + η1, y2 = 1 + η1. We have x1 ≤ y1 and x2 ≤ y2. However we do not have X ≤ Y .
But Z, defined by z1 = 1 + η2 and z2 = 1 + η3, with a box perturbation, is an upper bound of X and Y .

2.2.2 Constrained affine sets: handling zonotopes intersection

There is no natural intersection on zonotopes. We proposed in 2010 [65] in the context of K.Ghorbal’s PhD
thesis, an approach to handle these intersections, introducing an abstract domain on the noise symbols to
take into account the constraints induced by tests. In order to give a short intuition on that approach, let us
consider the following program:

1 x = [ 0 , 1 ] ; / / ( 1 ) x = 0 . 5 + 0 . 5 eps1
2 y = 2∗x ; / / ( 2 ) y = 1 + eps1 i n [ 0 , 2 ]
3 i f ( y >= 1) ( 3 )
4 z = y −x ; ( 4 )

Interpreting this example simply using a reduced product of affine sets with boxes, we have at control
point (3) y = 1 + ε1∩ [1, 2] and x = 0.5 + 0.5ε1. We deduce at control point (4) z = 0.5 + 0.5ε1∩ ([1, 2]−
[0, 1]) ∈ [0, 1]. Indeed, the constraint on y does not influence the value of x.

Now, instead of considering the noise symbols to be always in [−1, 1], we interpret the constraints
introduced by the tests on the noise symbols in an abstract domain, for instance intervals. At point (3) we
now have y = 1 + ε1 and x = 0.5 + 0.5ε1, with ε1 ∈ [0, 1], at point (4) z = 0.5 + 0.5ε1 with ε1 ∈ [0, 1],
and thus z ∈ [0.5, 1].

This can be formalized by introducing the logical product of the domain A1 of perturbed affine sets,
with a lattice (A2,≤2,∪2,∩2) that abstracts the values of the noise symbols εi and ηj . Formally, supposing
that we have n noise symbols εi and m noise symbols ηj , we are given a concretization function γ2 : A2 →
P({1} × Rn × Rm).
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Definition 5 (Constrained affine sets) A constrained affine set U is a pair U = (X,ΦX) where X =
(CX , PX) is an affine set, and ΦX is an element of A2. Equivalently, we write U = (CX , PX ,ΦX).

Abstractions of constraints on the noise symbols can be performed with any abstract domain that will not
make our abstraction too costly, for instance intervals, zones, octagons. Let us now define an order relation
on the product domain A1 × A2. First, X = (CX , PX ,ΦX) ≤ Y = (CY , P Y ,ΦY ) should imply that
ΦX ≤2 ΦY , i.e. the range of values that noise symbols can take in form X is smaller than for Y . Then,
we have to adapt Definition 4 for noise symbols no longer defined in [−1, 1], but in the range of values ΦX

common to X and Y . Noting that:

‖CXu‖1 = sup
εi∈[−1,1]

|〈ε, CXu〉|,

where 〈., .〉 is the standard scalar product of vectors in Rn+1, we define:

Definition 6 (Pre-order on constrained affine sets) LetX and Y be two constrained affine sets expressing
p variables. We say that X ≤ Y iff ΦX ≤2 ΦY and, for all t ∈ Rp,

sup
(ε,−)∈γ2(ΦX)

|〈(CY − CX)t, ε〉| ≤ sup
(−,η)∈γ2(ΦY )

|〈P Y t, η〉| − sup
(−,η)∈γ2(ΦX)

|〈PXt, η〉| .

The binary relation defined in Definition 6 is a pre-order on constrained affine sets which coincides with
Definition 4 in the “unconstrained” case, that is when ΦX = ΦY = [−1, 1]n+m.

Definition 7 Let X be a constrained affine set, expressing p variables. Its concretization in P(Rp) is

γ(X) =
{
tCXε+ tPXη | ε, η ∈ γ2(ΦX)

}
.

As for affine sets, the order relation of Definition 6 is stronger than the geometric order: if X ≤ Y then
γ(X) ⊆ γ(Y ).

In the case of an equality test, we can go further than on inequality tests, and also modify the affine
forms: one of the noise symbols involved in the test can be substituted in the affine sets using the relation
induced by the test. The test will thus be exactly satisfied. Of course, we can also keep these constraints on
noise symbols, in order to use a constraint solver when needed.

Example 7 Consider, with an interval domain for the noise symbols, Z = [[x1 == x2]]X where
ΦX = 1× [−1, 1]× [−1, 1]× [−1, 1]
x̂1 = 4 + ε1 + ε2 + η1, γ(x̂1) = [1, 7]
x̂2 = −ε1 + 3ε2, γ(x̂2) = [−4, 4]

We look for ẑ = x̂1 = x̂2, with ẑ = z0 + z1ε1 + z2ε2 + z3η1. Using x̂1 − x̂2 = 0, i.e.

4 + 2ε1 − 2ε2 + η1 = 0, (2.4)

and substituting η1 in ẑ − x̂1 = 0, we deduce z0 = 4z3, z1 = 2z3 − 1, z2 = −2z3 + 3. The abstraction in
intervals of constraint (2.4) yields tighter bounds on the noise symbols: ΦZ = 1 × [−1,−0.5] × [0.5, 1] ×
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[−1, 0]. We now look for z3 that minimizes the width of the concretization of ẑ, that is 0.5|2z3−1|+ 0.5|3−
2z3| + |z3|. A straightforward O((m + n)2) method to solve the problem evaluates this expression for z3

successively equal to 0, 0.5 and 1.5: the minimum is reached for z3 = 0.5. We then have{
ΦZ = 1× [−1,−0.5]× [0.5, 1]× [−1, 0]
ẑ1 = ẑ2 = 2 + 2ε2 + 0.5η1, γ(ẑ1) = γ(ẑ2) = [2.5, 4]

Note that the concretization γ(ẑ1) = γ(ẑ2) is not only better than the intersection of the concretizations
γ(x̂1) and γ(x̂2) which is [1, 4], but also better than the intersection of the concretization of affine forms
(x̂1) and (x̂2) for noise symbols in ΦZ . Note also that there is not always a unique solution minimizing the
width of the concretization.

Among the interests of this approach of constrained affine sets, we can state two points. It allows to
define abstract values that are no longer necessarily zonotopes. It is also computationally very efficient. For
instance, when expressing a constraint on a possibly complicated expression, we do not have to inverse all
operations in order to propagate the constraints on all variables involved in the expression. This is naturally
done by sharing noise symbols between variables.

More details can be found in our 2010 paper [65] and in K. Ghorbal’s PhD thesis [63].

2.2.3 A join operator

In general, there exists no least upper bound operator on affine sets. We define here a join operator for affine
sets which, in some cases, gives a minimal upper bound, and in any case gives an efficient upper bound
operator. For that, we proceed in two phases:

• We first study the one-dimensional case, that is when at most one component is different in the two
values joined. We define in this case a join operator which gives a minimal upper bound in most cases,
and an upper bound in other cases.

• We then derive a full p-dimensional join operator on affine sets, using either component-wise the
one-dimensional join, or affine relations between program variables common to the abstract values
joined.

We restrict ourselves here to partial results, mostly in the unconstrained case. More details can be found
in preprints [83, 84], and for the constrained case to our 2010 paper [65] and to Khalil Ghorbal’s PhD
thesis [63], which studies this problem in detail.

Note that we could also have defined upper bounds by using geometric join operations on the aug-
mented zonotopes. But these are costly operations in general, the approach we propose is both efficient and
convenient to use in order to propagate input-output relations.

Let us first recall the definition of a minimal upper bound (mub):

Definition 8 (Minimal upper bound) Let v be a partial order on a set X . We say that z is a mub of two
elements x, y of X if and only if

• z is an upper bound of x and y, i.e. x v z and y v z,

• for all z′ upper bound of x and y, z′ v z implies z = z′.
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The one-dimensional case

We will use the following definitions to (partially) characterize minimal upper bounds in the one-
dimensional case:

Definition 9 (Generic positions) Let x and y be two intervals. We say that x and y are in generic positions
if, whenever x ⊆ y, inf x = inf y or supx = supy. By extension, we say that two affine forms x̂ and ŷ are
in generic position when γ(x̂) and γ(ŷ) are intervals in generic positions.

For two real numbers α and β, let α ∧ β denote their minimum and α ∨ β their maximum. We define

argmin|.|(α, β) = {γ ∈ [α ∧ β, α ∨ β], |γ| minimal}

The one-dimensional join computes in O(n + m) time, a mub in some cases, or a tight upper bound in
all cases:

Definition 10 (One-dimensional join) Let two affine sets X and Y inM(n + 1, p) ×M(m, p) such that
at least p − 1 components (or variable values) are equal: for all l ∈ [1, p], l 6= k, x̂l = ŷl. We define
Z = X t1 Y by:
- if X ⊆ Y then Z = Y else if Y ⊆ X then Z = X
- else for all l ∈ [1, p], l 6= k, ẑl = x̂l = ŷl and ẑk = x̂k t1 ŷk is defined by:

• cZ0,k = mid (γ(x̂k) ∪ γ(ŷk))

• cZi,k = argmin|.|(c
X
i,k, c

Y
i,k), ∀i = 1 ∈ [1, n]

• pZj,k = argmin|.|(p
X
j,k, p

Y
j,k), ∀j ∈ [1,m]

• pZm+k,k = sup γ(x̂k) ∪ γ(ŷk)− cZ0,k −
∑n

i=1 |cZi,k| −
∑m

j=1 |pZj,k|

• pZm+k,l = 0, ∀l ∈ [1, p], l 6= k

Lemma 6 Under the hypotheses of Definition 10, Z = X t1 Y is an upper bound of X and Y such that,
considering the interval concretizations, γ(ẑk) = γ(x̂k)∪γ(ŷk). And it is a minimal upper bound whenever
γ(x̂k) and γ(ŷk) are in generic positions.

In words, the center of the affine form ẑk is taken as the center of the concretizations of the two affine forms
x̂k and ŷk. Then the coefficients of ẑk over the noise symbols present in x̂k and ŷk, are chosen to express
the smallest dependency common to x̂k and ŷk. Finally we add a new noise term pZm+k,kηm+k to account
for the uncertainty due to the join operation.

This operator has the advantages of presenting a simple and explicit formulation, a stable concretization
with respect to the operands, and of being associative. And indeed, the solution with minimal interval
concretization is particularly interesting for its stability when computing fixpoints in loops, as we will see
in Theorem 20.

Example 8 Take X : (x̂1 = 1 + ε1, x̂2 = ε1) and Y : (ŷ1 = 2ε1, ŷ2 = ε1). We have γ(x̂1) = [0, 2] and
γ(ŷ1) = [−2, 2], so that x̂1 and ŷ1 are in generic positions. Then Z = X t1 Y : (ẑ1 = ε1 + η1, ẑ2 = ε1) is
a minimal upper bound of X and Y .
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Example 9 Now take X : (x̂1 = 1 + ε1) and Y : (ŷ = 4ε1), this time γ(x̂) and γ(ŷ) are not in generic
positions. The join of Definition 10 still gives an upper bound: Z : (ẑ = ε1 + 3η1), but it is not a minimal
upper bound. For instance W : (ŵ = 2ε1 + 2η1) is also an upper bound, and we have W ⊆ Z.

Indeed, we can also characterize minimal upper bounds in the non generic case, but for simplicity’s sake
we omit them here. Moreover, these minimal upper bounds may be less interesting in many applications
than the upper bound defined here, because they keep more noise symbols in the affine sets, so that the
computational cost will be higher.

This one-dimensional join operator generalizes to constrained affine sets where noise symbols are ab-
stracted using intervals, except that some attention must be paid to the relative positions of the ranges of
noise symbols. Let us consider two constrained affine sets (X,ΦX) and (Y,ΦY ) where at least p− 1 com-
ponents of X and Y are equal. A minimal upper bound (Z,ΦZ) of (X,ΦX) and (Y,ΦY ) is obtained by
joining the interval ranges of the noise symbols, ΦZ = ΦX t ΦY , and using the property that a sufficient
condition for (Z,ΦZ) to be a minimal upper bound is to enforce a minimal concretization for the compo-
nent k on which the join is performed, that is, on interval concretizations, γ(ẑk) = γ(x̂k) ∪ γ(ŷk), and then
minimize the perturbation term among upper bounds with this concretization. This underlies the algorithm
that is described in our 2010 paper [65] and K. Ghorbal’s PhD thesis, and which computes a minimal upper
bound in some cases, and else an upper bound with minimal concretization.

Component-wise join operator for affine sets

We can extend this one-dimensional operator in order to obtain a p-dimensional join operator, when all
dimensions of the affine sets are joined.

Definition 11 (Component-wise join) Let two affine sets X and Y inM(n+ 1, p)×M(m, p). We define
Z = X tC Y by: for all k ∈ [1, p], ẑk = x̂k t1 ŷk.

Lemma 7 Then Z = X tC Y is an upper bound of X and Y such that, for all k ∈ [1, p], if x̂k and ŷk are
in generic positions, then γ(ẑk) = γ(x̂k) t γ(ŷk).

Intuitively, we independently compute an upper bound on each variable xk of the environment, using the
one-dimensional join. The perturbation added to take into account the uncertainty due to the join is a
diagonal block p× p: a new noise symbol ηm+k is added for each variable xk, and these new noise symbols
are not shared. This join operator thus loses some relation that may exist between variables. However, the
concretizations on each axis (i.e. the immediate concretization of all program variables) are optimal. and its
cost of computation is O((n+m)p) only.

Example 10 Consider

X =

(
1 + ε1 + ε3

1 + 2ε2 + ε3

)
Y =

(
−2 + ε1

−2 + 2ε2

)
Z =

(
ε1 + 2η1

2ε2 + 2η2

)
Z = X tC Y , given by Definition 11, is an upper bound for X and Y . But it is not a minimal upper bound:

W =

(
ε1 + 2η1

2ε2 + 2η1

)
is also an upper bound, and it is such that W ⊆ Z.
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We see that a better upper bound is obtained by using the fact that there is some dependency on the
terms (η) expressing the uncertainty of control flow added on each variable. So that applying the join
operator component-wise on each variable naturally loses some precision. This observation is at the origin
of the improved (global) join operator of the next paragraph.

A join operation preserving affine input/output relations

We recently proposed [74] a new join operation, which, instead of computing the join independently on each
component, computes and preserves the affine relations between variables and input noise symbols, that are
common to the two affine sets joined. This new join operation uses the component-wise join introduced here
on part of the variables, and then deduces a global upper bound using the relations. Let us consider a simple
example:

Example 11 Let us consider the following program:

1 r e a l x1 := [ 1 , 3 ] ;
2 r e a l x2 := [ 1 , 3 ] ;
3 r e a l x3 ;
4 i f ( random ( ) ) {
5 x1 = x1 + 2;
6 x2 = x2 + 2; }
7 x3 = x2 − x1 ;

Joining the two branches supposes to join the following two affine sets X and Y :

x̂1 = 2 + ε1

x̂2 = 2 + ε2
and

ŷ1 = 4 + ε1

ŷ2 = 4 + ε2

If we apply the component-wise join, we obtain Z such that ẑ1 = 3 + ε1 + η1 and ẑ2 = 3 + ε2 + η2, where
η1 and η2 are independent new noise symbols. And we do not capture the somehow disjunctive information,
that either 2 or 4 is added to both x1 and x2, but that it can not be that 2 is added to x1 and 4 is added to
x2. And ẑ3 = ẑ2 − ẑ1 = ε2 + η2 − ε1 − η1 ∈ [−4, 4]

Now, it can be observed that there is a relation between the variables and noise symbols which is true
for both branches joined: x̂2− x̂1 = ε2− ε1 in both branches. In order to get a global join operation on X
and Y , we can thus use the one-dimensional join operator one one variable, say x1, and naturally deduce
the affine form for the second variable x2 by this relation: this gives W such that ŵ1 = 3 + ε1 + η1 as
previously, and we deduce ŵ2 = 3 + ε2 + η1. We thus obtain here a minimal upper bound of X and Y , and
obtain the expected result ŵ3 = ŵ2 − ŵ1 = ε2 − ε1 ∈ [−2, 2].

The projection on (x1, x2) of the concretization of X , Y , Z and W are represented Figure 2.3. The
component-wise join gives the box γ(Z) in which no relation are preserved between z1 and z2. Whereas the
global join gives the zonotope γ(W ), which is here a minimal upper bound of γ(X) and γ(Y ).

We now quickly formalize this join operation.

Definition 12 (Affine relations over affine sets) Let an affine set X inM(n + 1, p) ×M(m, p). We call
affine relation in X , an affine equation over the p program variables and the n noise symbols, that holds for
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Figure 2.3: X , Y and results Z and W of the component-wise and global join operators

any values of the noise symbols, i.e. is given by α1, . . . , αp, β0, . . . , βn ∈ R such that:

p∑
r=1

αrxr = β0 +

n∑
i=1

βiεi (2.5)

holds for any ε = t(ε1, . . . , εn) ∈ [−1, 1]n and η = t(η1, . . . , ηm) ∈ [−1, 1]m and (x1, . . . , xp) = tCXε +
tPXη.

The set of affine relations defined in Equation 2.5, identified with vector (α1, . . . , αp, β0, . . . , βn), is a sub-
vector space of Rp+n+1, hence generated by a finite number l of independent affine relations. This l is
necessarily smaller or equal to p, since the n noise symbols are linearly independent, and there is a constant
term.

Computing common affine relations An affine relation common to X and Y is an affine relation in
X which is also an affine relation in Y . Consider we have k such affine relations, k being necessarily less
or equal to p as previously stated:

p∑
r=1

αl,rxr = βl,0 +
n∑
i=1

βl,iεi, ∀l ∈ {1, . . . , k}. (2.6)

When the (xr)1≤r≤p are defined by an affine set X = (CX , PX), we can rewrite Equation 2.6:∑p
r=1 αl,rxr =

∑n
i=0 (

∑p
r=1 αl,rci,r) εi +

∑m
j=0 (

∑p
r=1 αl,rpj,r) ηj , ∀l ∈ {1, . . . , k}

These relations being true for every value of the noise symbols εi and ηj implies that for all 1 ≤ l ≤ k,
0 ≤ i ≤ n and 1 ≤ j ≤ m, we have:

p∑
r=1

αl,rci,r = βl,i and
p∑
r=1

αl,rpj,r = 0
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Example 12 Consider again the two affine sets joined in Example 11:

x̂1 = 2 + ε1

x̂2 = 2 + ε2
and

ŷ1 = 4 + ε1

ŷ2 = 4 + ε2

We want the affine relations common to X and Y , of the form: α1x1 + α2x2 = β0 + β1ε1 + β2ε2 that
hold for all (ε1, ε2) ∈ [−1, 1]. Substituting X and Y in this relation yields

β0 = 2α1 + 2α2 = 4α1 + 4α2

β1 = α1

β2 = α2

The solutions can be parameterized by a λ ∈ R, they are of the form β0 = 0, α1 = β1 = λ, α2 = β2 = −λ.
For instance we can choose x2 − x1 = ε2 − ε1.

The following lemma states that the affine input/output relations of Equation 2.6 are compatible with the
functional order, which shows the necessity to preserve them:

Lemma 8 Let X = (CX , PX) and Y = (CY , P Y ) be two affine sets such that

1. X ≤ Y ,

2. Y satisfies the k relations of Equation 2.6

Then X satisfies these k relations.

Preserving these affine relations Up to a renumbering of the variables, we can always suppose the k
independent common affine relations for X and Y are of the form:

xi = Ri(xi+1, . . . , xp, ε1, . . . , εn) (2.7)

We thus choose among the p variables, p − k variables on which we use the component-wise join. From
there, using the k Equations 2.7, we can construct an upper bound for the p variables. We note X>k the
projection of X ∈M(n+ 1, p)×M(m, p) on its last components xk+1, . . . , xp, and now define the global
join operator:

Definition 13 (Global join) Let two affine setsX and Y inM(n+1, p)×M(m, p), which have in common
k independent affine relations: for all i ∈ [1, k], xi = Ri(xi+1, . . . , xp, ε1, . . . , εn). We define Z = X tG Y
by Z>k = X>k tC Y>k and for all i ∈ k, . . . , 1, ẑi = Ri(zi+1, . . . , zp, ε1, . . . , εn).

Note that in Definition 13, the operations are ordered: first computation of Z>k, then reconstruction of ẑk to
ẑ1. This operation indeed defines an upper bound, which is a minimal upper bound in some cases:

Lemma 9 Z = X tG Y is an upper bound of X and Y , and if Z>k is a minimal upper bound of X>k and
Y>k, then Z is a minimal upper bound of X and Y .
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2.2.4 Modular analysis

As already stated, affine sets provide linearized input-output relations, or functional abstraction, that are well
suited for modular analyses. We recently proposed [89] a summary-based approach that is both natural and
efficient, and still gives accurate results in realistic cases. The function summaries are pairs (I,O) of input
and output zonotopes, parameterized by the same central noise symbols ε1, . . . , εn representing the inputs
of the program, so that both represent a function of these inputs. The pair also thus represents functions
from γ(I) to γ(O). For a given input zonotope I , the output zonotope O is computed by applying the
analysis with the zonotopic abstract domain, so that it is defined as a function of the input noise symbols
ε1, . . . , εn, but also of the perturbation symbols I may contain. As I is usually obtained by joining several
calling contexts, it contains some perturbation noise symbols corresponding to this join operation. The
outputO can then be instantiated to any particular calling context included in the input I of the summary, by
substituting some of these perturbation noise symbols by their expression for the particular calling context.

Example 13 Let us quickly sketch the summarizing process on a small example.

1 r e a l mu l t ( r e a l a , r e a l b ) {
2 r e t u r n a ∗ ( b−2) ;
3 }
4
5 r e a l compute ( r e a l x ) {
6 r e a l y1 = mul t ( x +1 , x ) ;
7 r e a l y2 = mul t ( x , 2∗ x ) ;
8 r e t u r n y2−y1 ;
9 }

10
11 compute ( [ −1 ,1] ) ;

Function compute is called with x̂ = ε1 (input in [-1,1]). We build a summary for function mult after its
first call (y1 = mult(x+1, x);). Using the semantics on affine sets to abstract the body of the function,
we get as summary the couple of affine sets (I,O) such that I = (ε1 + 1, ε1), O = (−1.5 − ε1 + 0.5η1),
where I abstracts the calling context and O the output.

At the next call (y1 = mult(x, 2*x);), we try to see if the previous summary can be used, that is
if the calling context is contained in the input I of the summary: it is not the case as (ε1, 2ε1) ≤ (ε1 + 1, ε1)
does not hold.

We merge the two calling contexts with the join operator, and analyze again the body of the function:
this gives a new (larger) summary for function mult: I = (0.5 + ε1 + 0.5η2, 1.5ε1 + 0.5η3), O = (−1

4 −
5
4ε1 − η2 + 1

4η3 + 9
4η4).

Then, this new summary can be instantiated to the two calls (or any other call with calling context
contained in affine set I = (0.5 + ε1 + 0.5η2, 1.5ε1 + 0.5η3)). Without instantiation, the output value of
the summary ranges in [−5, 4.5]. But the summary is a function defined over input ε1 of the program, and
over the symbols η2 and η3 that allow to express the inputs of function mult: we will thus get a tighter
range for the output, as well as a function of input ε1, by instantiating η2 and η3 and substituting them in
the output of the summary. For instance, for the second call of function mult, with (ε1, 2ε1), we identify
ε1 with 0.5 + ε1 + 0.5η2 and 2ε1 with 1.5ε1 + 0.5η3, and deduce η2 = −1 and η3 = ε1, which yields for
the output 3

4 − ε1 + 9
4η4 ∈ [−5

2 , 4]. Direct computation gives 1− 2ε1 + η4 ∈ [−2, 4], which is just slightly
tighter.
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Figure 2.4: Summary and instantiation (left is input, right output)

We illustrate this in Figure 2.4: we represent on the left picture, the calling contexts (a, b) for the two
calls (I1 is first call, I2 is second call), and the zonotopic concretization of the calling context after merge,
I1 t I2. On the right part of the figure, the parabola is the exact results of the second call, ExM(I2). The
dashed zonotope is the result of the abstraction with the semantics of affine sets of the second call,Mult(I2).
The zonotope in plain lines is the output of the summary, Mult(I1 t I2). The zonotope in dotted lines is the
summary instantiated to the second call.

2.3 First experiments

The aim of this section is to study the behavior of the affine sets abstract domain, and compare it to other
classic abstract domains. We restrict ourselves here to the analysis of programs in real number semantics,
with small prototypes built for academic purposes. The extension to the study of finite precision computa-
tions, and the use of the static analyzer Fluctuat on real examples will be the subject of Chapter 5. Also, the
study of fixpoint computations being left for Chapter 4, examples requiring fixpoint computations will be
delayed until that chapter.

The presentation so far has assumed that the coefficients of affine sets are real numbers. In an imple-
mentation, however, floating-point coefficients are used. Using them without care would produce possibly
unsound results: any rounding error would produce incorrect relationships between variables. A first idea
to keep a sound over-approximation using finite precision numbers is to use affine sets with interval coeffi-
cients. The problem is that the width of these interval coefficients would grow with computations, we would
suffer again from the defects of intervals. A better way to do this is to have floating-point coefficients. In
order to keep a sound over-approximation, it is only needed to bound the error committed at each operation
on these coefficients and account for this error by a new noise term. Practically, in order to reduce the num-
ber of noise symbols used, we group these errors with other approximation terms. But we could imagine
to keep different kind of symbols, accounting respectively for the uncertainty on the outputs due to input
uncertainty, abstract domain uncertainty, and uncertainty due to the finite precision implementation of the
analysis.

K. Ghorbal implemented the (constrained) affine sets in the APRON library [103], as an abstract domain
called Taylor1+ [64]. We now compare the performance of this domain, on unrolled linear and non linear it-
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erative computations, with classic abstract domains such as boxes, octagons and polyhedra. No summarizing
is being applied here. The upper bound operator implemented for these experiments is the component-wise
one of Definition 11. More details can be found in [64, 65]. An implementation of the global join operator
was also added to the Taylor1+ abstract domain, some results can be found in [74].

Linear schemes The first example we consider is the second order recursive filter:

xi = 0.7ei − 1.3ei−1 + 1.1ei−2 + 1.4xi−1 − 0.7xi−2,

where x0 = 0, x1 = 0, and the ei are independent inputs between 0 and 1.
We here fully unroll the 2nd order filter scheme to compute the abstract value at each iteration. Figure 2.5

compares accuracy and performance of Taylor1+ with three classic abstract domains provided in APRON:
boxes, octagons and polyhedra (both PK [101] and PPL [140] implementations were tested). The polyhedra
domain with exact arithmetic (using GMP) gives the exact bounds for the filter output. One can see that
Taylor1+ wraps the exact range given by polyhedra (left figure) very closely, with great performance (right
figure).

Figure 2.5: Unrolled scheme for the 2nd order filter

Non-linear computations; test interpretation We now consider a toy example demonstrating the
performance of the constrained version of the affine sets (constrained T1+ in its APRON implementation),
where constraints on noise symbols are interpreted in intervals. We want to compute g(g(x)) on the range
x = [−2, 2], where

g(x) =

√
x2 − x+ 0.5√
x2 + 0.5

.

For that, we parameterize the program that computes g(g(x)) by a number of tests that subdivide the domain
of the input variable (see Figure 2.6 left), in order to compare the cost and accuracy of the different domains
when the size of the program grows. It can be noted (Figure 2.7 left) that the domain scales up well
while giving here more accurate results (Figure 2.7 right) than the other domains. As a matter of fact, with
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Figure 2.6: Implementation of g(g(x)) for x in [-2,2] (left) and plot of g(g(x)) (right)

1 g ( x ) = s q r t ( x∗x−x + 0 . 5 ) / s q r t ( x∗x + 0 . 5 ) ;
2 x = [−2 ,2 ] ;
3 /∗ f o r n s u b d i v i s i o n s ∗ /
4 h = 4 / n ;
5 i f (−x<=h−2)
6 y = g ( x ) ; z = g ( y ) ;
7 . . .
8 e l s e i f (−x<=i ∗h−2) /∗ i i n { 2 , . . . , n−1}∗ /
9 y = g ( x ) ; z = g ( y ) ;

10 . . .
11 e l s e
12 y = g ( x ) ; z = g ( y ) ;

x

g(g(x))

20−2

0.54

0.58

0.62

Figure 2.7: Comparing analysis time and results of the different APRON domains.
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an interval domain for the noise symbols, all abstract transfer functions are linear or at worst quadratic in
the number of noise symbols appearing in the affine forms. The fact that the results observed for 3 and 5
subdivisions (Figure 2.7 right) are less accurate respectively than those observed for 2 and 4 subdivisions, is
related to the behavior of g(g(x)) on [−2, 2] (see Figure 2.6 right): for example when a change of monotony
appears near the center of a subdivision, the approximations will be less accurate than when it appears at the
border.



Chapter 3

Extensions of the Zonotopic Approach

The zonotopic abstract domains of Chapter 2 lend themselves to several interesting extensions, still dealing
with the abstraction of real-valued computations. These extensions no longer present zonotopic concretiza-
tions, but still use the ideas introduced in Chapter 2 in the zonotopic context. A first class of variations still
relies on affine sets, but with coefficients that are no longer real numbers: we proposed in 2007 an under-
approximating abstract domain based on affine sets with interval coefficients [82], which I will describe in
Section 3.1. We are presently also considering extensions with zonotopic coefficients, that should define
higher-order approximations. A second class of variations relies on a parametrization of variables values
by affine sets with real coefficients, but the noise symbols no longer simply lie in intervals: we recently
proposed [20, 21] to thus mix probabilistic and deterministic information by using p-boxes [52, 53] instead
of interval noise symbols, this will be quickly described in Section 3.2. Finally, we are also considering to
use vectors of noise symbols bounded in `2 norms for an ellipsoidal extension, or more generally in `p norm,
as quickly discussed in the concluding chapter.

3.1 An under-approximating abstract domain

Most abstract interpretation numerical domains construct over-approximations of the range of pro-
gram variables. Galois connections, which is the classic abstraction setting, naturally express over-
approximations and we need dual Galois connections, or dual concretization-based frameworks, as devel-
oped by Schmidt [149, 148], to express under-approximations. But the main problem is that it is very
difficult to compute good numerical under-approximations. Of course, testing or bounded model checking
provide under-approximations, but what we want here is really some duals of classic over-approximating
abstract domains.

We present here a variation of affine sets, using ideas from generalized interval arithmetic [70, 69], that
allowed us to develop in 2007 [82] a first abstract interpretation domain for directly under-approximating
the range of real values of program variables.

Such under-approximations, when combined with over-approximations, give an estimate of the quality
of the result of a static analysis. But they can also be applied to statically find run-time errors that are bound
to occur, from some given set of possible initial states: we will show how they can be used to generate test
case scenarios that allow to minimize/maximize some variable.

37
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x× y y ∈ P y ∈ Z y ∈ −P y ∈ dualZ
x ∈ P [xy, xy] [xy, xy] [xy, xy] [xy, xy]

x ∈ Z [xy, xy]
[min(xy, xy),

max(xy, xy)]
[xy, xy] 0

x ∈ −P [xy, xy] [xy, xy] [xy, xy] [xy, xy]

x ∈ dualZ [xy, xy] 0 [xy, xy]
[max(xy, xy),

min(xy, xy)]

Table 3.1: Kaucher multiplication ([106])

3.1.1 Generalized affine sets for under-approximation

We first introduce the principles of generalized and Kaucher interval arithmetic [106] and their interpretation
as modal intervals using quantifiers, and thus in some conditions as under-approximations [70, 69]. We then
describe our contribution, which is to extend these ideas to define generalized affine forms that will be
interpreted either as over or under-approximating forms for real values of variables.

Generalized intervals, modal intervals and Kaucher arithmetic Generalized intervals are intervals
whose bounds are not ordered. The set of classic intervals is denoted by IR = {[a, b], a ∈ R, b ∈ R, a ≤ b}.
The set of generalized intervals is denoted by IK = {[a, b], a ∈ R, b ∈ R}. Intervals will be noted with
bold letters.

For two real numbers a and b such that a ≤ b, one can consider two generalized intervals, [a, b], which is
called proper, and [b, a], which is called improper. For any a, b, we define the operations dual [a, b] = [b, a]
and pro [a, b] = [min(a, b),max(a, b)].

The generalized intervals are partially ordered by inclusion which extends inclusion of classic intervals.
Given two generalized intervals x = [x, x] and y = [y, y], the inclusion is defined by

x v y ⇔ y ≤ x ∧ x ≤ y.

Kaucher addition extends addition on classic intervals :

x+ y = [x+ y, x+ y]

x− y = [x− y, x− y] = x+ (−y) where − y = [−y,−y].

We let P = {x = [x, x], x ≥ 0 ∧ x ≥ 0}, −P = {x = [x, x], x ≤ 0 ∧ x ≤ 0},
Z = {x = [x, x], x ≤ 0 ≤ x}, and dual Z = {x = [x, x], x ≥ 0 ≥ x}. Kaucher multipli-
cation x × y is described in table 3.1. Kaucher division is defined for all y such that 0 /∈ pro y by
x/y = x × [1/y, 1/y]. When restricted to proper intervals, these operations coincide with the classic
interval operations.

Classic interval computations can be interpreted as quantified propositions. As an example, take f to
be the function defined by f(x) = x2 − x. Extended to interval arithmetic, its value on x = [2, 3] is
f([2, 3]) = [2, 3]2 − [2, 3] = [1, 7], which can be interpreted as the proposition

(∀x ∈ [2, 3]) (∃z ∈ [1, 7]) (f(x) = z).
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Modal intervals extend classic intervals by coupling a quantifier to them. Extensions of modal intervals were
recently proposed by Goldsztejn [70] in the framework of generalized intervals, and called AE extensions
because universal quantifiers (All) always precede existential ones (Exist) in the interpretations. They give
rise to a generalized interval arithmetic which coincides with Kaucher arithmetic. Let f : Rn → R a
function in which each variable appears only once. Let x ∈ IKn, which we can decompose in xA ∈ IRp
and xE ∈ (dual IR)q with p+ q = n. We consider the problem of computing a quantifier Qz and an interval
z ∈ IK such that

(∀xA ∈ xA) (Qzz ∈ pro z) (∃xE ∈ pro xE)(f(x) = z). (3.1)

In these expressions, if z is proper then Qz = ∃, else Qz = ∀. When all intervals are proper, we retrieve
the interpretation of classic interval computation, which gives an over-approximation of the range of f(x) :

(∀x ∈ x) (∃z ∈ z) (f(x) = z).

And when all intervals are improper, we get an under-approximation :

(∀z ∈ pro z) (∃x ∈ pro x) (f(x) = z).

Affine forms for over and under-approximation We will now use these notions to compute over what
we call generalized affine forms, where the αx

i coefficients are no longer real numbers but intervals :

x̌ = αx
0 +αx

1ε1 + . . .+αx
nεn, with αx

i ∈ IR. (3.2)

The classic concretization γ(x̌) of x̌ is a proper interval obtained by the evaluation of expression (3.2)
with proper intervals εi = [−1, 1] and classic interval arithmetic :

γ(x̂) = αx
0 +αx

1ε1 + . . .+αx
nεn.

We define the concretization δ(x̌) of x̌ obtained by the evaluation of expression (3.2) with improper
intervals ε∗i = [1,−1] and Kaucher interval arithmetic :

δ(x̌) = αx
0 +αx

1ε
∗
1 + . . .+αx

nε
∗
n.

Generalized affine forms are closed under affine operations. For affine forms x̌ and y̌, and real numbers
λ1 and λ2, we have:

λ1x̌+ y̌ + λ2 = (λ1α
x
0 +αy

0 + λ2) + (λ1α
x
1 +αy

1)ε1 + . . .+ (λ1α
x
n +αy

n)εn

We use for the under-approximation of the result of non affine arithmetic operations, an extension of the
mean-value theorem to generalized intervals [69], which we extend to our generalized affine forms. We then
derive an expression for the under-approximation of the multiplication. Note that we could also, in the same
way, derive semantics for other arithmetic operations.
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Mean-value theorem for generalized affine forms Suppose variables x1, . . . , xk, are described as
affine combinations of noise symbols ε1, . . . , εn. For a differentiable function f : Rk → R, we write
f ε : Rn → R the function induced by f on ε1 to εn. Suppose we have an over-approximation ∆i of the
partial derivatives {

∂fε

∂εi
(ε), ε ∈ [−1, 1]n

}
⊆∆i. (3.3)

Then

f̃ ε(ε1, . . . , εn) = f ε(t1, . . . , tn) +

n∑
i=1

∆i(εi − ti), (3.4)

where (t1, . . . , tn) is any point in [−1, 1]n, is interpretable in particular in the following sense :

• if f̃ ε(ε∗1, . . . , ε
∗
n), computed with Kaucher arithmetic, is an improper interval, then pro f̃ ε(ε∗1,

. . . , ε∗n) is an under-approximation of f ε(ε1, . . . , εn).

• if f̃ ε(ε1, . . . , εn) is a proper interval, then it is an over-approximation of f ε(ε1, . . . , εn).

This theorem can be of course used when we take the εi in sub-ranges of [−1, 1], it will in fact be used in
examples to improve the accuracy of the results.

We derive from this theorem a simple under-approximating model for the multiplication. We can easily
prove by recurrence that, for all variables z whose real value is a linear function of noise symbols ε1, . . . , εn,
the coefficient αz

i of the affine form obtained from our semantics is an over-approximation of ∂z
∂εi

. Then,
for f(x, y) = xy, we can over-approximate in Equation (3.4)

∂fε

∂εi
(x, y) =

∂x

∂εi
y +

∂y

∂εi
x

by
∆i = αx

i y +αy
i x, (3.5)

for any over-approximation x and y of the values taken by x and y.

Example 14 Let us consider f(x) = x2 − x when x ∈ [2, 3]. The interval of values taken by f(x) is [2, 6].
Here, an under-approximation of f(x) can not be computed directly by Kaucher arithmetic, since variable
x does not appear only once in expression f(x). An affine form for x is x = 2.5 + 0.5ε1, and we deduce

f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).

We bound the derivative by ∆1 = 2 ∗ 0.5 ∗ (2.5 + 0.5ε1) − 0.5 ⊆ [1.5, 2.5], and, using the mean-value
theorem with t1 = 0, we have

f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1.

It can be interpreted as an under-approximation of the range of f(x) :

Γ̌(f̃ ε(ε1)) = 3.75 + [1.5, 2.5][1,−1] = 3.75 + [1.5,−1.5] = [5.25, 4.25].

It can also be interpreted as an over-approximation :

Γ̂(f̃ ε(ε1)) = 3.75 + [1.5, 2.5][−1, 1] = 3.75 + [−2.5, 2.5] = [1.25, 6.25].

However, the range thus obtained for over-approximation is not as good as the one obtained by classic affine
arithmetic, where x2 − x = [3.75, 4] + 2ε1, which gives the range [1.75, 6].
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no subdivision 32 subdivisions

Figure 3.1: Estimation of the maximum value of result xi in the Newton algorithm.

Note that the generalized affine forms form a relational abstraction, as relations between variables are
used to define the transfer functions. Still, we only characterized here under-approximations for the range
of each variable taken independently, but not jointly. The join concretization is in particular no longer
zonotopic, and characterizing it is one of our future objectives.

Order-theoretic considerations

We define the order on generalized affine sets by the following order applied component-wise on each
component: x̌ v y̌ if and only if ∀i ≥ 0, αx

i v αy
i . If x̌ v y̌, then we have on the concretizations,

δ(x̌) v δ(y̌). In the case δ(x̌) and δ(y̌) are improper intervals, this is equivalent to pro δ(y̌) v pro δ(x̌).
Inclusion x̌ v y̌ thus expresses that x̌ is a better under-approximation that y̌, as it concretizes to an interval
whose proper range is larger than the one of y̌. Also, x̌ is a better over-approximation than y̌, as it concretizes
to an interval whose proper range is included in the one of y̌: γ(x̌) v γ(y̌).

This means in particular that we can get safe over and under approximations when using finite precision,
by outward rounding on the αx

i coefficients.

3.1.2 Applications and experiments

We consider, for some given A, the (non-linear) iteration of the Newton algorithm xi+1 = 2xi − Ax2
i .

If we take x0 not too far away from the inverse of A, this iteration converges to the inverse of A. As an
example, we take A ∈ [1.99, 2.00], i.e. Ǎ = 1.995 + .005ε1, x0 = .4 and ask to iterate this scheme until
|xi+1−xi| < 5×10−6. We get the concretizations of lower and upper forms shown in the left part of figure
3.1. After 6 iterations, we get stable concretizations, for both lower and over-approximations of x6 :

[0.5012531328, 0.5012531328] v x6 v [0.499996841, 0.502512574],

[0, 0] v |x6 − x5| v [−3.17241289× 10−6, 3.17241289× 10−6].

And for the stopping criterion |xi+1 − xi| < 5 × 10−6, using simultaneously the over- and under-
approximation, we obtain in addition that the Newton algorithm terminates after exactly 4 iterations, which
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allows us to refine the invariant:

[0.5002532337, 0.5022530319] v x4 v [0.499996841, 0.502512574].

This is a general fact: the combination of under and over approximations gives in general a very powerful
method to determine the invariants of a program.

We can also refine the results using subdivisions of the input A, that give way to as many independent
computations relying on different affine forms for A. For instance, when subdividing in 32 sub-intervals, we
get after 6 iterations a relative difference between the bounds given by the over- and under-approximations,
of less than 9× 10−6; the results obtained are shown in the right part of figure 3.1.

Filters, perturbations and worst case scenario

In the sequel, in order not to get into complicated details, we suppose that we have a real arithmetic at hand
(or arbitrary precision arithmetic). We consider again the order 2 recursive filter considered in Chapter 2:

Si = 0.7Ei − 1.3Ei−1 + 1.1Ei−2 + 1.4Si−1 − 0.7Si−2,

where Ei are independent inputs between 0 and 1, so that Ěi = Êi = 1
2 + 1

2εi+1, and S0 = S1 = 0.
We first consider the output Si of this filter for a fixed number of unfoldings, e.g. i = 99. Using the
over-approximating semantics of affine sets, we get

Ŝ99 = Š99 = 0.83 + 7.8× 10−9ε1 − 2.1× 10−8ε2 − 1.6× 10−8ε3 . . .− 0.16ε99 + 0.35ε100,

whose concretization gives an exact enclosure of S99 :

[−1.0907188500, 2.7573854753] v S99 v [−1.0907188500, 2.7573854753].

Also, the affine form gives the sequence of inputs Ei that maximizes S99 : Ei = 1 if the corresponding
coefficient multiplying εi+1 is positive, Ei = −1 otherwise. Note that the exact enclosure actually
converges to S∞ = [−1.09071884989..., 2.75738551656...], and therefore the signal (sequence of inputs
of size 99) leading to the maximal value of S99 is a very good estimate of the signal leading to the maximal
value of Si, for any i ≥ 99. This can be used to find bad-case scenarios of a program, and generalizes to
linear recursive filters of any order.

We now perturb this linear scheme by adding a non-linear term 0.005EiEi−1:

Si = 0.7Ei − 1.3Ei−1 + 1.1Ei−2 + 1.4Si−1 − 0.7Si−2 + 0.005EiEi−1.

Again, we consider a fixed unfolding i = 99. Using over-approximation, we get

Ŝ99 = 0.837 + 7.81× 10−9ε1 − 2.09× 10−8ε2 . . .− 0.157ε99 + 0.351ε100

+1.77× 10−11η1 − 2.66× 10−11η2 + . . .+ 0.00175η97 + 0.00125η98,

in which terms from η1 to η98 account for the over-approximation of non-linear computations. A sequence
of inputs leading to a bad-case scenario is thus not given directly by the sign of the ε1, . . . , ε100 as in the
linear case: one can get a plausible worst-case scenario by choosing the E0, . . . , E99 that maximize the
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sub affine form containing only these εk, but one has no assurance that this might be even close to the real
supremum of S99. But the under-approximating form allows us to choose at least part of the inputs. Using
the under-approximating semantics, we get :

Š99 = 0.837 + 7.81× 10−9ε1 − 2.09× 10−8ε2 + . . .+ [−0.0577, 0.0635]ε93

+[0.0705, 0.138]ε94 + [0.185, 0.223]ε95 + [0.25, 0.271]ε96 + [0.222, 0.234]ε97

+[0.081, 0.0876]ε98 + [−0.158,−0.155]ε99 + [0.35, 0.352]ε100.

This gives the following estimates for the real enclosure of S99:

[−0.47655194955570, 2.1515519079] v S99 v [−1.10177396494, 2.77677392330].

As the interval coefficient αk is an over-approximation of the partial derivative of S99 with respect to εk,
we know how to choose input Ek−1 (Ek−1 corresponds to εk) to maximize or minimize the output. We thus
know that E93 = 1 E94 = 1, E95 = 1, E96 = 1, E97 = 1, E98 = 0 and E99 = 1 is the best depth 7 choice
of inputs that will maximize S99. For the other inputs, we use as a heuristic the ε0, . . . , ε92 that maximize
the over-approximating term, here this gives S99 = 2.766383. We thus found a scenario which is very close
to the worst-case bound 2.77677392330. A one hour simulation on a 2GHz PC for 109 random sequences
of 100 entries gives as estimate of the supremum 2.211418, far from our estimate in both time and precision.

3.2 Mixing P-boxes and Affine Arithmetic

In program analysis, a difficulty is to properly handle the inputs of the program. They are often not exactly
known, but should rather be considered as being in a set of possible values. However, it is often the case that
we have more information on the inputs than the mere fact that they belong to some set, such as a probability
distribution that states their likelihood to be at a specific point within the set.

P-boxes [52, 53] and Dempster-Shafer structures [151] are widely used to propagate both probabilistic
and non-deterministic information. However, arithmetic rules on these structures are classically defined
only between structures representing either independent random variables, or variables with unknown de-
pendency. This makes the usual p-box arithmetic not well adapted when many numerical computations
occur between quantities (values of the program variables for instance) that cannot be considered indepen-
dent, but whose dependency cannot be determined easily. The computations suffer from the drawbacks of
classic interval arithmetic.

We thus proposed [20, 21] a new arithmetic that combines affine arithmetic to propagate the affine
relations between random variables and p-box arithmetic to over-approximate the probability distribution
resulting from a given operation. This allows us to both increase the precision of the result and decrease the
computation time compared to standard p-box arithmetic.

3.2.1 Basics: Dempster-Shafer structures and p-boxes

An interval based Dempster-Shafer structure [151] (we will call it DS in short) is a finite set of closed
intervals (named focal elements) associated with a probability. DS structures thus represent real vari-
ables whose value can be obtained by first probabilistically picking up an interval, and then non-
deterministically picking up a value within this interval. In this article, we write a DS structure d as
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Figure 3.2: A p-box (thick lines) and a CDF (thin line) included in this p-box.

d =
{
〈x1, w1〉 , 〈x2, w2〉 , . . . , 〈xn, wn〉

}
, where xi ∈ IR is a closed non-empty interval and wi ∈]0, 1] is

the associated probability, with
∑n

k=1wk = 1.
A set of cumulative distribution functions can be represented by two non-decreasing functions P and

P such that P is left-continuous, P is right-continuous and ∀x, P (x) ≤ P (x). Such a pair
[
P , P

]
is

called a p-box [52] and encloses all CDF P that satisfy ∀x, P (x) ≤ P (x) ≤ P (x). We will only consider
here discrete p-boxes, where P and P are step-functions. We refer the reader to Ferson et al. [52] for the
correspondence between discrete p-boxes and DS structures; we note ζ the function that converts a DS to a
p-box, and δ its inverse, that converts a discrete p-box to a DS.

Example 15 Let d1 =
{
〈[−1, 0.25], 0.1〉 ; 〈[−0.5, 0.5], 0.2〉 ; 〈[0.25, 1], 0.3〉 ; 〈[0.5, 1], 0.1〉 ; 〈[0.5, 2], 0.1〉 ;

〈[1, 2], 0.2〉
}

. Then
[
P2, P2

]
= ζ(d1) is as plotted in Figure 3.2.

Many arithmetics were proposed for p-boxes and DS structures [10, 51, 56, 158], most of them are
equivalent in term of precision [141]. Here, we briefly explain the method of Berleant et al. [10] which we
used. Let two random variables X and Y represented by DS structures dX = {〈xi, wi〉 , i ∈ [1, n]} and
dY = {

〈
yj , w

′
j

〉
, j ∈ [1,m]}, and Z be the random variable such that Z = X + Y . We want to compute

a DS that contains Z (the algorithms for other arithmetic operations are similar). We distinguish the case
when X and Y are independent (in which case we denote the operation ⊕) and when they are not (in which
case we denote the operation +).
Independent variables. If X and Y are independent random variables, then the DS for Z = X ⊕ Y is
dZ = {〈zi,j , ri,j〉 , i ∈ [1, n], j ∈ [1,m]} such that:

∀i ∈ [1, n], j ∈ [1,m], zi,j = xi + yj and ri,j = wi × w′j . (3.6)

The number of focal elements within the DS structures clearly grows exponentially with the number of
such operations. In order to keep the computation tractable, we bound the number of focal elements: of
course, this introduces some over-approximation.
Variables with unknown dependency. If the random variables X and Y are not independent, the lower
bound FZ of the p-box

[
FZ , FZ

]
for Z is obtained by solving the linear programming problem defined by

Equation (3.7).

FZ(z) = maximize
∑

xi+yj≤z ri,j

such that ∀i ∈ [1, n],
∑m

j=1 ri,j = wi
∀j ∈ [1,m],

∑n
i=1 ri,j = w′j

(3.7)

The formula for FZ is similar. We then define dZ = δ(
[
FZ , FZ

]
), where δ is the conversion function from

p-boxes to DS.
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3.2.2 Affine arithmetic with probabilistic noise symbols

We consider a set of uncertain quantities that will be propagated through a program. We will now express the
linearized (deterministic) dependencies between these quantities using affine arithmetic, while we express
the uncertainty on each variable, by associating a DS to each noise symbol of the affine forms. In this way,
we add structure to DS arithmetic. As in classic affine sets, we will define two kinds of noise symbols: the
εi that are considered independent, and the ηk that cannot be considered as independent from other noise
symbols.

Definition 14 (Probabilistic affine form.) We define a probabilistic affine form for variable x, on n inde-
pendent noise symbols (ε1, . . . , εn) and m noise symbols (η1, . . . , ηm) with unknown dependency to the
others, by a form

x̂ = αx0 +

n∑
i=1

αxi εi +

m∑
j=1

βxj ηj

together with n DS (dε1 , . . . , dεn) and m DS (dη1 , . . . , dηm) describing the possible random variables (of
support [−1, 1]) for the noise symbols.

A probabilistic affine form x̂ represents the set of all random variables X contained in the DS γ(x̂),
called concretization of x̂:

Definition 15 (Concretization of affine forms as a DS) Let x̂ be a probabilistic affine form, its concretiza-
tion as a DS is:

γ(x̂) = αx0 +

n⊕
j=1

αxj dεj +

m∑
k=1

βxkdηk ,

where
⊕

is the sum of independent DS,
∑

is the sum of DS with unknown dependency, and we note αd
(resp. α + d) where α ∈ R and d is a DS {〈xi, pi〉 | i = 1, . . . , q}, the result of the multiplication (resp.
addition) of a constant by a DS: {〈αxi, pi〉 | i = 1, . . . , q} (resp. {〈α+ xi, pi〉 | i = 1, . . . , q}).

The interest of affine forms is to be able to represent affine relations that hold between uncertain quan-
tities. We still have this representation, except only imprecise affine relations hold, as can be shown in the
example below.

Example 16 Let x̂1 = 1 + ε1 − η1, x̂2 = −1
2ε1 + 1

4η1, dε1 = {〈[−1, 0], 1
2〉, 〈[0, 1], 1

2〉},
dη1 = {〈[− 1

10 , 0], 1
2〉, 〈[0,

1
10 ], 1

2〉}. Then x̂1+2x̂2 = 1− 1
2η1, with d = dx1+2x2 = {〈[19

20 , 1], 1
2〉, 〈[1,

21
20 ], 1

2〉}.
Thus the lower probability that x1 + 2x2 ≤ 21

20 is 1, and the upper probability that x1 + 2x2 <
19
20 is 0.

But for instance, x2 + 2x2 ≤ 1 has upper probability 1
2 and lower probability 0 and is thus an imprecise

relation.

Affine arithmetic operations are exactly the same as in the fully deterministic case. For non-linear
operations, we can rely on the affine form calculus, except that we use the available calculus on DS to form
a correct DS representing this non-linear part. In this computation, some noise symbols are independent
from the others, and we use both independent or unknown dependency versions of the operations on DS.

Noting that the square of a DS x = {〈xi, wi〉 | i = 1, . . . , p}, is the DS x2 = {〈x2
i , wi〉 | i = 1, . . . , p},

we define the probabilistic affine form ẑ = x̂× ŷ as an affine form defined as for classic affine arithmetic, but
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where the new symbol ηm+1 is considered with unknown dependency to the other symbols (characterization
of this dependency is left for future work), and has an associated DS dηm+1 defined by:

dηm+1 = 1
T

(∑n
i=1

∑m
j=1(αxi β

y
j + βxj α

y
i )dεi × dηj +

∑n
i=1

∑n
j>i(α

x
i α

y
j + αxjα

y
i )dεi ⊗ dεj

+
∑m

i=1

∑m
j>i(β

x
i β

y
j + βxj β

y
i )dηi × dηj + 1

2

(⊕n
i=1 α

x
i α

y
i dεi

2 +
∑m

j=1 β
x
j β

y
j dηj

2
))

Let us remark that, although affine arithmetic usually increases the computation time compared to inter-
val arithmetic, we here decrease the complexity of arithmetic operations by using affine forms. Actually, we
delay most of the DS arithmetic to the concretization function, and we can use the arithmetic of independent
DS structures instead of arithmetic with unknown dependency, which is very costly.

Modeling rounding errors In the same way rounding errors can be computed using affine sets, as pre-
sented in Chapter 5, they can also be modeled and computed by probabilistic affine forms. We give a quick
hint here. We note f(rx) the nearest floating-point value to real value rx, and e(rx) the associated rounding
error e(rx) = f(rx) − rx. With normalized floating-point numbers and rounding mode to the nearest, we
can bound the error committed when rounding the real value rx to f(rx) by

|f(rx)− rx| ≤ δ.2i with i, |rx| ∈]2i, 2i+1], (3.8)

and δ is a constant that depends on the floating-point format.

The sum of the DS structures defining r̂x is a DS structure drx . To compute the error when rounding this
real number, we thus compute the image by the error function of each focal element, and add the weights
when theses images appear several times:

Definition 16 Suppose that the real value of x is given by the DS structure drx =
{〈
xr
k, w

r
k

〉
, k =

1, . . . , n}, then for all k ∈ [1, n], we define ik such that max(|xr
k|, |xr

k|) ∈]2ik , 2ik+1]. The rounding
error of x is defined by the DS

dex = R(
{〈

[−δ2ik , δ2ik ], wek
〉
, k = 1, . . . , n}),

where R is a reduction operator that bounds the number of focal elements.

Example Consider a given integer n and the sum yp of p independent variables xi, i = 1, . . . , p, each
of them defined in [−1, 1] by the DS with 2n non-overlapping elements of width 1

n and same weight. These
variables are first rounded as a floating-point value before being added. The envelop of the rounding error
on a variable xi is given in Figure 3.3. Consider for instance n = 5. The focal elements on the real value
are materialized on this figure by the grid. The image, by the rounding error function, of the focal elements
of rxi yields as DS for the error

dexi =
{〈[
−δ

2
,
δ

2

]
, 3/5

〉
,

〈[
−δ

4
,
δ

4

]
, 1/5

〉
,

〈[
−δ

8
,
δ

8

]
, 1/5

〉}
.

We compute the partial results yk =
∑

0≤i<k xi for k from 1 to p, and a new rounding error e(ryk) is
associated with each of these partial results. Finally, the rounding result on yp is thus eyp =

∑
0≤i<p e(r

xi)+
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Figure 3.3: Envelop on the rounding error of rxi ∈ [−1, 1] to a float (Example 3.2.2).
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Figure 3.4: P-box for yp
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Figure 3.5: P-box for the error on yp

∑
1≤i≤p e(r

yk), where the DS for e(rxi) are all independent between one another, and e(ryk) has unknown
dependency to e(rxj ) and e(ryj ) for all j ≤ k. It is thus interesting to consider not only independence or
dependency, but a generalized notion of dependency matrix between variables or noise symbols.

We present in Figures 3.4 and 3.5 the cumulative distribution functions of the DS obtained for n = 10
and p = 10. We see in Figure 3.4 that we bound indeed a quasi-Gaussian distribution (sum of independent
uniform laws). Figure 3.5 is compatible with the stochastic modeling of errors as popularized in the CESTAC
method [155]. The advantage here is that we have guaranteed lower and upper probabilities for rounding
errors. Here we can read from Figure 3.5 that the probability that the error is within [−1.2.10−6, 1.2.10−6]
is 1

2 while the probability that the error is in absolute value greater than 2.10−6 (which is about the maximal
deterministic error one can get) is almost zero. An experiment with CADNA free allows us to estimate that
the first 5 to 7 digits are correct in the calculation of the sum, and that the error is less, in absolute value,
than 10−6 with a probability of a bit more than 1

3 , which is compatible with the results we get here.
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Chapter 4

Loops and Fixpoint Computations

Fixpoint computation is a key point for static analysis by abstract interpretation: invariants of a program
are obtained as fixpoints of the functional that describes the behavior of the program, and much time and
accuracy of an analysis can be lost in loop invariant computation. This chapter, dedicated to the computation
of fixpoints occurring in the static analysis of numerical programs, comprises two parts, that discuss two
alternatives to solve the problem. The first section describes our use of Kleene-like iterations with zonotopic
abstract domains [83, 64, 84]. The use of Kleene-like iterations in static analysis is classic, but we also try
here to shortly discuss their convergence for given classes of programs, as one would do for any numerical
algorithm. The second section presents an algorithm based on Newton-like iterations called policy iterations,
introduced by Howard in 1960 to solve stochastic control problems [100]. We proposed to use policy
iterations in the context of static analysis in 2005 [37]. In this article, we demonstrated the interest of this
fixpoint iteration used with the abstract domain of intervals, and I will describe it here also in this context.
However, it has since been applied for relational abstract domains [59, 2, 60, 61, 62], and we hope in the
future to apply it for zonotopic abstract domains.

4.1 Kleene-like iteration schemes

We first briefly recall the classic computation of fixpoints in complete partial orders, based on Kleene’s
iteration, with widening and narrowing refinements [39], then specialize it to our context of affine sets.

4.1.1 Kleene’s iteration sequence, widening and narrowing

We say that a self-map F of a complete partial order1 (L,≤) is monotonic if x ≤ y ⇒ F (x) ≤ F (y). And
it is also continuous if and only if for all increasing chains l1 ≤ l2 ≤ . . . ≤ ln ≤ . . . of L, we have⋃

n∈N

F (ln) = F (
⋃
n∈N

ln).

The least fixpoint of such a monotonic and continuous F can be obtained by computing the sequence:
x0 = ⊥, xn+1 = F (xn) for n ≥ 0. If the sequence becomes stationary, i.e., if xm = xm+1 for some m,

1a partial order for which every increasing chain has a least upper bound

49
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the limit xm is the least fixpoint of F . Of course, this procedure may be inefficient, and it may not even
terminate in the case of lattices of infinite height, such as the simple interval lattice. For this computation
to become tractable, widening and narrowing operators have been introduced [39]. Widening operators
are binary operators ∇ on L which ensure that any finite Kleene iteration x0 = ⊥, x1 = F (x0), . . . ,
xk+1 = F (xk), followed by an iteration of the form xn+1 = xn∇F (xn), for n > k, yields an ultimately
stationary sequence, whose limit xm is a post fixpoint of F , i.e. a point x such that x ≥ F (x). Narrowing
operators are binary operators ∆ on L which ensure that any sequence xn+1 = xn∆F (xn), for n > m,
initialized with the above post fixpoint xm, is eventually stationary, and converges to a fixpoint.

void main() {
int x=0; // 1
while (x<100) { // 2

x=x+1; // 3
} // 4

}

x1 = [0, 0]
x2 = ]−∞, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100,+∞[∩(x1 ∪ x3)

Figure 4.1: A simple integer loop and its semantic equations

Consider the program at the left of Figure 4.1. The corresponding semantic equations in the lattice of
intervals are given at the right of the figure. The intervals x1, . . . , x4 correspond to the control points 1, . . . , 4
indicated as comments in the C code. The standard Kleene iteration sequence is eventually constant after
100 iterations, reaching the least fixpoint. This fixpoint can be obtained in a faster way by using the classic
widening and narrowing operators [39]:

[a, b]∇[c, d] = [e, f ] with e =

{
a if a ≤ c
−∞ otherwise

and f =

{
b if d ≤ b
∞ otherwise,

[a, b]∆[c, d] = [e, f ] with e =

{
c if a = −∞
a otherwise

and f =

{
d if b =∞
b otherwise.

For instance, for k = 10, the iteration sequence using widening and narrowing takes 12 iterations
and reaches the least fixpoint of f : ∀k ∈ {1, . . . , 9}, (xk2, xk3, xk4) = ([0, k − 1], [1, k],⊥), then af-
ter widening, (x10

2 , x
10
3 , x

10
4 ) = ([0,∞[, [1,∞[, [100,∞[), and finally, after narrowing, (x11

2 , x
11
3 , x

11
4 ) =

([0, 99], [1, 100], [100, 100]).

4.1.2 Kleene-like iteration schemes for affine sets

In the case of affine sets, which do not form a complete partial order, we still use Kleene-like iterations, but
with a final widening to intervals (Definition 17). We then propose some variations to improve the (post)
fixpoint that is computed.

First variations on the Kleene iteration

We proved [84] that if S is a bounded and countable directed set of affine setsX inM(n+1, p)×M(mi, p)
- we thus suppose we have a bounded number of noise symbols - then there exists a minimal upper bound
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for S. As we have only this form of bounded completeness, and not unconditional completeness, our
iteration schemes will be parameterized by a large interval I: if the iterates remain bounded, the scheme
will eventually converge, else when the current iterate leaves Ip, that is when the range of values taken by
at least one of the p variables of the affine sets is not included in the interval I , we end iteration by >. This
gives the following iteration scheme:

Definition 17 (Bounded Kleene iteration) Given an upper-bound operator t, the t-iteration scheme for
a continuous and monotonic functional F on affine sets, is as follows:

• Start with X0 = F (⊥)

• Then iterate: Xu+1 = Xu t F (Xu) starting with u = 0

– if γlin(PX
u+1

) ⊆ γlin(PX
u
) then stop with Xu+1

– if γlin(PX
u+1

) 6⊆ Ip, then end with >

In this t-iteration scheme, γlin(PX
u+1

) ⊆ γlin(PX
u
) can be checked by solving at worse O(m2) linear

programs, and guarantees thatXu+1 is a post fixpoint of F : combiningXu ≤ Xu+1 with stopping criterion
γlin(PX

u+1
) ⊆ γlin(PX

u
) ensures that Xu+1 ∼ Xu. In practice, we can first use the simpler O(mp) time

test: Xu+1
k ≤ Xu

k ∀k = 1, . . . , p. It is only when this test is true that we compute the more costly test
γlin(PX

u+1
) ⊆ γlin(PX

u
).

But we can also even completely avoid computing this costly test when we use a slightly modified
Kleene iteration, with the particular join tC operator of Definition 11:

Definition 18 (Bounded component-wise Kleene iteration) Given the component-wise upper bound op-
erator tC , we define the tC-iteration scheme for a continuous and monotonic functional F on affine sets
as follows:

• Start with X0 = F (⊥)

• Then iterate: Xu+1 = X0 tC F (Xu) starting with u = 0

– if Xu+1
k ≤ Xu

k for all k = 1, . . . , p, then stop with Xu+1

– if γlin(PX
u+1

) 6⊆ Ip, then end with >,

This scheme converges to a post fixpoint of F: at each iteration, the current iterate is joined with the initial
value X0, so that the noise symbols introduced in the loop are lost, using the join operator of Definition 11.
Lemma 5 thus applies, and we can decide the convergence on the affine sets from the convergence on each
component independently.

Initial and cyclic unfolding

A loop often takes a few iterations between entering its a permanent behavior: it is thus quite classic to apply
an initial unfolding of a loop before actually beginning the Kleene iteration. Moreover, the Kleene iteration
on an iterative loop can be seen as a perturbation of the scheme that is indeed executed. However, joining
states coming from different iterations can be quite a heavy perturbation, all the more if the join operator
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is not perfect. In order to compute a tight post fixpoint of a loop abstracted by a functional F , it is often
interesting to perform cyclic unfoldings of the loop, so as to locally compute fixpoints of functionals F c,
that is performing join operations only every c iterates. From there, we deduce the fixpoint of F :

Definition 19 (Kleene iteration with unfoldings) Let i and c be any positive integers, t any upper bound
operator. The (i, c,t)-iteration scheme for a continuous and monotonic functional F on affine sets, is:

• Start with X0 = F (⊥),

• first unroll i times the functional, i.e. compute X1 = F i(X0),

• then iterate: Xu+1 = Xu t F c(Xu) starting with u = 1,

• end when a fixpoint is reached or with > if γlin(PX
u+1

) 6⊆ Ip.

This unrolling scheme can also be applied to the modified iteration defined in Lemma 18. Its use will be
exemplified afterwards.

Convergence acceleration and narrowing

The convergence of the schemes of Section 4.1.2 can be accelerated using extrapolation before possibly
widening to>: we can use for convergence acceleration any convenient upper bound operator, let us mention
two accelerations that we widely use.

When considering numerical programs, the convergence of the fixpoint iteration is sometimes rather
long, and even infinitely so, if operating with real numbers. The use of finite precision in the analysis is
rather an opportunity in this context, to accelerate convergence by gradually reducing the precision (the size
of the mantissa) of the numbers used to compute. This can be thought of as an improvement of the staged
widening with thresholds [13], in the sense that thresholds are dynamically chosen along the iterations,
depending on the current values of the iterates. Of course, this has to be achieved soundly, with outward
rounding if on intervals, or accounting for this loss of precision by new noise terms if on coefficients of
affine sets. We used this extrapolation with success in Fluctuat, this was facilitated by the use of the arbitrary
precision library MPFR [55].

We combine this with the acceleration obtained by using as upper bound on affine sets, the affine set
that keeps, for each variable, only the dependencies that are exactly the same (same coefficient for the same
noise symbols) for the two forms. A new perturbation term ensures that the concretization of the variable
is the result of the join of the two concretizations. We thus keep dependencies that remain true with the
iterations. Of course, this can also be used to define a global acceleration, on the model of the global join
operator.

Finally, let us note that loop invariants are elliptic for some interesting classes of control programs, such
as order 2 linear recursive filters. It is still possible to abstract these invariants with zonotopes, but the
number of faces and noise symbols will grow, and a widening as an enclosing ellipsoid would naturally be
interesting. This is linked to the idea of extending affine sets so as to obtain ellipsoidal abstract domains,
that we would like to develop in the future, as quickly discussed in the concluding chapter.
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4.1.3 Convergence properties for the analysis of linear filters

In this section, we demonstrate the behavior of the Kleene-like fixpoint iteration on iterative schemes that
are typical from control software, linear recursive filters. The iteration operates like replacing the numerical
scheme by an abstract numerical scheme which has similar convergence properties, and fixpoints can thus
be computed in finite time and in a guaranteed manner, accurately. However, joining states perturbs this
scheme, so that it is not initially strongly contracting, the join must not be done too often, hence the use of
the cyclic unfolding. We will also exemplify the use of extrapolation or widening techniques.

The results presented here are still very partial: they are for a restricted class of programs (linear in
particular), and are simple but pessimistic, using old versions of the join operator. Still, they give a first idea
of the potential of this abstract domain for fixpoint computation of some classic classes of programs, and
they open the way for stronger results in the future.

A class of programs of interest

Let us consider the class of programs obtained by implementing the infinite iteration of a filter of order n
with coefficients a1, . . . , an, b1, . . . , bn+1 and a new input e between m and M at each iteration :

xk+n+1 =
n∑
i=1

aixk+i +
n+1∑
j=1

bjek+j , (4.1)

starting with initial conditions x1, . . . , xn, xn+1. We can rewrite (4.1) as:

Xk+1 = AXk +BEk+1,∀k ≥ 1, (4.2)

with Xk = t(xk, xk+1, . . . , xk+n), Ek+1 = t(ek, ek+1, . . . , ek+n+1),

A =


0 1 . . . 0
0 0 . . . 0
. . .
0 0 . . . 1
a1 a2 . . . an

 B =


0 1 . . . 0
0 0 . . . 0
. . .
0 0 . . . 1
b1 b2 . . . bn+1


Now, of course, (4.2) has solution

Xk = Ak−1X1 +
k∑
i=1

Ak−iBEi,

where X1 is the vector of initial conditions of this linear dynamical system. If A has eigenvalues (roots of
xn −

∑n
i=1 aix

i−1) of modulus strictly less than 1, then the term Ak−1X1 will tend to zero when k tends
toward infinity, whereas the partial sums

∑k
i=1A

k−iBEi will tend towards a finite value.

Example 17 Consider the following filter of order 2:

xi = 0.7ei − 1.3ei−1 + 1.1ei−2 + 1.4xi−1 − 0.7xi−2,

where x0 = 0, x1 = 0, and the ei are independent inputs between 0 and 1. A typical run of this algorithm,
when ei = 0.5 for all i, always stays positive, reaches at most 1.1649, and eventually converges towards
0.8333.
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Convergence properties

The only abstract domains known to give accurate results, either deal with filters of order 2 [49] (with an
extension on linear recursive filters of any order, given a decomposition in terms of second-order filters), or
are specialized for digital filters [131]. Also, convex polyhedra [44] can converge on linear recursive filters,
but this is not actually studied in the literature.

We proved [83] that our approach allows us to find good estimates for the real bounds of these general
affine recurrences:

Theorem 20 Suppose iteration (4.1) has bounded outputs, i.e. the (complex) roots of xn −
∑n−1

i=0 ai+1x
i

have modulus strictly less than 1. Then there exists q such that the (0, q,∇)-unrolling scheme of Defini-
tion 19 (with modified iteration introduced in Definition 18) converges towards a finite over-approximation
of the output.

This results relies on the fact that if A has eigenvalues strictly lower than 1, than we can find q such that
Aq has coefficients such that the `1 norm on each row is strictly lower than 1. From there, even an interval
join allows to prove convergence. As affine sets allow to compute exactly Aq for a given q, we can easily
conclude.

We carry on with Example 17. Matrix A in this case is

A =

(
0 1
−0.7 1.4

)
the `1 norm of the rows of A are bigger than 1. Iterating A, we see that:

A5 =

(
−0.5488 0.2156
−0.15092 −0.24696

)
is the first iterate of A with `1 norm of rows less than 1. We know by Theorem 20 that all (0, k,∇)-iteration
schemes, with k greater or equal to 5, will converge to a finite upper approximation of the invariant, which
we can estimate to [-1.30,2.82]. Here, the (0, 5,∇)-iteration scheme gives range [-1.63,3.30], while the
(0, 16,∇)-iteration scheme gives range [-1.30,2.8244]. We thus observe that a large enough unfolding
allows us to compute the fixpoint with all the accuracy we want.

The convergence to this invariant is asymptotic if computed in real numbers, meaning that we would
need an infinite Kleene iteration to reach the invariant. However, when affine sets are implemented using
finite precision, the limit is reached in a finite number of steps. For instance, in the case of the (0, 16,∇)-
iteration scheme implemented with floating-point numbers, the fixpoint is reached after 18 iterations. And if
we use convergence acceleration by loss of dependencies after one classic normal iteration step, the fixpoint
is reached after 4 iterations. This time, convergence is reached in finite time, by construction, and no longer
because of the use of finite precision.

We now consider the classic (non specialized) abstract domains that are implemented in the APRON
library [103]: boxes, octagons and polyhedra. The unrolled loop already diverges with boxes and octagons,
so does the fixpoint computation, naturally. For this 2nd order filter, polyhedra give the least fixpoint for the
second order filter, in a time comparable to the time taken by the affine sets abstract domain implemented
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in this library, Taylor1+. But when we take a 8th order linear recursive digital filter, polyhedra take an enor-
mous amount of time (we aborted computation after 24 hours). In comparison, the efficiency of Taylor1+
is not really affected by the higher order (ratio to the analysis time of the 2nd order filter between 2 and
less than 10, depending on the number of cyclic unfoldings). These results, among others, were presented
in [64].

4.2 Policy iteration

One difficulty when using Kleene-like iterations to compute fixpoint, is to design good acceleration and
widening/narrowing. Otherwise, the process will be inefficient or inaccurate, or both. When analyzing
numerical programs, and in particular if we want refined properties such as tight value and rounding errors
ranges, the problem becomes crucial.

We present here a new algorithm, based on policy iteration and not value iteration, for solving our
fixpoint equations. Replacing the widening/narrowing process, it can improve both speed and precision of
results over Kleene-like iterations. We describe it here in the case of abstraction by intervals, as we first
introduced it [37]. But it is more general, and can be applied to a variety of abstract domains, provided that
we can find a “selection principle”, that is that our loop functionals can be expressed as infimums of a finite
set of simpler functionals, on which fixpoint can be efficiently computed. Indeed it has been since applied
to relational domains [59, 2], and other ways to use policy iterations have also been proposed since [60,
61, 62]. It is also integrated in the generic abstract domain library Apron (and actually demonstrated for
intervals) [153], which can constitute a basis for future experiments with other abstract domains. First ideas
to use policy iteration with our zonotopic domains will be mentioned, but are mainly future work.

Policy iteration was first introduced [100] to solve stochastic control problems with finite state and
action space. The policy iteration generalizes Newton’s algorithm to the equation x = f(x), where f is
monotonic, non-differentiable, and convex. It is experimentally efficient, although its complexity is still not
well understood theoretically - we suspect the worst case is exponential, as an exponential lower bound was
given for parity games by Friedman [57].

4.2.1 Lower selection

We assume that a map f is given as an infimum of a finite set G of “simpler” maps, and we wish to obtain a
fixpoint of f from the fixpoints of the maps of G:

Definition 21 (Lower selection) We say that a set G of maps from a set X to a lattice L admits a lower
selection if for all x ∈ X , there exists a map g ∈ G such that g(x) ≤ h(x), for all h ∈ G.

Setting f = inf G, we see that G has a lower selection if and only if for all x ∈ X , we have f(x) = g(x) for
some g ∈ G.

Let us consider the case of static analysis in the lattice of intervals. We define F the set of finitely
generated functions on intervals, composed of expressions with arithmetic or order-theoretic (union, inter-
section) operations, and F∪, the set of finitely generated functions of intervals, composed of expressions
with arithmetic operations and unions, but no intersections.

The intersection of two intervals I = [a, b] and J = [c, d], and hence, of two expressions on intervals, is
given by:

I ∩ J = l(I, J) ∩ r(I, J) ∩m(I, J) ∩mop(I, J), (4.3)
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where l(I, J) = I (l for left), r(I, J) = J (r for right), m(I, J) = [a, d] and mop(I, J) = [c, b] (m for
merge). These operators define the four possible policies on intervals.

To f ∈ F , we associate a family Π(f) of functions of F∪ obtained by replacing each occurrence of a
term I ∩ J by l(I, J), r(I, J), m(I, J) or mop(I, J). The set of policies Π(f) admits a lower selection. In
particular, f = inf Π(f).

4.2.2 Policy iteration

We are interested here in the smallest fixpoint, noted f−, of f . The following result is a key ingredient of
policy iteration:

Theorem 22 Let G denote a family of monotonic self-maps of a complete lattice L with a lower selection,
and let f = inf G. Then f− = infg∈G g

− .

We now state a general policy iteration algorithm. When it terminates, its output is a fixpoint of f =
inf G.

Algorithm 1 (PI: Policy iteration in lattices) 1. Initialization. Set k = 1 and select any g1 ∈ G.

2. Value determination. Compute a fixpoint xk of gk.

3. Compute f(xk). If f(xk) = xk, return xk.

4. Policy improvement. Take gk+1 such that f(xk) = gk+1(xk). Increment k and go to Step 2.

The algorithm does terminate when at each step, the smallest fixpoint of gk, xk = g−k is selected:

Theorem 23 Assume that L is a complete lattice and that all the maps of G are monotonic. If at each step
k, the smallest fixpoint xk = g−k of gk is selected, then the number of iterations of Algorithm PI is bounded
by the height of {g− | g ∈ G}.

Any xk ∈ L computed by Algorithm PI is a post fixpoint: f(xk) ≤ xk. In static analysis of programs,
such a xk yields a valid, although suboptimal, information.

Although Algorithm PI may terminate with a non minimal fixpoint, it is often possible to check that the
output of the algorithm is actually the smallest fixpoint and otherwise improve the results. We consider the
special situation where f is such that ‖f(x) − f(y)‖∞ ≤ ‖x − y‖∞, for all x, y ∈ Rn. We say that such
maps f have Property N.

Theorem 24 Assume that G is a finite set of monotone self-maps of Rn that all have Property N, that G has
a lower selection, and let f = inf G. If Algorithm PI terminates with a finite fixpoint xk = g−k such that
there is only one g ∈ G such that f(xk) = g(xk), then, xk is the smallest finite fixpoint of f .

When the policy g such that f(xk) = g(xk) is not unique, we can still check whether xk is the smallest
finite fixpoint of f : we scan the set of maps g ∈ G such that g(xk) = f(xk), until we find a fixpoint
associated to g smaller than xk, or all these maps g have been scanned.
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4.2.3 Implementation and experiments for the lattice of intervals

A very simple static analyzer has been implemented. A policy is a table that associates to each intersection
node in the semantic abstraction, a value modeling which policy is chosen among l, r,m ormop, in Equation
(4.3). There are a number of heuristics that one might choose concerning the initial policy, which should be
a guess of the value of G1 ∩G2 in Equation (4.3).

We now discuss two typical examples, comparing the policy iteration algorithm with Kleene’s iteration
sequence with widening and narrowing, called Algorithm K here. We use a classic Kleene iterative solver
(algorithm K′) for solving the reduced fixpoint equations (meaning, without intersections) for each policy.
Using Algorithm K′ instead of a specific solver is an heuristics, since the convergence result requires that
at every value determination step, the smallest fixpoint is computed. We decided to widen intervals, both in
Algorithms K and K′, after ten standard Kleene iterations.

In the sequel, we put upper indices to indicate at which iteration the abstract value of a variable is shown.
Lower indices are reserved to the control point number.

1 j =10; / / 2
2 whi le ( j >= i ) { / / 3
3 i = i +2 ; / / 4
4 j = −1+ j ; / / 5
5 } / / 6

Semantic equations at control points 3 and 6 are

(i3, j3) = (]−∞,max(j2, j5)] ∩ (i2 ∪ i5), [min(i2, i5),+∞[∩(j2 ∪ j5))

(i6, j6) = ([min(j2, j5) + 1,+∞[∩(i2 ∪ i5), ]−∞,max(i2, i5)− 1] ∩ (j2 ∪ j5))

The algorithm starts with policy mop for computation of i3, m for j3, m for i6 and mop for j6. The first
iteration using Algorithm K′ with this policy, finds the value (i16, j

1
6) = ([1, 12], [0, 11]). But the value for j6

applying again equation 6 using the previous result, is [0, 10] instead of [0, 11], meaning that the policy on
equation 6 for j can be improved. The minimum (0) for j at equation 6 is reached as the minimum of the right
argument of ∩. The maximum (10) for j at equation 6 is reached as the maximum of the right argument of
∩. Hence the new policy one has to choose for variable j in equation 6 is r. In one iteration of Algorithm K′,
one finds the least fixpoint of the system of semantic equations, which is at line 6, (i26, j

2
6) = ([1, 12], [0, 10]).

This fixpoint is reached by several policies: we apply another policy iteration. This does not improve the
result, the current fixpoint is the smallest one. Algorithm PI uses 2 policy iterations and 5 values iterations.
Algorithm K takes ten iterations to reach the same result.

Algorithm PI can also be both faster and more precise than Algorithm K, as in the case of the following
program:

6 k = 9 ; / / 2
7 j = −100; / / 3
8 whi le ( i <= 100) / / 4 {
9 i = i + 1 ; / / 5

10 whi le ( j < 20) / / 6
11 j = i + j ; / / 7 / / 8
12 k = 4 ; / / 9
13 whi le ( k <=3) / / 10
14 k = k +1; / / 11 / / 1 2
15 } / / 13
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Algorithm PI reaches the following fixpoint, at control point 13, in 13 value iterations, i = [101, 101],
j = [−100, 120] and k = [4, 9] whereas Algorithm K only finds i = [101, 101], j = [−100,+∞] and
k = [4, 9] in 62 iterations.

Indeed, after computing after some number of iterations (i4 = [0, 9], j4 = [−100, 28], k4 = [4, 9]),
Algorithm K applies widening and gets (i4 = [0,+∞], j4 = [−100,+∞], k4 = [4, 9]).

From here on, there is no way, using further decreasing iterations, to find that j is finite (and less than
20) inside the outer while loop, since this depends on a relation between i and j that cannot be simulated
using this iteration strategy.

We will discuss the case of policy iteration for zonotopic abstract domains in the concluding chapter.



Chapter 5

The Fluctuat Static Analyzer

Fluctuat is a static analyzer by abstract interpretation, relying on the general-purpose zonotopic abstract
domains described in Chapter 2, and dedicated to the analysis of numerical properties of programs. Written
in C++, it takes as input ANSI C or Ada programs, annotated with special assertions and directives.

Its primary objective is to prove that the computation performed by a program, using finite-precision
arithmetic, conforms to what is expected by the programmer, that is the same computation in the idealized
real-number semantics. And in the case the analyzer reports that rounding errors produce potentially large
errors, it points out the main sources of uncertainties in the analyzed program. But it was gradually used for
assessing also more functional properties, thanks to its zonotopic abstract domains. Sensitivity of variables
to inputs and parameters deduced from the functional abstraction, can also be used to produce some test
cases that aim at confirming a bad behavior, for the value or the error. We focus here on the analysis
of programs implemented using integers and floating-point numbers, which is what we mainly studied;
however the approach and the abstract domains developed are perfectly well suited to the handling of fixed-
point numbers. And a simple abstract domain for the analysis of programs in fixed-point numbers is actually
implemented in Fluctuat.

We will quickly outline the main features of Fluctuat, with a special emphasis on the specialization of the
zonotopic abstract domains for the analysis of finite precision computations (Section 5.1), before describing
its use and results on test cases (Sections 5.2 and 5.3). We will finally conclude by an overview of the key
steps of the development of Fluctuat.

5.1 Analyzing finite precision computations

5.1.1 Concrete model

We first recall very briefly some basic properties of floating-point arithmetic, and refer the reader to sur-
veys [68, 132] for more details. The IEEE 754 standard [1] specifies the way most processors handle
finite-precision approximation of real numbers known as floating-point numbers. It specifies four rounding
modes. When the rounding mode is fixed, it then uniquely specifies the result of rounding of a real number
to a floating-point number. Let ↑◦: R → F be the function that returns the rounded value of a real number
r. Whatever the rounding mode and the precision of the floating-point analyzed are, there exist two positive
constants δr and δa (which value depend on the format of the floating-point numbers), such that the error

59
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rx− ↑◦ rx when rounding a real number rx to its floating-point representation ↑◦ rx can be bounded by

|rx− ↑◦ rx| ≤ max(δr| ↑◦ rx|, δa). (5.1)

For any arithmetic operator on real numbers � ∈ {+,−,×, /}, we note �F the corresponding operator on
floating-point numbers, with rounding mode the one of the execution of the analyzed program. IEEE-754
standardizes these four operations, as well as the square root: the result of the floating-point operation is the
same as if the operation were performed on the real numbers with the given inputs, then rounded. It also
makes recommendation about some other operations, such as the trigonometric functions.

Fixed-point numbers are a finite approximation of real numbers with a fixed number of digits before
and after the radix. The main differences with floating-point arithmetic are that the range of values is very
limited, and that the absolute rounding error is bounded and not the relative error. As the only properties
we will use in our abstractions, are a function giving the rounded value ↑◦ rx of a real number rx, and a
range for the rounding error rx− ↑◦ rx, all the work below naturally applies to the analysis of fixed-point
arithmetic.

The semantics of machine integers does not introduce rounding errors, but there may still be error terms
associated to integer variables. First, machine integers have finite range: we consider modular arithmetic,
where adding one to the maximum value representable in a given data type gives the minimum value of this
data type. The difference with natural integers will be an error term in our model (the “real” value being
the natural integer). And of course, the propagation of an error term on a floating-point variable cast to an
integer can lead to an error term on this integer variable.

The concrete model on which Fluctuat is based was first sketched in 2001 by Goubault [73], and made
more explicit in 2002 by Martel [121]. Its underlying idea is to bound and describe the difference of behavior
between the execution of a program in real numbers and in floating-point numbers. For that, the concrete
value of a program variable x is a triplet (fx, rx, ex), where fx ∈ F is the value of the variable if the program
is executed with a finite-precision semantics, rx is the value of the same variable if the program is executed
with a real numbers semantics, and ex is the rounding error, that is ex = rx − fx. Also, the error term ex

is decomposed along its provenance in the source code of the analyzed program, in order to point out the
main sources of numerical discrepancy. The source of the main errors being most of the time localized at
a few critical places, this should allow a user to either prove his program correct, or identify in a possibly
large program the origin of a problem. Depending on the level of detail required, control points, blocks, or
functions of a program can be annotated by a label `, which will be used to identify the errors introduced
during a computation. We note L the set of labels of the program, and L+ the set of words over these labels,
then we express the error term as a sum

ex =
⊕
u∈L+

eu, (5.2)

where eu ∈ R is the contribution to the global error of operations involved in word u. A word of length n
thus identifies an order n error, which originates from several points in the program.

Several abstractions of this concrete model were successively implemented in Fluctuat, among which
three are still used. We are not particularly interested in run-time errors nor exceptions: when an overflow
or undefined behavior is encountered, our analysis simply issues a warning and reports > as a result.

The non relational abstraction is the natural abstraction, with intervals, of the values and the decomposi-
tion of error terms of the concrete model. It decomposes first order errors on their provenance, and abstracts
all higher order errors by an interval. This was the first abstract domain implemented in Fluctuat, and it
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is still occasionally used, when one wants a strict decomposition of the error, and the program analyzed is
numerically not too complex. It is quickly described in Section 5.1.2.

The second domain that remains, abstracts by an affine form, the real value, each elementary first order
error attached to one control point of the program, and the (agglomerated) higher order error terms. It thus
preserves a strict decomposition of the error, and is very accurate. But it is quite costly, and we observed
that the higher order term rather perturbs the convergence of fixpoint computations, so that it is better to
group it with first order terms.

Finally, the third abstract domain, which is also the latest implemented, is the one which presents the
best trade-off between cost and accuracy, and it is used more than 90 % of the time. It is quickly described
in Section 5.1.3.

5.1.2 A non relational abstraction

The first natural idea to get an efficient abstract domain of our concrete model, is to abstract the values and
errors with intervals, and to agglomerate all errors of order greater than one in a remaining interval term.
This is what was first implemented in the Fluctuat static analyzer.

An abstract element x is a triplet

x =

(
fx, rx,

⊕
l∈L

exl ⊕ exho

)
(5.3)

where interval fx has floating-point bounds and abstracts the floating-point value, interval rx has real
bounds and abstracts the real value, exl bounds the first-order contribution of control point l on the error
between the real and the computed value of variable x, exho the sum of all higher-order contributions (most
of the time negligible), and the error intervals have real bounds.

Rounding error abstraction For an interval of real numbers rx = [rx, rx], we note ↑◦ rx = [↑◦
rx, ↑◦ rx]. Using bound (5.1), we can over-approximate the rounding error of a real value given in interval
rx to its finite precision representation, by the interval

e(rx) = [−ux, ux] ∩ (rx− ↑◦ rx), (5.4)

where ux = max(δr max(| ↑◦ rx|, | ↑◦ rx|), δa). This expresses the fact that we can compute the error as
the intersection of the abstraction of bound given by (5.1), and the actual difference between the intervals
bounding the real and the finite precision values. The right-hand side or the left-hand side will be more
accurate in different cases, depending for instance on the width of the range of values abstracted.

Arithmetic operations Then, using this abstraction of the rounding error with the fact that the arith-
metic operations on floating-point operations are correctly rounded (Section 5.1.1), we define the transfer
function for expression z = x �n y at label n. When � is the plus or minus operator, we have:

z = (fx �F fy, rx � ry,
⊕

l∈L∪ho
(exl � e

y
l )⊕ e(fx � fy)),
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where the existing errors on the operands are propagated, and a new error term e(fx � fy) is associated to
label (or control point) n. For the multiplication, we define:

z = (fx ×F f
y, rx × ry,

⊕
l∈L∪ho

(fx × eyl + fy × exl )⊕
∑

(l,k)∈(L∪ho)2
exl e

y
k ⊕ e(fx × fy)).

The first order terms thus express the rounding errors and their propagation through computations.
Higher-order errors appear in non affine arithmetic operations, and are non longer associated to a specific
control point.

Cast to Integer The cast of a floating-point (or fixed-point) number to an integer, as long as it does
not result in an overflow of the integer result, is not seen as an additional error, so that the real value rx is
also cast to an integer. Let us note (int)(rx) the result of casting a real variable to an integer, and (int)(a)
its extension to an interval a, then we define i = (int)x by:

i =

(
(int)(fx), (int)(rx),

( ∑
l∈L∪ho

exl + [−1, 1]

)
∩ ((int)(rx)− (int)(fx)

)
,

where the error is fully assigned to the label of the rounding operation: the sources of errors in previous
computations are thus lost, we only keep track of the fact that rounding errors on floating-point computation
can have an impact on an integer variable.

5.1.3 A zonotopic abstraction

We describe in this section, an abstraction of the triplet (fx, rx, ex) relying on the zonotopic abstract domain
of Chapter 2 for the real value rx and the error ex, from which the finite precision value of variables is
bounded by the reduced product of rx − ex with the intersection of a direct interval computation of fx.
More details can be found in [85].

An abstract value now consists of an interval and two affine forms, x = (fx, r̂x, êx), and relies on
two sets of noise symbols, the εri that model the uncertainty on the real value, and the εei that model the
uncertainty on the error. The uncertainty on the real value also introduces an uncertainty on the error, which
is partially modeled by the affine forms we consider:

r̂x = rx0 +
∑
i

rxi ε
r
i

êx = ex0 +
∑
i

exi ε
r
i +

∑
l

exl ε
e
l

In the error expression êx, exl ε
e
l expresses the uncertainty on the rounding error committed at point l of

the program (its center being in ex0), and its propagation through further computations, while exi ε
r
i expresses

the propagation of the uncertainty on value at point i, on the error term and allows to model dependency
between errors and values.

Note that simpler variations of this abstract domain can be used to compute the finite precision value
only, basically using only one affine form. Each operation creates a new noise symbol that is used either to
over-approximate a non-affine operation, either to add a rounding error, or both.
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We now define the transfer function for expression z = x �n y at label n. When � is the plus or minus
operator, we define:

r̂z = r̂x � r̂y,
êz = êx � êy + newεe(e(γ(r̂z − êx � êy) ∩ (fx � fy))),
f z = (fx �F fy) ∩ γ((r̂z − êz))

where γ is the interval concretization on affine forms, interval function e is the interval abstraction of the
rounding error defined in (5.4), and function newεe creates a centered form with a fresh error noise symbol.
All operations on affine forms, for real value or error, are those defined in Chapter 2. The new error term
is obtained from the estimation of bounds for the real result of the operation on the floating-point operands,
γ(r̂z − êx � êy) ∩ (fx � fy).

For the multiplication, we define:

r̂z = r̂xr̂y,

êz = r̂y êx + r̂xêy − êxêy + newεe(e(γ(r̂z − (r̂y êx + r̂xêy − êxêy)) ∩ (fxfy))),

f z = (fxfy) ∩ (γ(r̂z − êz)).

The propagation of the existing errors, obtained by expressing r̂xr̂y − (r̂x − êx)(r̂y − êy), is computed
with affine arithmetic by r̂y êx+r̂xêy−êxêy: this is how real noise symbols can appear in affine forms for the
error. Note that here, there is no first-order / higher order error distinctions, and that there is only one affine
form for the error: thus the origin of the errors is not as strictly decomposed as in the non relational semantics
for instance. Still, the noise symbols are associated to control points, which allows us to keep information
on the provenance of the uncertainties on the errors. The full decomposition was also implemented, but is
very barely used because costly for no gain of accuracy, and with slower convergence in fixpoint iterations.

Some specific properties of floating-point numbers can be used to refine the estimation of the new error
in some cases. For instance, the well-known Sterbenz Theorem [154] that says that is x and y are two
floating-point numbers such that y2 ≤ x ≤ 2y, then the result of x− y is a floating-point number, so that no
new rounding error is added in this case. This allows to refine the subtraction by writing êz = êx− êx when
the floating-point values of x and y satisfy the hypotheses of Sterbenz Theorem.

Casts from floating-point value to integers As already stated, the truncation due to the cast is not
seen as an error. So, the affine form for the real value is also cast to an integer, which results in a partial
loss of relation, of amplitude bounded by 1, that expresses the quantization effect. We give here a simple
version, that can be refined in some cases. If the error on x was not zero, a loss of relation also applies. For
the floating-point value, the cast directly applied to the interval value will be more accurate than ri−ei. The
cast i = (int)x then writes

r̂i = r̂x + newεr([−1, 1])

êi =


0 if ex = 0
newεe([−1, 1]) if γ(ex) ∈ [−1, 1]
ex + newεe([−1, 1]) otherwise

f i = (int)fx
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Affine operations and multiplication over integer variables can be directly extended from the floating-point
version (same propagation of existing errors, no additional rounding error, but an additional error term if an
overflow occurs). The integer division can be interpreted by a division over real numbers (error propagation
with no additional error), followed by a cast to an integer.

Implementation in finite precision One advantage of the abstract domains relying on affine sets is to
be easily soundly implemented when using finite precision numbers. The coefficients of the affine sets can
be computed with finite precision: the computation is made sound by over-approximating the rounding error
committed on these coefficients and agglomerating the resulting error in new noise terms. Keeping track of
these particular noise terms is interesting as they quantify the overestimation in the analysis specifically due
to the use of finite precision for the analysis.

5.1.4 Order-theoretic operations and unstable tests

The join and widening operators are defined component-wise on the real value, the floating-point value, and
the error. This does not raise any particular problem.

But the test interpretation, and thus the meet operation, rely, for the time being, on the assumption
that the control flows in the program are the same when considering the finite precision and real values of
variables; in this case we say the test is stable. The test conditions are thus interpreted both on real and
floating-point values. In the zonotopic abstract domains, the interpretation of tests yields constraints on the
noise symbols, so that for the meet operation, we will join the constraints over the noise symbols generated
by both r̂x ∩ r̂y and r̂x − êx ∩ r̂y − êy. We still consider all possible control flows and join the values
computed in each branch, so that even when an unstable test can occur, the bounds for the values will be
sound. But the error bounds may be unsound, because we do not consider as an error term the difference of
values obtained when the control flows diverge.

In practice, there are many potentially unstable tests, but most do not present a discontinuous behavior,
in the sense that taking one branch or the other due to a rounding error does not dramatically change the
result, and the error bounds will remain sound. Still, this has to be checked. For the time being, in case of
an unstable test, a warning is issued by Fluctuat, indicating which test the user should check. We plan to
propose in the near future a (dis)continuity analysis relying on the abstract domain of affine sets, that will
add a new error term bounding this discontinuity error as an affine set of the existing value and error noise
symbols, making the analysis sound even in presence of unstable tests.

5.2 Using Fluctuat

We chose in this document to describe Fluctuat through its use: first through a short description of the
different classes of assertions and of the options and parameters of the analysis, then through examples that
demonstrate their use. We refer to the user manual [88] for a detailed list of assertions and parameters, and
their exact names.

The analysis consists in three phases, that can be iterated: the user first selects the source files to be
analyzed, and, if useful, annotates them with the language of directives and assertions of Fluctuat. Then the
parameters that are global to the analysis can be set via the user interface (the local parameters are rather
set using the directives). Finally the analysis is performed and the results consulted via the user interface
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(designed with QT). The user can then refine the analysis or ask for more specific task such as worst case
generation.

Recently, an interactive version was developed, that works as an abstract debugger: it allows the user to
better understand some results of the analysis, and refine them if needed, by changing some parameters or
values during the analysis.

Let us now detail the three phases of the (non interactive) analysis:

5.2.1 Building the analysis project - directives

The directives added in the source code to be analyzed help tune the analysis locally, we will see their use
in more details in the examples section. We do not want to be exhaustive here, but the main directives fall
in one of the following classes:

Hypotheses on the environment of the program They can specify ranges on values (real or floating-
point) of variables, ranges on errors on inputs and parameters, bounds on the variation of a variable between
two consecutive calls. A further step has been taken in the direction of taking into account a model of a
continuous environment in our analysis, using a guaranteed integration tool to bound the behavior of the
continuous environment, see Section 5.3.6. Some special directives in the code then model the interaction
with the environment via sensors and actuators.

Local partitioning and collecting strategies They are used to improve the accuracy of the analysis,
and are of two kinds. Either a particular partitioning is needed, and known by the user: the user then
builds this partitioning in the code with the assertions for the value on the variable to be partitioned, and
specifies the analyzer it must collect all results by a special assertion. Or there is no particular partitioning
that is expected to improve the accuracy, and we use local partitioning assertions, that specify, the scope
of the subdivision, and a number of subdivisions or an accuracy requirements. In the first case, a regular
subdivision will be used. In the second case, the analyzer will dynamically adapt the subdivision to the
requirement.

Printing information If not specified otherwise, the analyzer prints bounds on values and errors on
variables at the end of the analysis. It would be too costly indeed to print all information computed during
the analysis. Printing directives thus allow to print value and error information on variables of interest during
the analysis: this evolution can then be visualized on graphs with the user interface. Some other directives
indicate to print relational information which is not given otherwise, such as sensitivity of an output to the
inputs of the program: this in particular permits worst case generation, that will suggest scenarios to try to
maximize the value or error of the given output.

As already mentioned, we progressively moved from a use where we only characterized the propagation
of errors, to the analysis of more functional behavior, such as sensitivity analysis, or even proof that the
program actually computes something at least close to what is expected in term of the real mathematical
function. For the time being, the verification of a remarkable identity when available is done by adding
variables and computation of that identity in the source code. But it could be achieved in the future using
new directives.
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5.2.2 Parameterizing the analysis

The options set via the user interface (see Figure 5.1 for the main parameters window), define the global
parameterization of the analysis. We try to describe the main possibilities below:

Abstract semantics The different abstract domains presented in Section 5.1 can be chosen via the
user interface of Fluctuat. They all rely on the arbitrary precision library MPFR [55], which provides correct
rounding for all elementary and library mathematical functions: the precision (length p of the mantissa) of
the numbers used can be specified by the user.

Each abstract domain can be used for static analysis (with the iteration strategies mentioned below) or
symbolic execution: in the second case, the finite precision value of all variables given in an interval are
taken to the center of the interval, and loops are fully unfolded. However, the behavior of the program
analyzed around this floating-point scenario can still be studied by adding a perturbation as an error term.

Our alias and array analysis is based on a simple points-to analysis [111]. An abstract element is a graph
of locations, where arcs represent the points-to relations, with a label (which we call a selector) indicating
which dereferencing operation can be used. Arrays and structs are interpreted in two different ways: either
all entries are considered to be separate variables or the same one (for which the union of all possible values
is taken). Although these abstractions have proved sufficient for the time being, we may have to refine them
in the future.

Iteration strategies Fluctuat implements all the Kleene-like iteration variations and acceleration tech-
niques described in Section 4.1 of Chapter 4. The choice of initial and cyclic unfolding of loops, number of
iterations before extrapolating the result can be parameterized in the user interface.

As already mentioned, computations in Fluctuat are performed with user-defined precision p, using the
MPFR library. Before eventually using a widening to ensure termination of the analysis, we can use a
convergence acceleration operator for the computation of fixpoint, obtained by the progressive reduction
of the precision p of the floating-point used for the analysis (in general, the more precision is used for
computation, the more iterations are needed for fixpoint convergence): the number of mantissa bits lost at
each iteration can be specified by the user.

In the case of nested loops, a depth first strategy is chosen : at each iteration of the outer loop, the
fixpoint of the inner loop is computed. In critical embedded systems, recursion is in general prohibited.
Hence we chose to use a very simple inter-procedural domain, with static partitioning [104].

Finally, the user can choose in Fluctuat to reduce the level of correlation to be kept: different strategies
are proposed to group the noise symbols. For example, correlations can be kept only between the last n
iterations of a loop, where n is a parameter of the analyzer. Also, the user can choose to agglomerate, or not,
the noise symbols introduced in a loop when getting out of it, the idea being that the correlations introduced
inside the loop may be useful for fixpoint convergence inside the loop, but no longer outside the loop. The
same thing holds when getting out of a function call.

Subdivisions and refinements The propagation of error bounds in operations in which most relational
information are lost, mainly bit-wise operations on integers, is most of the time very inaccurate if on a large
set of values: in this case, the user can specify to locally refine the computation of these error bounds, by
subdivision of the input values of these integer operations.
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Also, global subdivisions (for the whole program) of input variable ranges (in case we want very precise
results on non-linear computations) can be specified via the user interface. On difficult cases, combined with
symbolic executions, this can be used to have sample values and corresponding analysis results, in order to
get a first picture of the behavior of the program, before proceeding to a full static analysis.

Figure 5.1: Parameters window

5.2.3 Exploitation of results

The graphical interface (see Figure 5.2 for the main window) gives information during and at the end of the
analysis:

During the analysis During the analysis, the user has some knowledge about the status of the analysis:
in case of loops, he knows in which loop the analysis is, and has an indication of the remaining time based
on worst case hypotheses for loops, and number of remaining subdivisions in case of global subdivisions.
Also, in case of subdivisions, he has access to the result of the subdivisions already analyzed. And, in any
case, a pop-up window appears to warn the user that the analysis may be unsatisfying as soon as a variable
is evaluated to top. Finally, the printing assertions can be used to watch the results during the analysis.

All this information allows the user to save some time: he has a first idea without waiting for the end of
the analysis, of the time required for the analysis and the accuracy of results.

Warnings The tool warns about possible run-time errors or unspecified behaviors, and their source in
the analyzed program. When possible, the program should be fixed for the tool not to issue such warnings,
before looking more closely at results. Unstable tests, that is when the floating-point and the real control
flows may be different, are also reported: the user must then make sure they have no dangerous impact,
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Figure 5.2: Main window

namely that they do not create discontinuities (as already mentioned, we intend to propose a new analysis to
compute this information in the near future).

Identifying problems and refining results The interface presents graphically, at the end of the pro-
gram and for each variable, bounds on the value and on elementary errors and their provenance in the source
code: the user can thus quickly identify the main sources of errors. Sensitivity of a given output to inputs
can also be printed, and we implemented heuristics to compute scenarios leading to results close to the error
and value bounds. Finally, some help is provided for the analysis of portions of large programs: the code
which is proved to be dead is indicated, as well as uninitialized variables.

The analyses may still yield abnormally large ranges or errors on output variables (the analyzer points
to the main sources of errors). In this case, the user should switch to the symbolic execution mode of the
tool, in order to make sure the analyzed program is not trivially unstable. More generally, the accuracy of
the static analysis should be assessed through worst-case generation and symbolic execution with (possibly
many) subdivisions. The static analysis parameters should then be tuned until results can be compared to
that of symbolic execution.

5.3 Examples and case studies

Analysis of control software is the primary target of Fluctuat, at least for now. These software are usually
developed in a model-based approach: most of the source code is generated automatically from high-level
synchronous data-flow specifications and external basic clocks. And these basic blocks often implement
approximations of mathematical functions. When we have a specification for the function, we can in Fluctuat
evaluate the accuracy of the approximation, in real and in finite precision. Bounds on the model errors,
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which give a functional proof that the program in real numbers indeed computes something close to the
mathematical function, are obtained by bounding the real value of the result minus the mathematical function
considered. While bounds on the additional error due to finite precision computation are obtained with the
error bounds. This gives the user tools to adapt well the model error to the computational error: for instance,
there is no need to use double precision numbers in an elementary function if the model error is very high;
or conversely, there is no need to use a very fine approximation model if the finite precision computation
introduces errors that are larger than this model error. On the contrary, it can be counter-productive and
dangerous in some cases, as it may prevent the floating-point program to terminate in all cases: see for
instance the square root approximation of section 5.3.5.

No real embedded code is shown here, but all the examples we will develop are strongly inspired by
the basic blocks we have encountered in our case studies: indeed, such elementary functions analyses were
or are conducted for different groups such as Airbus, Sagem, Continental, Thales and IRSN (the French
Institute for Radioprotection and Nuclear Safety), and were a the the origin of several publications [79, 87,
46, 19]. We have also studied longer and more complex pieces of programs, for instance in our studies for
Astrium, IRSN, and for Airbus to a lesser extent.

5.3.1 A simple addition...

The simple program below fully demonstrates how tricky floating-point computations can be, already on
rather harmless-looking programs:

Listing 5.1: Typical error accumulation
1 f l o a t t , d e l t a = 0 . 1 ;
2 f o r ( i n t i =0 ; i <500; i ++) {
3 t = t + d e l t a ;
4 FPRINT ( t ) ; / / a s s e r t i o n t o p r i n t e v o l u t i o n graphs t ( i )
5 }

Fluctuat finds out that after 500 such iterations, the relative error between the real and the floating-point
computation of variable t is already equal to 3.81 × 10−6, that is more than an order of magnitude larger
than the elementary rounding error for simple precision. This is of course due to the fact that the nice looking
constant 0.1 is not exactly representable as a floating-point number. One could then a little too quickly think
that the error is quite easy to assess as a linear function of the iterate, the error on delta accumulating at each
iteration. But this example on the contrary demonstrates that even on such an simple example the evolution
of the error is tricky to assess. Indeed, we should not forget that the addition at each iteration also introduces
an error, which becomes more important than the initial error on delta as t grows. In Figure 5.3, we can see
that the main source of error is not the assignment delta = 0.1: the influence of this statement on the
total error on t is negligible, as can be seen in the “error at current point” box when selecting this line in the
error graph (−7.45e−7 whereas the total error on t is 1.9e−4). The difficulty to predict the behavior of the
rounding error even on such a simple example can also be observed on the evolution graph for the error on
variable t as function of the iteration, shown in Figure 5.4.

5.3.2 A set of order 2 recursive filters

Consider the program of Listing 5.2: assertion x = DBETWEEN(a,b) is a Fluctuat directive specifying
that double precision variable x can take any value between a and b, and that this initial value is without
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Figure 5.3: Variable t at the end of Listing5.1

Figure 5.4: Evolution of the error on t in Listing 5.1 Figure 5.5: Evolution of the value of S in Listing 5.2
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error (other assertions exist, that specify errors). This program implements a set of filters (as the filters
coefficients are uncertain), run N times, and here for any integer N , with at each iteration a new unknown
input E in [0, 1], with unknown dependency to the previous inputs. The poles of the Z-transform of this filter
have a module in [0.932, 0.975], thus close to instability.

Listing 5.2: Set of order 2 filters
1 i n t main ( void N) {
2 double A1 , A2 , A3 , B1 , B2 , E , E0 , E1 , S , S0 , S1 ;
3 A1 = DBETWEEN( 0 . 5 , 0 . 8 ) ; A2 = DBETWEEN(−1.5 ,−1) ; A3 = DBETWEEN( 0 . 8 , 1 . 3 ) ;
4 B1 = DBETWEEN( 1 . 3 9 , 1 . 4 1 ) ; B2 = DBETWEEN(−0.71 ,−0.69) ;
5 E=DBETWEEN( 0 , 1 . 0 ) ; E0=DBETWEEN( 0 , 1 . 0 ) ;
6 f o r ( i =1 ; i<=N; i ++) {
7 E1=E0 ; E0=E ; E=DBETWEEN( 0 , 1 . 0 ) ;
8 S1=S0 ; S0=S ;
9 S=A1∗E+E0∗A2+E1∗A3+S0∗B1+S1∗B2 ;

10 }
11 DSENSITIVITY ( S ) ;
12 }

Analyzing a particular filter in the previous set We first consider one particular filter among these set of
filters, by fixing the coefficients of the filter: A1 = 0.7, A2 = −1.3, A3 = 1.1, B1 = 1.4 and B2 = −0.7.
We find the results summarized in Table 5.1. The first two columns of the table indicate the number of cyclic
unfolding and the number of iterations after which we begin to widen instead of using the join operator.

c. unfold widen. time mem. S (float) S (error)
10 150 92 s 45 Mb [−6.30; 7.96] [−5.55× 10−14; 5.58× 10−14]

30 40 24 s 45 Mb [−5.18; 6.84] [−3.36× 10−14; 3.38× 10−14]

Table 5.1: Filter for A1 = 0.7, A2 = −1.3, A3 = 1.1, B1 = 1.4 and B2 = −0.7.

The higher the cyclic unfolding is, the lower the widening threshold can be to obtain convergence of the
fixpoint computation. Also, on this example we increased the precision in number of bits of the mantissa of
the numbers used for the analysis to 200 bits. This gives more precision, but the computation is slower and
converges more slowly to a post fixpoint: for instance, using the default value of 60 mantissa bits in the case
when the cyclic unfolding is 10, setting the widening threshold to 40 is enough to ensure convergence, and
we get in 8 seconds the same real and floating-point values as before, and an error in [−6.56×10−13, 6.56×
10−13].

Completely unfolding the loop on 100 iterations confirms that the bounds found by the analysis are fairly
precise: S is found to be in [-1.09, 2.76] with error in [−1.15 × 10−14, 1.17 × 10−14]. Still, there is room
for improvement, with the global join operators on zonotopes presented in Chapter 2 (not yet implemented),
or with finer iteration strategies.

Back to the set of filters

The results on the whole set of filters are summarized in Table 5.2. When considering the set of filters, with
uncertain coefficients, the computations are no longer affine, and we thus subdivide some coefficients to
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improve the accuracy. First column indicates how much we subdivide coefficients B1 and B2. On the first
line, we see the results for the full static analysis for N unknown. The second and third line show the results
of the loop completely unfolded on the first 200 iterations (hence the analysis is particularized to N=200),
first without subdividing coefficients B1 and B2, and then, subdividing them. The results of the static

#B1,B2 c. widen. time mem. S (float) S (error)
1, 1 200 20 430 s 50 Mb [−17.1; 18.6] [−8.0× 10−14; 8.0× 10−14]

1, 1 fully no 6 s 53 Mb [−5.63; 7.13] [−2.9× 10−14; 2.9× 10−14]

10, 10 fully no 1347 s 53Mb [−4.81; 6.33] [−2.6× 10−14; 2.6× 10−14]

Table 5.2: Results on the order 2 filter of Listing5.2

analysis (i.e. fixpoint calculation) are not too over-approximated compared to the results of the unfolded
loop, which, as can be seen on the evolution graph of Figure 5.5, are quite stable on the last iterations.

Fluctuat, using the fact that affine sets give linearized functions of the outputs, can also automatically
generate worst-case scenario that should reach a value close to the maximal (or minimal) bound on the value
of some variable x specified by a DSENSITIVITY(x) directive in the source code. This works very well
for the values, and is more heuristic for the errors though still satisfying in most cases: the affine forms for
the errors are defined partially on value noise symbols, establishing a correlation between errors and values
of inputs, that allow to partially control these errors. When asking here for a worst case scenario, leading to
a maximum value of S, the analyzer proposes A1 = 0.8, A2 = −1, A3 = 1.3, B1 = 1.41, B2 = −0.69,
along with values for the successive inputs E (see Figure 5.6): when executed with Fluctuat, this leads to
S = 5.36. Proceeding in several steps to generate worst-case scenarios when the computation are non linear
lead to better scenarios in general: for instance here, if we fix the coefficients of the filters as computed
above, and only then ask for values for the inputs E, then we reach the larger value S = 5.65. We are
actually quite close to the upper bound on the fixpoint given in Table 5.2.

5.3.3 An interpolated sine approximation

We use the example in this section to describe at the same time the results that can be obtained with Fluctuat,
and the methodology to obtain these results: we detail the different steps that allow to progressively refine
the results, starting from a program almost without directives, and with default analysis parameters.

Embedded programs classically use interpolation tables to approximate trigonometric functions, such
as the sine of an angle expressed in degrees. For instance, one may build an array of 361 double precision
numbers providing approximations of the sine function for every half degree:

∀k = 0, 1, . . . 360,

∣∣∣∣T [k]− sin

(
k

2

)∣∣∣∣ < 10−4,

and implement an approximation of sine by interpolating between the points of this table for angles between
0 and 180 degrees and using the identities

∀x ∈ R, ∀k ∈ Z, sin(x) = − sin(−x) = sin(x+ 360k) = sin

(
x− 360

⌊
x+ 180

360

⌋)
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Figure 5.6: Worst case scenario on value of S in Listing 5.2

Let us try to run an analysis for the full range of double numbers, for the following naı̈ve implementation of
the sine operator:

Listing 5.3: Sine approximation
1 e x t er n c o n s t double T [ 3 6 1 ] ;
2 double SIN 0 180 ( double x ) {
3 double dx , i d x , v i n f ;
4 double v sup ; i n t i ;
5 dx=2∗x ; i =dx ; i d x = i ;
6 v i n f =T [ i ] ; v sup =T [ i + 1 ] ;
7 re turn v i n f + ( dx − i d x )
8 ∗ ( v sup − v i n f ) ; }
9

10 double SIN 180 ( double x ) {
11 i f ( x<0)
12 re turn −SIN 0 180(−x ) ;
13 e l s e
14 re turn SIN 0 180 ( x ) ; }
15
16 double SIN POS ( double x ) {
17 i f ( x>180) re turn SIN 180 ( x
18 −360.∗( i n t ) ( ( x + 1 8 0 . ) / 3 6 0 . ) ) ;
19 e l s e re turn SIN 180 ( x ) ; }
20
21 double SIN ( double x ) {
22 i f ( x<0) re turn −SIN POS(−x ) ;
23 e l s e re turn SIN POS ( x ) ; }

Fluctuat, in 1.5 seconds, issues infinite values and errors for the result of the sine function, and warns
that the (int)((x+180.)/360.) cast may be undefined. Indeed this implementation uses a conversion
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from double to int, so it is only valid for inputs x such that
⌊
|x|+180

360

⌋
can be represented in the type int. In

our 32 bits case, this is the ] − 773094113100, 773094113100[ interval. This is not an issue, provided that
call contexts for SIN in the whole control program are guaranteed to fall into this last interval.

The analysis costs for the reduced domain are unchanged, but its result is still disappointing: the com-
puted over-approximation of the value (and error) interval for the result of the sine algorithm in floating-point
numbers is [−3.09 × 1012, 3.09 × 1012], whereas it is [−1.5, 1.5] in the real-number semantics. Besides,
Fluctuat warns the user that the program test in function SIN 180 is unstable: it stresses here that when-
ever the floating-point execution takes the (x<0) branch, the real execution is sure to execute the (x>=0)
branch. This requires careful attention.

As a matter of fact, whenever x is very close to (but smaller than) a number of the form 180 + 360× k,
for some k ∈ N, then a rounding error occurs when evaluating expression (x+180.)/360. in floating-
point arithmetic. The result is rounded to the double representing k + 1. In all such cases, the x -
360.*(int)((x+180.)/360.) expression has value close to (though below) 180 in real numbers, but
close to (though below)−180 in floats. In such a case, expression T [i+ 1] in function SIN 0 180 attempts
to access array T out of bounds, as signaled by Fluctuat. We thus fix the naı̈ve implementation of the sine
operator: we add a 362nd array element, such that T [0] = T [360] = T [361] = sin(0) = sin(±180) = 0.

Custom non uniform subdivisions Now we have fixed the implementation, we would like to have an
idea of the accuracy that can be ultimately expected from the analysis. For that, we switch to the symbolic
execution mode of Fluctuat with same range and subdivisions, thus choosing a sample of inputs in the input
range. As a result, we get a useful (though unsound for the whole range of values) estimate of the error
range for y: [−1.05× 10−16, 1.05× 10−16].

We thus look for a more precise way to perform the static analysis: we write a new main function im-
plementing a custom irregular subdivision, with a singleton for every interpolation point of the interpolation
table:

[−180, 180.5[=
360⋃

i=−360

{
i

2

}
∪
]
i

2
,
i+ 1

2

[
This improves the accuracy of the analysis by a “manual” disjunctive analysis.

Listing 5.4: Custom non uniform subdivision
1 double x =−180. , y = 0 . , x i , y i ; i n t i ;
2 f o r ( i =−360; i <=360; i ++) {
3 x i = i ∗ 0 . 5 ; y i = SIN ( x i ) ;
4 x = DCOLLECT( x , x i ) ; y = DCOLLECT( y , y i ) ;
5 x i = DBETWEEN(DSUCC( i ∗0 . 5 ) , DPREC ( ( i +1) ∗0 . 5 ) ) ;
6 y i = SIN ( x i ) ;
7 x = DCOLLECT( x , x i ) ; y = DCOLLECT( y , y i ) ; }

We then collect back the values that variables can take on the full domain using directive DCOLLECT, see
Listing 5.4. We could also have used a variation of this assertion DCOLLECT WARN, that checks that there
is no hole in the values collected, and that we have thus subdivided the whole initial range.

The static analysis is run unrolling the main loop. It takes 97 seconds and 36 MB, and ensures that x ∈
[−1.8×102, 1.805×102] and y ∈ [−1.0, 1.0] with errors in [−4.97×10−16, 4.97×10−16]. The imprecision
generated by the floating-point implementation is thus proved negligible compared to the accuracy of the
interpolation table.
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We may also run sensitivity analyses for all [ i2 ,
i+1

2 [ sub-intervals of the [−180, 180[ range. Merging
the 720 results, we can guarantee |∆y∆x | ≤ 0.0176. This is of course a very satisfactory result, as we are
approximating a real-valued sine function expressed in degrees, i.e. such that∣∣∣∣ ddx

(
sin

(
180

π
x

))∣∣∣∣ =

∣∣∣∣180

π
cos

(
180

π
x

)∣∣∣∣ ≤ 180

π
∼ 0.0175

Approximate functional proof of special identities We want here to check that the approximate operator
satisfies, in real and in floating-point numbers, some properties close to classic properties of the real sin
function. For instance here:

sin(x) = − sin(−x) = sin(180− x) sin(x)2 + sin(x− 90)2 = 1

For that, between lines 6 and 7 in Listing 5.4, we add the following lines:

1 c1 = SIN ( xi −90) ;
2 z1 = y1 + SIN(− x i ) ;
3 z2 = y1−SIN(180− x i ) ;
4 z3 = y1∗y1+c1∗c1−1.0 ;

Fluctuat proves that the real values of z1 and z2 are in [−4.34×10−18, 4.34×10−18] and their floating-point
value in [−5.44×10−16, 5.44×10−16]. Property sin(x) = − sin(−x) = sin(180−x) holds almost exactly
for the approximate operator, and the rounding error is predominant here.

But the real value of z3 is in [−1.32× 10−4, 1.21× 10−4] with negligible error, bounded by [−8.44×
10−16, 7.93× 10−16]. Here, the approximation errors seems large. And indeed, if asked for a “worst case”,
Fluctuat delivers as best guess for reaching the maximum of z3, x = 127.5. Executing the code with this
value, we get z3 = 1.21× 10−4 confirming the supremum bound found by static analysis. This is due to an
error of about 10−4 on the corresponding table entries: the algorithm is actually most probably computing
something quite close to the sine function, with approximately the 10−4 absolute precision expected, mostly
due to the algorithm (the interpolation), and not to its finite precision implementation.

5.3.4 Cosine approximation

For the sine approximation, we proved that some inequality approximately holds. We an also use Fluctuat
to compare the implementation of a mathematical function to the actual function, like here for a cosine
approximation. In this example, we will even prove that the implementation 5.5, which is a variation of that
proposed in http://www.netlib.org/fdlibm/k_cos.c, actually approximates very closely the
cosine function.

Listing 5.5: Cosine approximation

1 i n c l u d e ‘ ‘ math . h’’
2 double C1 , C2 , C3 , C4 , C5 , C6 ;
3 C1=4.16666666666666019037 e−02;
4 C2=−1.38888888888741095749 e−03;
5 C3=2.48015872894767294178 e−05;
6 C4=−2.75573143513906633035 e−07;
7 C5=2.08757232129817482790 e−09;
8 C6=−1.13596475577881948265 e−11;

9
10 double mcos ( double x ) {
11 double a , hz , z , r , qx , z r ;
12 z = x∗x ;
13 i f ( x<0) x = −x ;
14 hz = 0 .5∗ z ;
15 r = z ∗ (C1+z ∗ (C2+z ∗ (C3+z ∗ (C4+z ∗ (C5+z∗

C6 ) ) ) ) ) ;
16 z r = z∗ r ;
17 i f ( x < 0x1 .33333 p−2)
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/∗ i f | x | < 0 . 3 ∗ /
18 re turn 1 . − ( hz − z r ) ;
19 e l s e {
20 i f ( x > 0 . 7 8 1 2 5 ) { /∗ x

> 0 .78125 ∗ /
21 qx = 0 . 2 8 1 2 5 ;
22 } e l s e {
23 f l o a t f = x ;
24 qx = 0 . 2 5 f ∗ f ;
25 }
26 hz = hz−qx ;
27 a = 1.−qx ;
28 re turn a − ( hz − z r ) ;

29 }
30 }
31
32 void main ( void )
33 {
34 double x , y , z ;
35 double p i = 3 .141592653589793238462;
36 x = DBETWEEN( 0 . 5 , 0 . 7 5 ) ;
37 y = mcos ( x ) ;
38 z = y − cos ( x ) ;
39 }

We study function mcos on the range [0.5,0.75], this is added using the DBETWEEN assertion again.
And we add line z = y - cos(x), where cos is the mathematical cosine function, in order to prove
that function mcos actually computes something very close to the mathematical function. Bounds on the
value of z will bound the approximation error, while bounds on its error will bound the error due to finite
precision.

Fluctuat with default parameters gives in 0.01 sec, z in [−7.51× 10−3, 7.71× 10−3] with computation
error bounds [−2.7 × 10−16, 2.7 × 10−16]. Subdivisions on the input allow to refine this estimation: for
instance, in 10 sec, 16Mb and 1000 subdivisions, we have z in −7.5 × 10−9, 7.5 × 10−9], with an error
in [−2.62 × 10−16, 2.62 × 10−16]. And n 4 hours of computation, we obtain that the real value of z is
in [−1.88 × 10−15, 1.88 × 10−15], with an error due to finite precision in [−3.45 × 10−16, 2.56 × 10−16].
Subdividing even more allows to keep reducing the real value of z, that is the error due to the approximation
scheme, while the error due to finite precision remains of the same order, so that the mcos function indeed
approaches the cosine very closely. But the computation times become unreasonable.

Proving such refined properties is not a central use of Fluctuat for the time being: the zonotopic abstract
domains are well suited to computations that do not involve too many non-linear computations, and for large
ranges of values. But this example demonstrates that if time is not an issue, like on elementary symbols that
need to be analyzed once, such use is conceivable, whereas it is not with a non relational domain such as
intervals.

5.3.5 An iterative algorithm for square root approximation

We finally consider an example that illustrates the difficult case when the use of finite precision does not
only affect the accuracy of the result, but also the behaviour of the program. The function below computes
by the Householder method the inverse of the square root of the input I . The loop stops when the difference
between two successive iterates is below a criterion that depends on a value eps.

1 xn = 1 . 0 / I ; i = 0 ; r e s i d u = 2 .0∗ eps ;
2 whi le ( f a b s ( r e s i d u ) > eps ) {
3 xnp1 = xn ∗ ( 1 . 875+ I ∗xn∗xn ∗ (−1.25+0.375∗ I ∗xn∗xn ) ) ;
4 r e s i d u = 2 . 0∗ ( xnp1−xn ) / ( xn+xnp1 ) ;
5 xn = xnp1 ; i ++; }
6 O = 1 . 0 / xnp1 ; sbz = O− s q r t ( I ) ;

This algorithm is known to quickly converge when in real numbers, whatever the value of eps is. However,
in finite precision, the stopping criterion must be defined with caution: for instance, executed in simple
precision, with eps=10−8, the program never terminates for some inputs, for instance I = 16.000005.
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Analyzed with Fluctuat for an input in [16, 16.1], we obtain that the number of iterations i of the algorithm
is potentially unbounded. We also obtain that residu has a real value bounded in [−3.66×10−9, 3.67×10−9]
and a floating-point value is bounded in [−2.79×10−7, 2.79×10−7] (50 subdivisions), so that the real value
satisfies the stopping criterion but not the floating-point value, which is also signaled by an unstable test on
the loop condition. Now, analyzing the same program but now for double precision variables, Fluctuat is
able to prove in 3 seconds that the number of iterations is always 6 (both the real value and the floating-point
value satisfy the stopping criterion). Also, bounding the variable sbz, Fluctuat is also able to bound the
method error, so that we prove that the program indeed computes something that is close to the square root:
the real and float value of sbz are found in [−1.03× 10−8,−1.03× 10−8], with an error due to the use of
finite precision in [−1.05× 10−14, 1.05× 10−14].

5.3.6 Analysis of hybrid systems

An emerging trend in software verification is to extend the analysis of programs to take into account their
interaction with the external world in a more refined manner than just specifying ranges of values for inputs
and outputs of the programs. We extended Fluctuat in this direction and introduced new directives to describe
the interaction of the program with a continuous environment, modeled as a set of switched ODEs, given
by the user as C++ functions. The directives model the action of sensors (with which the program reads
the value of a physical variable, solution of an ODE) and actuators (with which the program acts on the
system’s behavior, that is modifies modes or parameters of the switched ODEs). Then Fluctuat calls a
guaranteed ODE solver to bound the behavior of the continuous environment (we used the C++ library
GRKLib [23]).

In our model, time is computed by the program: Fluctuat initializes the set of ODEs by sending bounds
on initial values, modes and parameters to the environment. Then any action by the program is also sent to
the environment (the ODE solver) when encountering the corresponding actuator directives in the program.
When Fluctuat encounters a directive requesting a sensor value in the program, it calls the guaranteed ODE
solver, specifying the time at which it wants to read bounds on the continuous value of the given quantity,
and the integration is performed on the fly. This extension is described in more details in [22].

We illustrated its use on a simplified version of the MSU main control loop, part of the Automated
Transfer Vehicle (ATV) control software, represented Figure 5.7. The external environment (relating the
position of the ATV to accelerations due to thrusters) is modeled by an ODE of dimension 7. At each
cycle of the program, the vehicle’s configuration (the position, speed, acceleration etc.) is read from sensors
(assertion HYBRID DVALUE in the program), then the program computes the command sent to actuators
to achieve the desired thrust with the engines (assertion HYBRID PARAM in the program, that modifies the
parameters of the ODE system modeling the environment).

We studied the behavior of the system on 25 seconds, starting from one point, and could prove that the
values converge towards the the safe state that the ATV is supposed to reach in this escape mode. More
details and analysis results can be found in [19].

5.3.7 Float to fixed-point conversion: bit-width optimisation

There is a need in digital processing for automatic floating-point to fixed-point transformation of programs,
guaranteeing output accuracy while minimizing the cost of implementation, cost for instance defined by the
sum of word lengths of all variables. We developed and implemented in Fluctuat in 2005, during the M2
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Figure 5.7: Hybrid system modeling: the ATV control software

internship of Jérôme Mascunan [122], the counterpart of the non relational abstract domain for floating-point
numbers, but for fixed-point numbers. Special Fluctuat assertions, give the size of word length and integer
word length for each variable. Then, we started working on a small optimization tool, which, given a C
program written in floating-point numbers and an aim in terms of accuracy compared to the accuracy of the
floating-point program, should try to compute optimal (smallest) fixed point formats for each variable. The
aim is typically to achieve some percentage of the accuracy of the floating-point program; constraints can
also be added on the fixed point formats (such as fixed word length), so that the optimization can be eased.
The tool relies on the dependencies between variables computed by the abstract domain on the floating-point
program, as heuristics to decide the format of which variable to modify in order to act on a given variable’s
precision.

This work is very preliminary, and relies on non relational abstractions of the values and errors. We
intend to improve our conversion algorithm, using the dependencies we are now able to compute, in the
DEFIS ANR project. We shall compare our approach and results to other approaches [117, 159], which
also use value and fixed point error models relying on affine arithmetic for bit-width optimization, one
by simulated annealing, the other by a greedy search algorithm. In digital processing, a commonly used
criteria for the accuracy of a fixed-point implementation, is the signal-to-quantization-noise ratio, elementary
quantization errors being considered as uniformly distributed white noises. The CAIRN Inria team, which
leads the DEFIS project, uses a partially analytical approach to compute such ratios [123], and optimize the
floating-point to fixed-point conversion [124]; their noise propagation models based on perturbation theory
and Taylor developments resemble in some way to our own propagation model. We intend to exchange
information with this approach.

5.4 Looking back at the last ten years

Finally, let us quickly come back on the now more than 10 years of existence of Fluctuat, the develop-
ment and transfer of which constantly accompanied and benefited from the research work presented in this
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document. It is a research prototype, but we have always had a high concern for usability by reasonably
non-expert users: the evolutions were equally driven by our progress on the zonotopic abstract domains, and
requirements and observations on the industrial source codes that were submitted to us.

Propagation of rounding errors, proof of concept (2001-2003) We started from an already existing
simple abstract interpreter developed at CEA [75], in which we first implemented the non-relational domain
of Section 5.1.2. Our main industrial supports at that time were Airbus, through the Daedalus European IST
project, and the IRSN (French Institute for Radioprotection and Nuclear Safety). In both cases, the objective
was to be able to numerically study large programs, and identify loss of accuracy due to floating-point
numbers. We designed the user interface that represents the decomposition of elementary rounding errors as
histograms, and links the error bars to their provenance in the source code. Soon, the need for information
about intermediary steps in the analysis appeared. We added the first printing assertions and evolution
graphs. Case studies concentrated on the propagation of perturbations around representative scenarios, the
symbolic execution mode was introduced and much used. The analyzer allowed us to point out some classic
floating-point issues such as oscillation problems due to sampling and catastrophic elimination.

First steps for a methodology, zonotopic domains (2004-2005) I would say the present Fluctuat
takes much of its roots from this period. We were encouraged by our users to put some effort on the
interpretation of large pieces of software. This involves being able to interpret most most ANSI C constructs,
at least those present in embedded code (no recursion): alias/arrays, casts from floats to integers by bit-wise
operations, and more generally all integers and bit-wise operations, including modular arithmetic. They
take time, as their design for our model of propagation of uncertainties is not obvious. Interpreting large
parts of full software also means giving the user some tools to interpret results, identify some parts that are
more difficult, and analyze them separately. We sorted the large amount of information at the end of the
analysis, by issuing warnings for the main points to be checked by the user, and displaying the error bars by
decreasing amplitude. We also started printing more information about the current state of the analysis, so
that the user needs not necessary wait for the end of a possibly long analysis. We also added a basic in/out
analysis, in order to point out variables that need to be initialized with assertions, or dead code information
(code that is proved to be dead): this is especially useful when isolating a part of program. This methodology
for the analysis of large programs was experimented on an extract of Airbus programs.

We also naturally felt the need for a more accurate analysis of the critical places. We began implement-
ing a first version of our zonotopic abstract domain, relational on the values only at that time (not on the
errors) [81] (a hint on its extension to the errors was also presented around the same time [80]). With this
new abstract domain came new assertions, specifying the real value, but also bounds on the gradient for
recurrent inputs, in order to avoid non realistic behaviours. Meanwhile, we introduced the possibility in the
analyzer to use regular subdivisions of some inputs - and for the whole program - to improve the accuracy
for non linear computations. With this new abstract domain, we started interesting ourselves to the elemen-
tary symbols which are present in most control software, typically interpolation operators, linear recursive
filters, and approximations of elementary functions such as trigonometric functions. This work opened the
way for some future joint publications with users, and future transfer to industrial users. We obtained at
that time first results of the analyzer proving termination of an algorithm in real but not in floating-point
numbers, because of the loop exit condition.

We finally started to spend time on different iteration strategies for fixpoint computations, with initial
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and cyclic unfolding, widening by reduction of the precision, strategies for nested loops and function calls,
and for the level of dependency kept in loops or function calls.

Towards functional proof and maturity of the analyzer (2006-2009) Building on previous expe-
rience, we developed during this time the zonotopic abstract domains for both values and errors that are
still presently used in Fluctuat, although these abstract domains were improved since. These new domains
allowed us to compute accurate bounds on the error and the floating-point value as well, when they were
previously accurate on the real value only, with a drift of the error that prevented fixpoint computation. We
also further exploited these domains, with sensitivity analysis and worst case generation. These were used in
particular for the case studies, that were mostly, but not exclusively, focused at elementary symbols analysis.
We also started to prove functional properties on these symbols. As more refined properties were proved,
we generalized the use of custom irregular subdivisions. The case studies lead at this time to several joint
publications with the users [87, 46, 19]. We also produced for Airbus a report on the analysis with Fluctuat
of A380 elementary symbols, that prepared the way for use of the analyzer on field.

Towards industrial transfer and new uses (2008-present) We kept improving the abstract domains
(join and meet over affine sets in particular), but the accent was also put on cleaning the older parts, like the
front-end, improving the usability and defining new usages, in particular in view of a potential valorisation.
Karim Tekkal joined us (2008-2011) for a Digiteo maturation operation first, then more explicitly with the
objective of a start-up creation (project since abandoned). Franck Védrine, who had previously worked on
the TWO analyzer, Fluctuat’s ancestor, also joined us in 2008, and committed in the valorisation project.
These two arrivals brought a welcome impetus! A first extension to hybrid systems [22] was developed, with
Olivier Bouissou, which we applied to the analysis of the ATV escape program [19]. On the application’s
side, we considered again larger programs, but also with new difficulties, such as the quaternions of the
ATV study. Worst case generation was extended to error maximization, subdivisions were refined for local,
possibly irregular, subdivisions. The proof of functional properties was more systematically explored and
more user-oriented assertions were added, for instance to compare or replace parts of programs, or ask for
different safety checks by the analyzer.

At the same time, we started thinking about possible interactions with other tools: to mention a few
of them, partial information was integrated in SCADE in the INTERESTED project; we are thinking of
possible interfaces with the Frama-C platform via the interpretation of the ACSL language; in the DEFIS
ANR project, we are discussing interactions around the float to fixed-point conversion of programs. For
these purposes, a library was created in order to call and interact more smoothly with the heart of Fluctuat.
It was used in particular to design an interactive version of Fluctuat [76].



Chapter 6

Conclusion and Perspectives

I synthesized in this document my research work at CEA LIST since 2001, first in the Software Safety Lab-
oratory (LSL) led by Jacques Raguideau, then in the Laboratory for the Modelling and Analysis of Systems
in Interaction (LMeASI) led by Eric Goubault. I focused on the validation of numerical programs, drawing
inspiration from such different fields as theoretical computer science, software engineering, control theory,
numerical analysis, reliable computing and computer arithmetic. My main contributions on this subject are
the following. I first introduced, with Eric Goubault, a class of new abstract domains relying on a parame-
terization by noise symbols: the abstract domain that was studied the more extensively was the zonotope (or
affine sets) domain, but many extensions can be derived, as partly described in Chapter 3. I also contributed
to the introduction of a new general method for the solution of fixpoint equations occurring in static analysis;
and meanwhile studied and implemented Kleene-like iterations in the context of zonotopic abstractions. I
finally adapted the zonotopic abstract domains for the analysis of finite precision computations, and imple-
mented these abstract domains in the Fluctuat analyzer. More generally, I have been the main developer of
the Fluctuat analyzer during several years, and realized or participated in many case studies (Airbus, IRSN,
Hispano-Suiza, EADS, Continental, etc), that drove us to the present possibilities of the tool.

Let me draw some perspectives on these different themes over the next few years:

6.1 Zonotopic abstract domains and extensions

We set up a formal framework for a fast and accurate abstract analysis based on affine sets, which is quite
mature now. Improvements of affine sets, such as a better join operator in the case we do not exactly have
common affine relations, would still be very valuable. But most future work concern the extensions of this
abstract domain presented in Chapter 3, or even other possible extensions, we give a few leads hereafter.

Under-approximations We have proposed in 2007 [82] a first practical, tractable abstract semantics,
based on generalized affine sets, for under-approximating the values of program variables. One current
objective is to extend this method to higher-order Taylor forms, for instance by using zonotopic coeffi-
cients instead of interval coefficients in our generalized affine forms. This also remains to be compared
to other existing methods for under-approximations, mostly introduced in control theory (and called inner-
approximations in that context), with the idea to improve our first results. Most other methods for under-
approximation use bisections algorithms, that allow to build box pavings that are included in the image of

81
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a vector-valued function. We have recently focused on the approach developed by Goldsztejn et al. [71],
which was defined only for functions whose domain and co-domain have same dimensions. For applications
to static analysis or robust control, this is usually not the case. Olivier Mullier, in his PhD thesis, which I co-
supervise, proposed an extension to the general case, and first results were presented at SWIM’11 [135]. Our
interest also goes to the nested inner-approximations for polynomial matrix inequalities [98], even though
these methods may prove intractable for our applications, or to inner-approximations by ellipsoids [109],
two methods that manage to give somewhat dual over and under-approximations, as we are aiming at.
Our generalized affine sets for under-approximation are somehow dual to over-approximation, as the same
forms can be interpreted both as under or over-approximation. But the under-approximations we obtain do
not have a geometric concretization as zonotopes. Actually, we are currently trying to characterize their
concretization, or at least find convex shapes that can be enclosed.

We then hope to use our under-approximation methods in both contexts of static analysis of programs
and robust control of uncertain dynamical systems, this is again among the objectives of O.Mullier’s PhD
thesis. For instance, we want to obtain an over- and under-approximation of the set of states that are reach-
able by a physical system described by a discrete-time dynamical equation involving uncertain parameters,
with constraints on the inputs of the system (bounds, energy...). This problem is similar to a viability prob-
lem [6], with uncertainties in the system dynamics. This step will then allow us to consider the synthesis
of commands (input sequences) of the system allowing to lead it from a state to another, with a guaranteed
robustness towards incoherent parameters. Still, we did not find yet a completely satisfying way to apply
our under-approximations described in Section 3.1, which for the time being can solely be interpreted as AE
formulas, to these robust control approach.

Finally, the under-approximating abstract semantics we introduced is for the time being applied to real-
valued variables, and does not address yet floating-point variables, which are discrete by nature. As a partial
solution, one can think for instance of adding information about the minimal size of the gaps between two
floating-point values in the resulting interval.

P-boxes and affine arithmetic We have for now defined an arithmetic relying on p-boxes and affine arith-
metic. There still remains to apply this to the static analysis of programs: we must in particular define
set-theoretic operations such as union and intersection, probably by generalizing those we introduced for
affine sets. Another direction is to maintain a better abstraction of the dependencies between variables,
during computation. In the current work, we decomposed the dependency relationships between variables
on a basis of independent noise symbols (εi) and noise symbols with unknown dependency (ηj). This is a
particular abstraction of some form of a correlation matrix between the noise symbols, which we hope to
refine in the future. Finally, the probabilistic affine forms we have introduced should be linked with partic-
ular Dempster-Shafer structures on Rp, whose focal elements are zonotopes (particular central symmetric
polytopes), parametrized by affine forms. These in turn might generalize to higher-order Taylor models as
used by Makino and Berz [120] instead of order one models such as zonotopes.

A generalization of zonotopes and ellipsoids: super-ellipsoids The use of ellipsoids has been widely
studied in set estimation, control, and reachability analysis [137, 108], and also applied in the context of
static analysis by Feret [49]. Also, as already stated, among other interests, ellipsoids have been used
to provide both under and over-approximations, as we intend to. However, ellipsoidal calculus [110] is
rather intricate and costly. It could thus be interesting to investigate a variation of our abstract domain of
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affine sets based on ellipsoids, or combining zonotopes and ellipsoids. Indeed, as we noted in a NSV’11
presentation [86], in the same way a zonotope is the image by an affine transformation of an hypercube, an
ellipsoid is the affine transformation of an n-dimensional disk, and can thus be parameterized by an affine
form, just like zonotopes, except that the vector of noise symbols is bounded in l2 norm instead of in l∞
norm. And this can generalize to other norms, yielding super-ellipsoids. Some arithmetic operations could
thus be achieved using the same arithmetic as on affine forms, avoiding a costly ellipsoidal calculus. And
we would need much fewer terms to compute some loop invariants. This of course remains to be further
developed and experimented.

Other approximations We believe that we should be able to extend our zonotopic approach to deal with
higher-order Taylor models [120], where we use a polynomial approximation of functions with monomials
on noise symbols εα with |α| ≤ n. Other ways to get higher-order approximations could also rely on affine
sets with zonotopic coefficients, probably in the line of the affmat objects of Combastel [36]. From our
first observations, this second approach would in particular probably be more suited for building under-
approximations.

But, while these forms are probably well suited to bound rounding errors, which are small compared to
values, they may not be suitable to bound the values of variables: most of the time in static analysis, we want
to study the behavior of the program for large ranges of values. In this case, other rigorous approximations
may be more interesting, such as for instance those relying on Chebyshev interpolation polynomials. The
idea of using better approximation polynomials, for example Chebyshev truncated series, in the context of
validated computations, was already introduced in 1982 [48] under the name ultra-arithmetic. As discussed
by Makino and Berz [120], the arithmetic proposed there has some drawbacks that make it less accurate than
Taylor models. However, new Chebyshev interpolation models were proposed, for instance by Brisebarre et
al. [24], that could be of interest to us.

Finally, a track that we intend to follow in the future, and believe very promising, builds on ideas of
Sankaranarayanan [146]: he uses changes of bases to transform a non linear dynamical system into a linear
one, that can be solved much more easily, by classic methods. We would like to extend these ideas to discrete
systems, and automatically compute change of bases that would allow us to abstract systems that require
non-linear invariants, by systems that could be solved efficiently with a linear abstract domain such as affine
sets. These changes of bases could be polynomial, but we plan to possibly also include rational functions,
logarithm or exponential.

6.2 Fixpoint computations

Kleene-like iterations One future direction is to use modified iteration schemes as a mean to compute
global join operations, that preserve relations between variables and noise symbols, but in a more general
way than as proposed in Section 2.2.3. For instance, there are cases when there is no common affine relation-
ship, so that the global join of Section 2.2.3 does not apply, but still, this component-wise computation loses
some crucial correlations. Informally, the idea of this modified iteration is, when dependencies between
variables are discovered by our affine sets, to make the union only on part of these variables, and propagate
it to the other dependent variables. This is close to the global join that we defined, but would apply more
widely than just the case of exact common relationships.
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Another direction relies on the fact that typical critical real-time systems, as found in automotive, aero-
nautic, and aerospace applications, usually consist in a huge iterated loop. But these systems do not run
forever, and this loop will not be executed more than a (possibly very large) number of times. And when
implemented with finite precision numbers, it may be for instance that there is a drift between the real and
the finite precision, that cannot be bounded for any number of iterations. We would still like to charac-
terize and bound this drift, and more generally bound the abstract values of the program variables, using
this bound on the number of iterations. As our global join operators explicit the implicit relation between
program variables (and thus for instance a loop counter, but not exclusively so), we think we could then use
some abstract accelerations [72, 150] to accurately bound the behavior of such programs. This would also
be close to the work of Feret [50] that defines an abstract domain relating variable values to a clock counter
by affine expressions, and uses this relation to give bounds on the behavior that depend on the clock, but
adapted to our abstract domain, and, we hope, of use on a larger class of programs.

Policy iteration for zonotopic abstract domains Policy iteration is a general algorithm that can be ap-
plied to many abstract domains - and has indeed been applied to several - provided that our loop functionals
can be expressed as infimums of a finite set of simpler functionals. We started investigating two directions in
order to design a policy iteration algorithm for our affine sets abstract domains, but these are still preliminary
work. These two directions respectively define as policies, choices for the join or for the meet of two affine
sets.

The meet operation in affine sets is expressed as constraints on the noise symbols, that can be interpreted
in any abstract domain. If interpreted in intervals, we are then brought back to a variation of the policy
iteration defined in Section 4.2. A policy is then, for each bound of each noise symbol occurring in the test,
a choice between the old bound and the new bound generated by the constraint. Still, this idea remains to
be studied in depth, as its use is more problematic than the simple policy iteration on intervals.

During the internship of Mickael Buchet, we started some work on a simple idea in order to define
policies on the join operator: we noted that the join operator of Definition 11 allows us to define policies
for the coefficients of the noise symbols. Indeed, argmin|.|(x, y) is either x, or y, or 0, which can be chosen
as policies. However, the problem is that this does not necessarily define a descending policy iteration: the
change of policy does not necessarily conduct to an improvement of the post fixpoint. Still, a first algorithm
was designed that allowed to avoid cycles, and the implementation gave promising results.

6.3 Fluctuat and its applications

We intend of course to gradually integrate the new abstract domains and fixpoint iteration techniques pre-
viously described to the Fluctuat analyzer. A specific need linked to the analysis of the impact of finite
precision, and that appeared in the use of Fluctuat, is the analysis of the behavior of program along the path
conditions:

Discontinuity analysis As mentioned in Section 5.1.4, we are currently exploring the use of affine sets to
make our analysis sound in presence of unstable tests. This is done by studying the conditions and the po-
tential discontinuity of the program when the floating-point execution takes one path and the real execution
takes another path, and adding to the error on variables, a discontinuity term bounding this difference. This
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will also give a (dis)continuity analysis in the sense of Chaudhuri et al. [26, 27], that is say if a program
represents a continuous function of its inputs, and is thus robust to uncertainties on these inputs.

Modular analysis As mentioned in Chapter 2, we started to experiment, for the time being on a separate
prototype, a modular abstraction based on zonotopic abstract domains [89]. It would be interesting to
integrate in the future this possibility to Fluctuat, in order to allow the analysis of larger pieces of programs,
as a modular analysis can prove much cheaper than the full monolithic analysis. The functional abstraction
by zonotopes is indeed well suited to a summary-based approach, where summaries can be instantiated to
a given call at low cost and with very correct accuracy. Then, the use of policy iteration can accelerate the
incremental analysis of a large piece of program: the policy giving the fixpoint of a given piece of program
can be used as a very good initial guess for the same piece of program but with a small modification. Still,
the use of modularity strongly depends on the structure of the program to analyze, and this remains to be
further studied on actual applications.

Exchanging information We initiated some thinking on the possible interactions of Fluctuat with other
tools. We took first steps already in this direction, for instance with the extension in HybridFluctuat to hybrid
systems, where some directives in the source code are used to call a guaranteed differential equations solver.
This can be further developed in several directions, first by studying the propagation of the imprecision in
the continuous environment, but also by bounding the method error due to an approximate ODE solver in a
program, thanks to a call to a guaranteed ODE solver. This latter extension requires additional assertions to
compare a piece of code to a specification, that would in this case be a continuous model.

Some new directives could also be used in order to exchange information with other analysis tools,
such as the provers integrated in the Frama-C platform1. This platform contains a chain of tools, that work
on programs annotated by behavioral properties expressed in the ACSL language [8], that can be used to
specify computations both in real and floating-point numbers, and to speak about mathematical functions.
This chain can be used for the formal verification of numerical programs, as described for instance in Boldo
and Marche [17]. Exchanges between Fluctuat and such framework could benefit to both: for instance,
automatically synthesized invariants of Fluctuat could be used as first annotation for the provers, partially
saving the user a tedious manual phase; in the other hand, some refined properties that can be proved on
a piece of program, can be used either as an annotation of the program analyzed by Fluctuat, or directly
as a property inside Fluctuat. For instance, the property that if x and y are two floating-point values such
that y

2 ≤ x ≤ 2y, then their floating-point subtraction is exact, which was discovered by Sterbenz in the
1970s [154], is a property used by the abstract domains of Fluctuat. But we could imagine to use more
such properties, that would be specified in the program analyzed, and interpreted and used by Fluctuat.
More generally, interpreting a specification language sufficiently general and expressive to define complex
numerical behavioral properties of C programs, is a goal that facilitates the constitution of benchmarks for
numerical program analysis, which is of course desirable.

We also hope to improve in the future the results of our analysis by automatically calling constraint
solvers, as already partially demonstrated by Ponsini et al. [138]. Interactions with other tools could also
for instance include interactions with a compiler, or an analyzer of compiled code, in order for instance to
consider more refined information such as the actual order of execution of floating-point operations.

1http://frama-c.cea.fr/
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Application fields The problematic of the validation of safety-critical systems is crucial, and justifies in
itself long-term researches for the validation of numerical properties of programs. We will naturally keep
developing our methods and tools in directions that come up from industrial test cases.

But in the long term, we can hope these advances will also benefit to less critical numerical systems. For
instance, they can benefit to the conception of embedded programs, possibly in fixed point numbers, that
optimize some aspects such as energy consumption under some given accuracy requirements. This is the
problem we will be addressing in the DEFIS ANR project.

Another challenge is to analyze numerically intricate programs coming from the area of simulation,
where there is a high demand for such tools.

In scientific computing programs, different kinds of approximations occur: first the mathematical model
for the physical phenomenon of interest is already an approximation; then an approximate algorithm is used
to solve that model: accuracy often depends on discretization steps for space and time, then linear systems
are often solved by approximate iterative methods, which accuracy depends on a stopping criterion; and
finally, this algorithm is implemented in finite precision. Ideally, all these approximations should be of the
same order of magnitude. The approximation in the mathematical model is an input of the analysis: we can
add uncertainties to the inputs and parameters of the program, that reflect this approximation, and analyze
their propagation with Fluctuat. Additionally, when physical identities are known, that are true in the phys-
ical world, functional proof can be used to see whether these identities hold in the implementation, or else
quantify the uncertainty or error on them: but in this case we may not distinguish the model error from the
algorithm error. When one has access both to the implementation and the mathematical model, a guaranteed
solution of the continuous model can be used to quantify the method error (and possibly propagate it with
the analyzer as a special error). This is indeed part of what we started to do in the extensions of Fluctuat for
hybrid systems, using a guaranteed ODE solver to bound the solutions of differential equations. Then the
user can compare the orders of magnitude of the respective uncertainties on the model (propagation on the
outputs of uncertainties on inputs and parameters), on the algorithm (functional property / physical identity),
and on the finite precision computation (rounding error on the outputs). In most cases we have little latitude
on the error due to finite precision: we can only decide to use either float or double precision numbers,
depending on the adequacy between method and computation error. But in the general case, the accuracy of
the algorithm can be adapted if necessary, for instance modifying a discretization step, the stopping criterion
of an iterative algorithm, or even the level of approximation, so that for equivalent accuracy the computation
time will be optimal.

Scientific computing programs present the interest for numerical verification concerning finite precision
implementations, that (pen and paper) studies on algorithms in finite precision have long been conducted,
see Higham’s book [99] to mention only one reference, and can be used to validate the interest of our re-
sults. Theoretical results about what can and cannot be computed accurately and efficiently such as recently
developed by Demmel [47], are also very valuable to guide our work. However, automatically getting accu-
rate error bounds on credible programs is a difficult task, at which we still aim. For instance, we obtained
some first results on the solution of a small linear systems with small perturbations, by a conjugate gradient
algorithm, that confirmed (part) of the results of the mathematical studies on the behavior of such algo-
rithms in finite precision as described in Meurant’s book [125]. But automatizing such studies for real-scale
simulation programs remains a long-term challenge for program verification.
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[8] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL: ANSI/ISO C
specification language, 2008.

[9] F.L. Bauer. Computational graphs and rounding error. SIAM Journal of Numerical Analysis, 11:87–
96, 1974.

[10] D. Berleant and C. Goodman-Strauss. Bounding the results of arithmetic operations on random
variables of unknown dependency using intervals. Reliable Computing, 4(2):147–165, May 1998.

[11] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimization. Athena Scientific,
2003.

[12] M. Berz. From taylor series to taylor models. In AIP Conference Proceedings 405, pages 1–23, 1997.

87



88 BIBLIOGRAPHY

[13] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
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