Inner and Outer Approximating Flowpipes for Delay Differential Equations J

Eric Goubault  Sylvie Putot  Lorenz Sahlmann

LIX, Ecole Polytechnique - CNRS, Université Paris-Saclay

CAV, Oxford, July 17, 2018

\ ECOLE
‘ POLYTECHNIQUE

TR ST Y SV VI T T T PRSI EL L (A D @l =I nner and Outer Approximating Flowpipes for Delay Di CAV, Oxford, July 17, 2018 1/15



Introduction

Motivation: bounded-time reachable sets for uncertain dynamical systems

@ Over-approximating flowpipes = overapproximation of the reachable sets
o provide safety proof but conservative (“false alarms”)

o Under-approximating flowpipes = states guaranteed to be reached
o falsification of safety properties

@ precision estimates
o verification of new properties (robustness to some parameters, sweep-avoid, etc)

6 T T T T T
maximal outer flowpipe
maximal inner flowpipe

5 robust inner flowpipe ———|

a

= 3

o

1+

0 1

o] 0.2 0.4 0.6 0.8 1 1.2 1.4
t (seconds)

o ... and for Delay Differential Equations!
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Delay Differential Systems

Delay Differential Equations, with known constant delay 7 (communication time in CPS)
and uncertain initial conditions and parameters (3

z(t) = f(z(t), z(t—7),B) if t € [to+T, T]
z(t) = zo(t, B) if t € [to, to+7]

Example (Basic PD-controller for a self-driving car)

@ controlling the car's position x and velocity v by adjusting its acceleration depending
on the current distance to a reference position p;.

o delay 7 to transfer the data to the controller, due to sensing or transmission time

@ possibly uncertain (but constant) coefficients K, and Kqy
x(t) = v(t)
v(t) = =Ko (x(t—7) — pr) — Kg v(t—7)

@ uncertain initial state (xo, vo) € [—0.1,0.1] x [0, 0.1], constant on time interval
[77—’ 0]
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Introduction

Delays can induce instabilities or weird behaviors!

@ Asymptotic stability guaranteed for K, = 2 and Ky = 3 when no delay 7 = 0.
@ Even small delays can have a huge impact on the dynamics and possibly safety
o safety condition example: Vt, v(t) > 0 (true for 7 = 0.2, false for 7 = 0.35)

o robustness to uncertainty in Kp and Kd (in right figure)
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The method of steps for solving DDEs (constant delay)

Example (method of steps)

z(t) = —z(t) - z(t — 7) =: f(2(¢t),z(t — 7),8) te€][0,T]
z(t) = (1 4 Bt)* =: z(t, B) t € [-7,0]

e On t € [0, 7] the solution of the DDE (1) is the solution of the ODE (2)
2(t) = —2(t)(1 + B(t — 7))*, t € [0,7] ()

with initial value z(0) = (0, 8) = 1.

@ We iterate the process: we plug the solution of (2) for t € [0, 7] in DDE (1) and
obtain z(t) for t € [r,27] as solution of a new ODE, etc.

It is a general method for DDEs

@ On each time interval [to + iT, to + (i + 1)7], for i > 1, the function z(t — 7) is a
known history function, computed as the solution of the DDE on the previous time
interval [to + (i — 1)7, to + i7]

o Plugging the solution of the previous ODE into the DDE yields a new ODE on the
next tile interval

v

(ST ETT RS TV W SET EL N (R D @l L Bl S Inner and Outer Approximating Flowpipes for Delay Di CAV 2018, Oxford 5/15




Reachability analysis for DDEs

An extension of Taylor model approaches to compute flowpipes
o We use existing Taylor approaches to compute flowpipes for each ODE derived from
the DDE, on each [to + iT, to + (i + 1)7]
@ The main difficulty is to over-approximate functions (for initial condition and

solution of the previous ODE) efficiently: Taylor models with zonotopic coefficients
v

Building flowpipes

@ Two level of grids: at each step of the coarse grid of step size 7, we build the Taylor
models for the solution of the new ODE on a finer grid of step size h = 7/p.
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Introduction

Building the Taylor model for over-approximating flowpipes

Taylor expansion on [t, tji+1)] (with i the coarse grid step, j the fine grid step)

[2](t, tg, [z5]) = [z4] + i(t — t)'[F5]" + (¢ — t) [F]",

@ The coefficients are defined inductively, and computed by automatic differentiation:

(" =
[flj][/+1]
[F)" Y

@ Remainder term :

o compute an enclosure [zj] of solution z(t, z0) on [t tj(;4+1)] by the Picard-Lindelof

[f] ([ZUL[[I]Z(,'A)J'])
e ([aegz } [ + [z0]] [foj']m)
i ([25 ] i+ [2 ] [Fon] ™) 22

iteration: find [Zj] such that

[zi] + [t5, tig+))[F1([Z75), [Zi35]) € [27]

o then evaluate [f] over [Zj]:

[FiM = [71([z7). [2G—1)), and inductively [F;]" = ..

Initialization of the next iterate: [z;(.1)] = [2](ti(jt1), tis» [25])
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Introduction

Inner-approximating flowpipes

Inner-approximation

Given uncertain (constant) parameters 8 € 3, an inner-approximation at time t of the

reachable set, is |z[(t, B) C z(t, B) such that (Vz €]z[(t,3)) (38 € B) (¢(t, B) = 2).

Robust inner-approximation

Given uncertain (constant) parameters 8 = (8.4, B¢) € B3, an inner-approximation of the
reachable set z(t,3) at time t, robust with respect to 4, is a set |z[4(t, 3 4, 8¢) such

that (Vz €]z[a(t, B4, Be)) (VBa € Ba) BPe € Be) (¢(t, Ba, be) = 2).

General principle of our algorithm (extending [HSCC 2017])

@ Compute outer-approximating flowpipes, on each time interval [tj, ti;41)], of:

o the solution z(t, 3) for some 3 € 8
o the entries Jjj(t) = g—g(t) of the Jacobian matrix J(t, 8) of the solution with respect
J
to the parameters 3, for all B € 3: they also satisfy a DDE (the variational equations)

@ Use a generalized Mean-Value Theorem to derive an inner-approximation
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Introduction

Computing inner-approximating flowpipes

Generalized intervals
@ Intervals whose bounds are not ordered K = {[a, b], a € R, b € R}

o Called proper if a < b, else improper

Theorem (Generalized Mean-Value Theorem (builds on [Goldsztejn 2005], [HSCC'17]))

@ For 8 =(Ba,Bs), we note J4 the sub-matrix of the Jacobian corresponding to the
partial derivatives with respect to fa and Jg the remaining columns

e If for t in [t;, tij+1)], the following, evaluated with Kaucher arithmetic [Kaucher
1980] on generalized intervals, is an improper interval
Jzla(t, tj, B4, Be) = [2(t, ty, [25]) + [J]a(t, ty, [J])(Ba — Ba)
+ Ule(t, ty, [Jy])(dual B¢ — Pe)

then (pro 1z[a(t, ty, B 4, B¢)) is an inner-approximation of the reachable set z(t, 3)
on [ty, tiir1)], robust to the parameters 34
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Implementation and Experiments

Implementation and Experiments

Protoype in C4++
Using :
@ FILIB++ C++ library for interval computation
o FADBAD++ package for automatic differentiation
@ and (a slightly modified version of) aaflib library for affine arithmetic

Extends a previous prototype for ODEs [HSCC2017], and is available from
http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/software.html
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Implementation and Experiments

Simple running example: efficiency and accuracy of the analysis
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Order 2 Taylor models, integration step size 0.05 sec, until Tmax = 2

Left (results obtained in 0.03 seconds) and center figures:

o dashed lines: analytical solution

o solid external lines: outer-approximating flowpipe

o filled yellow region = inner-approximating flowpipe
Subdivision of range of initial conditions to improve accuracy (left no subdiv, center

2 subdiv, right 10 subdiv)

Right figure: quality measure v = width of inner-approx

(stabilizes here over 0.975)
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Implementation and Experiments

Robustness to the constant PD-controller parameters for self-driving car
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Outer-approximating flowpipe O(t):

Vt,Vxo € Xo, V(Ky, Kg) € [1.95,2.05] x [2.95,3.05], Ix € O(t), x = x(t, x0, Ko, Ka)
o Inner-approximating flowpipe /(t) (purple / light blue filled region):
Vt,Vx € I(t), Ix € Xo, I(Kp, Ka) € [1.95,2.05] x [2.95,3.05], x = x(, x0, Kp, Ka)
Robust inner-approximating flowpipe /a(t) (orange / dark blue filled region):

Vt,Vx € 1a(t), V(K,, Kg) € [1.95,2.05] x

Results obtained in 0.24s with order 3
Taylor models and time step = 0.04

The outer-approximation proves safety
(the velocity never becomes negative)

The inner-approximation provides
falsification when relevant, and an
accuracy measure y

The robust inner-approximation

provides robustness to uncertainty in
Kp and Ky

1
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delay T =0.2
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Velocity v(t) and position x(t)
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Implementation and Experiments

Platoon of autonomous vehicles (adapted from [Erneux 2009])

o Vehicles C; (leading),...,C,, adapting their current velocity v;, with delay 7 = 0.3
@ Vehicles have sensors to measure speed of vehicle ahead
@ Polynomial ODE of order 3 for x; and v», positions x; and velocities v;;1 such that
Xi(t) = vi(t) i=2,
\'/,'+1(t) = 2.5(v,-(t—7')—v,-+1(t—7')) i=2,-'~ ,n—l

@ Cars have uncertain initial position and speed

Results

x1 outer appmxnmaﬂon —

o For 5 cars (9-dimensional system), until
time 10, with time step 0.1 and order 3 inner- i |
Taylor models (obtained in 2.13 sec) i

x5 inner- appmxnmatlo

(t)

@ Inner-approximations of positions
intersect: we have proven there are
unsafe initial conditions.

@ For 10 cars (19-dimension system),
results obtained in 6.5 sec

t (seconds)

v
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A seven-dimensional benchmark from [Franzle et al. FORMATS 2017]

Example

1.4x3(t) — 0.9x1(t — 7)
2.5x5(t) — 1.5xx(t)
0.6X7(t) — 0.8X3(t)X2(t)

f(x(t),x(t—7) = 2 — 1.3x4(t)x3(t)
0.7X1(t) — X4(t)X5(t)
0.3X1(t) — 3.1X6(t)

1.8x6(t) — 1.5x7(t)x2(t))

and the initial function is constant on [—7, 0] with values in
[1.0,1.2] x [0.95,1.15] x [1.4,1.6] x [2.3,2.5] x [0.9,1.1] x [0.0,0.2] x [0.35,0.55]

(Unfair) comparison wrt [Franzle et al. FORMATS 2017]

Reachable sets of the DDE computed until t = 0.1, and quality measure () (ratio of the
width of projection on each x; of inner-approx over outer-approx):

time (sec) accuracy measure y(xi),...,v(x7)
our work (order 2) 0.13 0.998, 0.996, 0.978, 0.964, 0.97, 0.9997, 0.961
Franzle et al. 505 0.575, 0.525, 0.527, 0.543, 0.477, 0.366, 0.523

v
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Implementation and Experiments

Future work

o Uncertain and variable delays (extension to uncertain but constant delay is
reasonably easy, variable delay is much more intricate)

o Hybrid systems with delays

e From uncertain parameters to uncertain controls (defined as a class of functions
with e.g. bounds on values and certain derivatives)
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