TAPAS 2012

Interactive Analysis in FLUCTUAT

Eric Goubault, Tristan Le Gall, Sylvie Putot and Franck Védrine

CEA, LIST, Laboratory for the Modelling and Analysis of Interacting Systems
Point courrier 94, Gif-sur-Ywvette, F-91191 France

Abstract

Static analyzers have the invaluable advantage to produce analysis results fully automatically.
However, when based on abstract interpretation, they often require fine parameters tuning to
succeed on local technical parts in large programs. In such cases, an interactive mode could be
appreciable to define some analysis parameters on-the-fly - e.g. loop unrolling, partitioning -, but
also to identify data that produce a specific warning. We have implemented an interactive analysis
in the FLUCTUAT tool - analysis tool of numerical C and Ada programs that delivers bounds
both for the domains and for the error due to finite precision computation. The analysis in this
mode is interruptible and it authorizes on-the-fly definitions of assertions. The analysis is especially
interesting to refine the diagnosis of an alarm, either towards a false alarm or a counter-example.

Keywords: Interactive Analysis, Abstract Debugging, False Alarm, Abstract Interpretation.

The interactive analysis retains the principles and the objectives of Ab-
stract Interpretation based Testing [2] with intermittent assertions. The main
objective of its implementation in FLUCTUAT [3] is to refine the diagnosis
delivered by a general static analysis, either by exhibiting a counter-example
or by removing a false alarm: for this last point, the journal of the commands
that have been played in the interactive mode helps the static mode with the
definition of additional annotations, local analysis parameters (partitioning
information, loop unrolling) or with a refined analysis scenario. If the idea
of applying abstract interpretation to debugging early appeared with abstract
debugging [1], to our knowledge, there is no such a fully integrated mode in
other static analyzers tools, even if PAG/WWW [6] shows the successive steps
in a general static analysis.

The commands are the same than those of a standard debugger (break-
points with break file:line, break if var = value, Ctrl-G to interrupt
the analysis, analysis’ control with continue, step, next, set var in ...,
display with print, journal with replay). Some are specific to the inter-

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.com/locate/entcs



GoUBAULT, LE GALL, PUTOT, VEDRINE

pretation in the abstract semantics (relational display with affprint, view,
local widening with union var with ..., local parameters’ definition with
setp param value). break if x is top also identifies the paths that pro-
duce an important precision loss for x.

Dey P @QE [z 1] & & w

Standard Static Analysis Toolbar

int floor(double q) {

result = -q;
result = -result;

g
retum result;
}

double modulo(double x, double mini, double maxi) {
double delta = maxi-mini;
double decl = x-mini;
double q = decl/delta;
retum x - floor(q)*delta;

int main() {
double m = 180.;
double x = between(0, 360);
double r = modulo(x, -m, m);

current analysis point (grayed)

Variables / Files origin Variable Interval
q (double) oferors | Float

Real :

domain 05
[~ error — Global error

example_pitfall.c Relative error :

Higher Order error

At current point

finteractive static analysis
the analysis has stopped on DirectCallControlPoint at

> setexp x in [0, DPREC(180)[
set has succeeded

tuat_Example_pitfall/exampe_pitfall.c:25,20 modulo(x, -m, m)

Interactive debugging window

Besides is a screen-
shot of an interactive
analysis on the moti-
vating example of [5],
which exhibits an
unexpected behavior
with  the floating
point numbers. We
have applied the
interactive mode on

>

c .
the analysis has stopped on AssignControlPoint at uat_Example | - bitfall.c:7,17 result = (int) th 1 d
>V?e-;/n:ysws ias stopped on AssignControlPoint at xample. itfall.c: result = (int) q 1S examp e an we

> fin
the analysis has stopped on LabelControlPoint at _Example | ,pwtf%\ €261

)ﬂp":”[,n 1 ], real in [-0. ), 1. ), error in [-1.4210854715202004e-14, have quICkly ISOIated
counter-example

at in
1.4210854715202004e-14]
\.

! a

while proving that the code fragment works on the other partitions.

The implementation of the interactive mode has required few modifications
to the core analysis of FLUCTUAT. The modifications have mainly concerned
the definition of breakpoints, the definition of a command interpreter (server
side) in connection with the core analysis, an interactive window (client side)
and a parser of expressions able to work in a syntactic context rebuilt on-the-
fly from a memory state coming from the analysis. The semantic expression
interpretation is the one of FLUCTUAT. The breakpoints implementation has
been eased by a core analysis algorithm based on a worklist of analysis tasks
like PAG/WWW [6].

The integration of an interactive analysis in a static analyzer is a first step
and offers new perspectives in industrial context. For large code, it helps to
define analysis scenarios and it can be coupled with a modular analysis [4] as
an aid for setting annotations and large hypotheses for summaries of functions.
Interactive analysis also provides better visibility for orthogonal technologies,
like backward analysis [2] or slicing, for instance to quickly find the origins of a
warning in a static analysis. Backward analysis has been used in Model-Based
Debugging on a model refined by Abstract Interpretation with fault assump-
tions [7] to significantly reduce the number of explanations. Applications can
go beyond validation: code reviews or code documentation can both benefit
from interactions with such an analysis to visualize the behavior of some code
in a formal context.



GoUBAULT, LE GALL, PUTOT, VEDRINE

References

[1] F. Bourdoncle, Abstract Debugging of Higher-Order Imperative Languages. Proceedings of
PLDI'93, p 43-65, 1993.

[2] P. Cousot and R. Cousot, Abstract Interpretation Based Program Testing, Proceedings of
SGGBR 2000 Computer & eBusiness International Conference. Rome, Italy, 2000.

[3] D. Delmas and al., Towards the Industrial Use of FLUCTUAT on Safety-Critical Avionics
Software. FMICS’09: p 53-69, 2009.

[4] E. Goubault, S. Putot and F. Védrine, Modular Static Analysis with Zonotopes, Proceedings
of SAS’12. Deauville, France, 2012.

[5] D. Monniaux, The pitfalls of verifying floating-point computations,
ACM Transactions on Programming Languages and Systems 30, 3 (2008) 12, available at
http://hal.archives-ouvertes.fr/hal-00128124.

[6] PAG/WWW, “Minimum Fixed Point (MFP) algorithm”,
http://program-analysis.com/algorithm.html
[7] W. Mayer and M. Stumptner, Abstract Interpretation of Programs for Model-Based Debugging,

Proceedings of the 20" International Joint Conference on Artificial Intelligence, p 471-476,
Hyderabad, India (2007).


http://hal.archives-ouvertes.fr/hal-00128124
http://program-analysis.com/algorithm.html

GoUBAULT, LE GALL, PUTOT, VEDRINE

int floor(double q) double modulo(double x, int main()

{ if (@ >=0) double mini, double maxi) { double m = 180.;
return q; { double delta = maxi-mini; double x = between(0, 360);
return (-(int) double decl = x-mini; double r = modulo(x, -m, m);
-DSUCC(q))-1; double q = decl/delta;

return x - floor(q)*delta;

Fig. A.1. example of [5] with floating point pitfall

A Applicative Example

We detail the methodology of the interactive analysis on the motivating exam-
ple of [5]. On this example, the author indicates: “We discovered the above
bug after Astrée would not validate the first code fragment with the post-
condition ... After vainly trying to prove that the code fragment worked, the
author began to specifically search for counter-examples.”

The methodology used on the example (figure ??) combines Abstract Test-
ing and local partitioning to decide, without any specific expertise, if the non-
respect of the post-condition (PC) 7. € [—180,180] is a false alarm or an
actual bug.

On the example, FLUCTUAT finds (without any option for z € [0, 360])
Toat € [—360,360] and 7ezqc € [—180,180], where rgo4 stands for the float-
ing point value and 7., stands for the value of r with ideal computations.
Moreover FLUCTUAT points to the int conversion in floor as the main
contribution to |rezact — 7 fioat|-

This suggests the definition of a breakpoint on the conversion. At this
breakpoint, the interactive analysis displays a conversion’s result in [0, 1] with
relational information for 7., and without any relation for rg.q.. We start
our investigations with a partition = € [0, 180[U[180, 360].

The command set x in [180, 360] at the beginning overloads the con-
tent of x and outputs g € [—180, 0] which satifies the PC.

The command setexp x in [0, DPREC(180)] overloads the content of =
with an interval whose upper bound is the value that precedes the floating
point number 180.0 in the double representation. With this restriction, the
analysis outputs 7. € [—360,180]. So, we isolate the value preceding 180
with the command setexp x in [0, DPREC(DPREC(180))]. The continue
command then shows e € [0, 180[ and |rezact — Tfoar| < 1.43 x 1071 at the
end of main.

On the last case — setexp x = DPREC(180) —, the command affprint q
shows that r.,.. has relational information with the input. Then
view r displays 7eeer = 1.7999999999999997e¢ + 002, but 7aee
—1.8000000000000003¢2, which confirms the PC violation.



GouBAULT, LE GALL, PuTOT, VEDRINE

B Availability of the Interactive Analysis

The complete list of commands is available in the reference manual of FLUC-
TUAT (proprietary license and academic license) and in the quick reference

card of FLUCTUAT interactive analysis.

FLUCTUAT Interactive Analysis
fEssential Commands =)

Ctil-D show the window of the interactive analysis
you can now enter commands

b [filesline] set breakpoint in file at line

rfunction start the analysis of function

p var print the range and the error of var

view var  display the range and the origin of emors for var

c continue analyzing your program

n next different line, stepping over function calls
Ks next different line, stepping into function calls y
W A

(—Starting and Stopping the Analysis=\.\
/El_tn—D show the window of the interactive analysis

you can now enter commands
setr file load a resource file (eg: project.rc)

(see setp to change an analysis parameter)

Ctl-G interrupt the analysis
(see info count = absolute progression number)
Ctd-K kill the interactive analysis
see Cirl-D to start a new session
o ¢ ) W
fAnalysis Control N
¢ [count] continue the analysis; if count specified, ignore

continue this breakpoint next count times
s [count]  continue until another line is reached
stepi [cnf] step by intemal control flow graph instructions,
(see info count = absolute progression number)
n[count] continue until another line is reached (in the same
function or in a calling function)
finish continue until the current function returns
set var in [min, max]
assume var is in [min, max] (~ DBETWEEN)
seta var in [min, max], [exactmin, exactmax], [errmin, ermax]
assume var is in ... (~ DREAL_WITH_ERROR)
union var with [min, max]
add [min, max] to the values that var may take
setr file load a resource file (eg: project.rc)
setp parameter value eg: setp unfoldloopnumber 500

FBI’EaKpuil it
break [file:line] set breakpoint in file at line

b [file:line] eg: break main.c:24

break fun set breakpoint at function ‘fun”

b ... ifvaris top  break if var becomes top

b .. ifvaris bot  break if var becomes bot

b . ifvar=float breakiffloatis a potential value for var
b . if varis in [min, max]

break if var may have a value in [min, max]
oat, is ma

b ... iferrva

p is top, is bot
p Is top, IS b

Zjel-ele. b-rea-kpdn-t:s N

fDiSP'a‘:
p var print the range and the error of var

print var
affprint var print the range and the origins of the errors for var
view var  display the range and the origin of emors for var
pexp expr print the range and the error of expr

expris parsed by the parser in a recovered scope
vexp expr display the range and the origin of errors for expr

info count return the absolute number of instructions
abstractly interpreted by the analysis (see stepi)

set the FLUCTUAT parameter to value
e Y,

getp parameter
return the value of the FLUCTUAT parameter
& eg: getp unfoldloopnumber J
Journal ™
Ctil-R replay the commands in the journal except the last one
replay [n] replay the n first commands stored in the journal
>




	References
	Applicative Example
	Quick Interactive Analysis Card

