
TAPAS 2012

Interactive Analysis in FLUCTUAT

Eric Goubault, Tristan Le Gall, Sylvie Putot and Franck Védrine

CEA, LIST, Laboratory for the Modelling and Analysis of Interacting Systems
Point courrier 94, Gif-sur-Yvette, F-91191 France

Abstract

Static analyzers have the invaluable advantage to produce analysis results fully automatically.
However, when based on abstract interpretation, they often require fine parameters tuning to
succeed on local technical parts in large programs. In such cases, an interactive mode could be
appreciable to define some analysis parameters on-the-fly - e.g. loop unrolling, partitioning -, but
also to identify data that produce a specific warning. We have implemented an interactive analysis
in the FLUCTUAT tool - analysis tool of numerical C and Ada programs that delivers bounds
both for the domains and for the error due to finite precision computation. The analysis in this
mode is interruptible and it authorizes on-the-fly definitions of assertions. The analysis is especially
interesting to refine the diagnosis of an alarm, either towards a false alarm or a counter-example.

Keywords: Interactive Analysis, Abstract Debugging, False Alarm, Abstract Interpretation.

The interactive analysis retains the principles and the objectives of Ab-
stract Interpretation based Testing [2] with intermittent assertions. The main
objective of its implementation in FLUCTUAT [3] is to refine the diagnosis
delivered by a general static analysis, either by exhibiting a counter-example
or by removing a false alarm: for this last point, the journal of the commands
that have been played in the interactive mode helps the static mode with the
definition of additional annotations, local analysis parameters (partitioning
information, loop unrolling) or with a refined analysis scenario. If the idea
of applying abstract interpretation to debugging early appeared with abstract
debugging [1], to our knowledge, there is no such a fully integrated mode in
other static analyzers tools, even if PAG/WWW [6] shows the successive steps
in a general static analysis.

The commands are the same than those of a standard debugger (break-
points with break file:line, break if var = value, Ctrl-G to interrupt
the analysis, analysis’ control with continue, step, next, set var in ...,
display with print, journal with replay). Some are specific to the inter-

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs



Goubault, Le Gall, Putot, Védrine

pretation in the abstract semantics (relational display with affprint, view,
local widening with union var with ..., local parameters’ definition with
setp param value). break if x is top also identifies the paths that pro-
duce an important precision loss for x.

Besides is a screen-
shot of an interactive
analysis on the moti-
vating example of [5],
which exhibits an
unexpected behavior
with the floating
point numbers. We
have applied the
interactive mode on
this example and we
have quickly isolated
a counter-example

while proving that the code fragment works on the other partitions.

The implementation of the interactive mode has required few modifications
to the core analysis of FLUCTUAT. The modifications have mainly concerned
the definition of breakpoints, the definition of a command interpreter (server
side) in connection with the core analysis, an interactive window (client side)
and a parser of expressions able to work in a syntactic context rebuilt on-the-
fly from a memory state coming from the analysis. The semantic expression
interpretation is the one of FLUCTUAT. The breakpoints implementation has
been eased by a core analysis algorithm based on a worklist of analysis tasks
like PAG/WWW [6].

The integration of an interactive analysis in a static analyzer is a first step
and offers new perspectives in industrial context. For large code, it helps to
define analysis scenarios and it can be coupled with a modular analysis [4] as
an aid for setting annotations and large hypotheses for summaries of functions.
Interactive analysis also provides better visibility for orthogonal technologies,
like backward analysis [2] or slicing, for instance to quickly find the origins of a
warning in a static analysis. Backward analysis has been used in Model-Based
Debugging on a model refined by Abstract Interpretation with fault assump-
tions [7] to significantly reduce the number of explanations. Applications can
go beyond validation: code reviews or code documentation can both benefit
from interactions with such an analysis to visualize the behavior of some code
in a formal context.

2



Goubault, Le Gall, Putot, Védrine

References

[1] F. Bourdoncle, Abstract Debugging of Higher-Order Imperative Languages. Proceedings of
PLDI’93, p 43-65, 1993.

[2] P. Cousot and R. Cousot, Abstract Interpretation Based Program Testing, Proceedings of
SGGBR 2000 Computer & eBusiness International Conference. Rome, Italy, 2000.

[3] D. Delmas and al., Towards the Industrial Use of FLUCTUAT on Safety-Critical Avionics
Software. FMICS’09: p 53-69, 2009.

[4] E. Goubault, S. Putot and F. Védrine, Modular Static Analysis with Zonotopes, Proceedings
of SAS’12. Deauville, France, 2012.

[5] D. Monniaux, The pitfalls of verifying floating-point computations,
ACM Transactions on Programming Languages and Systems 30, 3 (2008) 12, available at
http://hal.archives-ouvertes.fr/hal-00128124.

[6] PAG/WWW, “Minimum Fixed Point (MFP) algorithm”,
http://program-analysis.com/algorithm.html

[7] W. Mayer and M. Stumptner, Abstract Interpretation of Programs for Model-Based Debugging,

Proceedings of the 20th International Joint Conference on Artificial Intelligence, p 471-476,
Hyderabad, India (2007).

3

http://hal.archives-ouvertes.fr/hal-00128124
http://program-analysis.com/algorithm.html


Goubault, Le Gall, Putot, Védrine

int floor(double q)
{ if (q >= 0)

return q;
return (-(int)

-DSUCC(q))-1;
}

double modulo(double x,
double mini, double maxi)

{ double delta = maxi-mini;
double decl = x-mini;
double q = decl/delta;
return x - floor(q)*delta;

}

int main()
{ double m = 180.;

double x = between(0, 360);
double r = modulo(x, -m, m);

}

Fig. A.1. example of [5] with floating point pitfall

A Applicative Example

We detail the methodology of the interactive analysis on the motivating exam-
ple of [5]. On this example, the author indicates: “We discovered the above
bug after Astrée would not validate the first code fragment with the post-
condition . . . After vainly trying to prove that the code fragment worked, the
author began to specifically search for counter-examples.”

The methodology used on the example (figure ??) combines Abstract Test-
ing and local partitioning to decide, without any specific expertise, if the non-
respect of the post-condition (PC) rfloat ∈ [−180, 180] is a false alarm or an
actual bug.

On the example, FLUCTUAT finds (without any option for x ∈ [0, 360])
rfloat ∈ [−360, 360] and rexact ∈ [−180, 180], where rfloat stands for the float-
ing point value and rexact stands for the value of r with ideal computations.
Moreover FLUCTUAT points to the int conversion in floor as the main
contribution to |rexact − rfloat|.

This suggests the definition of a breakpoint on the conversion. At this
breakpoint, the interactive analysis displays a conversion’s result in [0, 1] with
relational information for rexact and without any relation for rfloat. We start
our investigations with a partition x ∈ [0, 180[∪[180, 360].

The command set x in [180, 360] at the beginning overloads the con-
tent of x and outputs rfloat ∈ [−180, 0] which satifies the PC.

The command setexp x in [0, DPREC(180)] overloads the content of x
with an interval whose upper bound is the value that precedes the floating
point number 180.0 in the double representation. With this restriction, the
analysis outputs rfloat ∈ [−360, 180]. So, we isolate the value preceding 180
with the command setexp x in [0, DPREC(DPREC(180))]. The continue

command then shows rfloat ∈ [0, 180[ and |rexact − rfloat| < 1.43× 10−14 at the
end of main.

On the last case – setexp x = DPREC(180) –, the command affprint q

shows that rexact has relational information with the input. Then
view r displays rexact = 1.7999999999999997e + 002, but rfloat =
−1.8000000000000003e2, which confirms the PC violation.

4



Goubault, Le Gall, Putot, Védrine

B Availability of the Interactive Analysis

The complete list of commands is available in the reference manual of FLUC-
TUAT (proprietary license and academic license) and in the quick reference
card of FLUCTUAT interactive analysis.

5


	References
	Applicative Example
	Quick Interactive Analysis Card

