Third International Workshop on Numerical Software Verification

Formal verification of numerical programs: from C annotated programs to Coq proofs

Sylvie Boldo

INRIA Saclay - Île-de-France

July 15th, 2010
Thanks to

- the organizers!
Thanks to

- the organizers!
- all collaborators of these works
 - F. Clément
 - J.-C. Filliâtre
 - G. Melquiond
 - T. Nguyen
Motivations

- Numerical Software Verification
Motivations

- Numerical Software Verification

⇒ software with floating-point computations
Floating-point number

This is only a string of bits.

11100011010010011110000111000000
Floating-point number

This is only a string of bits.

111000110100100111100001110000000

We interpret it depending on the respective values of s (sign), e (exponent) and f (fraction).

\begin{array}{ccc}
1 & 11000110 & 100100111100001110000000 \\
1 & 11000110 & \overline{100100111100001110000000} \\
\end{array}

s e f
Floating-point number

We associate a real value:

\[
\begin{align*}
1 & 11000110 \quad 100100111100001110000000 \\
\downarrow & \downarrow & \downarrow \\
(-1)^s \times 2^{e-B} \times 1 \cdot f
\end{align*}
\]

\[
(-1)^1 \times 2^{198-127} \times 1.10010011110000111000000002
\]

\[-2^{54} \times 206727 \approx -3.724 \times 10^{21}\]
Floating-point number

We associate a real value :

\[
\begin{array}{c}
1 \\
11000110 \\
10010011110000111000000
\end{array}
\]

\[
\begin{array}{c}
s \\
e \\
f
\end{array}
\]

\[
\begin{align*}
(-1)^s \times 2^{e-B} \times 1 \bullet f \\
(-1)^1 \times 2^{198-127} \times 1.1001001111000011100000002 \\
-2^{54} \times 206727 \approx -3.724 \times 10^{21}
\end{align*}
\]

except for the special values of e : ±0, ±∞, NaN, subnormals.
Floating-point number repartition
Floating-point number repartition

\[0\]

subnormals

\[\mathbb{R}\]
Floating-point number repartition

0

subnormals

binade (common exponent)
Floating-point operations

Thanks to the IEEE-754 standard, the computed results of $+,-,\times,/,\sqrt{}$ should be the same as if they were first computed with infinite precision and then rounded.

\Rightarrow computations with 3 more bits (see J. Coonen)
Floating-point operations

Thanks to the IEEE-754 standard, the computed results of $+,-,\times,/,\sqrt{}$ should be the same as if they were first computed with infinite precision and then rounded.

⇒ computations with 3 more bits (see J. Coonen)

⇒ mathematical properties such that:
when a real value fits exactly in a floating-point number in a given format, then it is exactly computed.
Motivations

- Numerical Software Verification
Motivations

- Numerical Software Verification

- Critical C code \leftrightarrow formal proof
 \Rightarrow high guarantee
Related work

- **static analyzers**
 - Astrée
 - Fluctuat

- **specification languages**
 - JML

- **formal proofs about floating-point arithmetic**
 - trigonometric functions (HOL Light)
 - verification of the FPU (ACL2)
Motivations

C program

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41
Motivations

Human → Annotated C program

Proved theorems
Program is correct w.r.t. its specification
Motivations

Annotated C program \[\rightarrow\] Frama-C\[\rightarrow\] Mathematical theorems

- Human
- Jessie

Program is correct w.r.t. its specification
Motivations

Annotated C program \rightarrow \text{Frama-C (Jessie)} \rightarrow \text{Mathematical theorems} \leftarrow \text{Coq} \leftarrow \text{Human}

Human \downarrow

Sylvie Boldo (INRIA)
Formal verification of numerical programs
July 15th, 2010
Motivations

Annotated C program \rightarrow \text{Frana-C} \rightarrow \text{Mathematical theorems}

Human \rightarrow \text{Annotated C program}

Human \leftarrow \text{Coq}
Motivations

Annotated C program \rightarrow \text{Frama-C} \rightarrow \text{Mathematical theorems}

\text{Human} \rightarrow \text{Coq} \leftarrow \text{Human}
Motivations

Annotated C program \rightarrow \text{Frama-C} \rightarrow \text{Mathematical theorems}

\text{Human} \rightarrow \text{Frama-C} \rightarrow \text{Human} \\
\text{Human} \rightarrow \text{Coq} \leftarrow \text{Coq} \\
\text{Human} \leftarrow \text{Coq}
Motivations

Annotated C program $\xrightarrow{\text{Frama-C}}$ Mathematical theorems

Human $\xrightarrow{\text{Jessie}}$ Coq

Coq $\xleftarrow{\text{Human}}$

Formal verification of numerical programs
July 15th, 2010
Motivations

Annotated C program

Mathematical theorems

Human

Frama-C

Jessie

Coq

Coq

← Human

Program is correct w.r.t. its specification

Proved theorems

Formal verification of numerical programs

July 15th, 2010
Motivations

Annotated C program

Human

Frama-C

Jessie

Mathematical theorems

Coq

← Human

Program is correct w.r.t. its specification

Sylvie Boldo (INRIA)
Formal verification of numerical programs
July 15th, 2010
Motivations

- Annotated C program
- Mathematical theorems

Human → Annotated C program → Frama-C → Jessie → Mathematical theorems → Coq → Human

Sylvie Boldo (INRIA)
Formal verification of numerical programs
July 15th, 2010
Motivations

Annotated C program \rightarrow \text{Frama-C} \rightarrow \text{Mathematical theorems} \rightarrow \text{Proved theorems}

- Human
- Coq
- Sylvie Boldo (INRIA)

Program is correct w.r.t. its specification
Motivations

Annotated C program

Mathematical theorems

Human

Coq ← Human

Frama-C

Jessie

Program is correct w.r.t. its specification

Proved theorems
Plan

1 Motivations

2 Tools
 - Formal proof
 - Frama-C/Jessie/Why

3 Examples

4 Conclusions
Certified formal proof

The proof is checked in its deep details until the computer agrees with it.

We often use formal proof checkers, meaning programs that only check a proof (they may also generate easy demonstrations).

Therefore the checker is a very short program (de Bruijn criteria : the correctness of the system as a whole depends on the correctness of a very small "kernel").
The Coq proof assistant (http://coq.inria.fr)

- Based on the Curry-Howard isomorphism. (equivalence between proofs and λ-terms)
- Few automations.
- Comprehensive libraries, including on \mathbb{Z} and \mathbb{R}.
- Coq kernel mechanically checks each step of each proof.
- The method is to apply successively tactics (theorem application, rewriting, simplifications...) to transform or reduce the goal down to the hypotheses.
- The proof is handled starting from the conclusion.
Coq formalization (by L. Théry)

Float = pair of signed integers (mantissa, exponent)

\[(n, e) \in \mathbb{Z}^2\]
Coq formalization (by L. Théry)

Float = pair of signed integers (mantissa, exponent) associated to a real value.

\[(n, e) \in \mathbb{Z}^2 \rightarrow n \times \beta^e \in \mathbb{R}\]
Coq formalization (by L. Théry)

Float = pair of signed integers (mantissa, exponent) associated to a real value.

\[(n, e) \in \mathbb{Z}^2 \rightarrow n \times \beta^e \in \mathbb{R}\]

1.000102 E 4 \(\mapsto\) (1000102, −1)2 \(\mapsto\) 17

IEEE-754 significant of 754R real value

⇒ normal floats, subnormal floats, overflow.

Many floats may represent the same real value, but we can exhibit a canonical representation.
Example using Coq 8.2

Theorem Rle_Fexp_eq_Zle :
 forall x y :float, (x <= y)%R ->
 Fexp x = Fexp y -> (Fnum x <= Fnum y)%Z.
intros x y H' H'0.
apply le_IZR.
apply (Rle_monotony_contra_exp radix)
 with (z := Fexp x); auto with real arith.
pattern (Fexp x) at 2 in |- *; rewrite H’0; auto.
Qed.

With keywords, stating of the theorem, tactics and names of used theorems.
Example using Coq 8.2

Theorem $\text{Rle}_\text{Fexp_eq}_\text{Zle}$:

forall x, y : float, $(x \leq y)%R$ ->
Fexp x = Fexp y -> (Fnum x <= Fnum y)%Z.

intros x y H' H'0.
apply le_IZR.
apply (Rle_monotony_contra_exp radix)
 with (z := Fexp x); auto with real arith.
pattern (Fexp x) at 2 in |- *; rewrite H’0; auto.
Qed.

With keywords, stating of the theorem, tactics and names of used theorems.

Theorem (Rle_Fexp_eq_Zle)

*If two floats $x = (n_x, e_x)$ and $y = (n_y, e_y)$ verifies $x \leq y$, and $e_x = e_y$, then $n_x \leq n_y$.***
Plan

1 Motivations

2 Tools
 - Formal proof
 - Frama-C/Jessie/Why

3 Examples

4 Conclusions
Frama-C/Jessie/Why

- Frama-C is a framework dedicated to the analysis of the source code of software written in C.
Frama-C is a framework dedicated to the analysis of the source code of software written in C.

Available plugins:

- value analysis
- Jessie, the deductive verification plug-in (based on weakest precondition computation techniques)

Frama-C is a framework dedicated to the analysis of the source code of software written in C.

Available plugins:
- value analysis
Frama-C is a framework dedicated to the analysis of the source code of software written in C.

Available plugins:
- value analysis
- Jessie, the deductive verification plug-in
 (based on weakest precondition computation techniques)
Frama-C/Jessie/Why

- Frama-C is a framework dedicated to the analysis of the source code of software written in C.

- Available plugins:
 - value analysis
 - Jessie, the deductive verification plug-in (based on weakest precondition computation techniques)
 - ...
Frama-C is a framework dedicated to the analysis of the source code of software written in C.

Available plugins:
- value analysis
- Jessie, the deductive verification plug-in (based on weakest precondition computation techniques)
- ...

Frama-C/Jessie/Why

ACSL-annotated C program
Frama-C/Jessie/Why

ACSL-annotated C program

Frama-C/Jessie plug-in

WHY verification condition generator

Verification conditions

Automatic provers (Alt-Ergo, Gappa, CVC3, etc.)

Interactive provers (Coq, PVS, etc.)
ACSL

- ANSI/ISO C Specification Language
ACSL

- ANSI/ISO C Specification Language
- behavioral specification language for C programs
ACSL

- ANSI/ISO C Specification Language
- behavioral specification language for C programs
- pre-conditions and post-conditions to functions (and which variables are modified).
ACSL

- ANSI/ISO C Specification Language
- Behavioral specification language for C programs
- Pre-conditions and post-conditions to functions (and which variables are modified).
- Variants and invariants of the loops.
ACSL

- ANSI/ISO C Specification Language
- behavioral specification language for C programs
- pre-conditions and post-conditions to functions (and which variables are modified).
- variants and invariants of the loops.
- assertions
ACSL

- ANSI/ISO C Specification Language
- Behavioral specification language for C programs
- Pre-conditions and post-conditions to functions (and which variables are modified).
- Variants and invariants of the loops.
- Assertions
- In annotations, all computations are exact.
A floating-point number is a triple:

- the floating-point number, really computed by the program, $x \rightarrow x_f$ floating-point part
A floating-point number is a triple:

- the floating-point number, really computed by the program, \(x \rightarrow x_f \) floating-point part
- the value that would have been obtained with exact computations, \(x \rightarrow x_e \) exact part
A floating-point number is a triple:

- the floating-point number, really computed by the program,
 \(x \rightarrow x_f \) floating-point part
- the value that would have been obtained with exact computations,
 \(x \rightarrow x_e \) exact part
- the value that we ideally wanted to compute
 \(x \rightarrow x_m \) model part
ACSL and floating-point numbers

A floating-point number is a triple:

- **the floating-point number**, really computed by the program,
 \[x \to x_f \] floating-point part
 \[1 + x + x^2 / 2 \]

- **the value that would have been obtained with exact computations**,
 \[x \to x_e \] exact part
 \[1 + x + \frac{x^2}{2} \]

- **the value that we ideally wanted to compute**
 \[x \to x_m \] model part
 \[\exp(x) \]
ACSL and floating-point numbers

A floating-point number is a triple:

- the **floating-point number**, really computed by the program, $x \rightarrow x_f$ floating-point part

 - $1 + x + x^2/2$

- the **value that would have been obtained with exact computations**, $x \rightarrow x_e$ exact part

 - $1 + x + \frac{x^2}{2}$

- the **value that we ideally wanted to compute**, $x \rightarrow x_m$ model part

 - $\exp(x)$

\Rightarrow easy to split into method error and **rounding error**
A floating-point number is a triple:

- the floating-point number, really computed by the program, $x \rightarrow x_f$ floating-point part
 - $1 + x + x^2/2$
- the value that would have been obtained with exact computations, $x \rightarrow x_e$ exact part
 - $1 + x + \frac{x^2}{2}$
- the value that we ideally wanted to compute $x \rightarrow x_m$ model part
 - $\exp(x)$

\Rightarrow easy to split into method error and rounding error

For a float f, we have macros such as $\texttt{rounding_error}(f)$ and $\texttt{exact}(f)$, while f (as a real) is its floating-point value.
Several **pragmas** corresponding to different formalization for floating-point numbers.

- **defensive** (default pragma): IEEE roundings occur. We prove that no exceptional behavior may happen (Overflow, NaN creation...)

- **full**: IEEE roundings occur. Exceptional behaviors may happen.

- **multi-rounding**: we may have any hardware and compiler (80-bit extended registers, FMA)
Several **pragmas** corresponding to different formalization for floating-point numbers.

- **defensive** (default pragma): IEEE roundings occur. We prove that no exceptional behavior may happen (Overflow, NaN creation...)

- **math**: all computations are exact.
Pragmas

Several **pragmas** corresponding to different formalization for floating-point numbers.

- **defensive** (default pragma): IEEE roundings occur. We prove that no exceptional behavior may happen (Overflow, NaN creation...)

- **math**: all computations are exact.

- **full**: IEEE roundings occur. Exceptional behaviors may happen.
Several **pragmas** corresponding to different formalization for floating-point numbers.

- **defensive** (default pragma): IEEE roundings occur. We prove that no exceptional behavior may happen (Overflow, NaN creation...).

- **math**: all computations are exact.

- **full**: IEEE roundings occur. Exceptional behaviors may happen.

- **multi-rounding**: we may have any hardware and compiler (80-bit extended registers, FMA)
Plan

1 Motivations

2 Tools
 - Formal proof
 - Frama-C/Jessie/Why

3 Examples

4 Conclusions
Examples

- All examples use Frama-C Boron and Why 2.26.
Examples

- All examples use Frama-C Boron and Why 2.26.
- All proof obligations are proved using Coq. (except 2 inequalities in the last example).
Examples

- All examples use Frama-C Boron and Why 2.26.
- All proof obligations are proved using Coq. (except 2 inequalities in the last example).
Theorem (Sterbenz)

If x and y are FP numbers in a given precision such that

\[
\frac{y}{2} \leq x \leq 2y,
\]

then $x - y$ fits in a FP number in the same precision and is therefore computed without error.
/*@ requires y / 2. <= x <= 2. * y;
@ ensures \ result == x - y;
@*/

float Sterbenz(float x, float y) {
 return x - y;
}
Sterbenz – program

/*@ requires y/2. <= x <= 2.*y;
@ ensures \result == x-y;
@*/

float Sterbenz(float x, float y) {
 return x-y;
}
Sterbenz – program

/*@ requires y/2. <= x <= 2.*y;
@ ensures \result == x-y;
@*/

float Sterbenz(float x, float y) {
 return x-y;
}
Sterbenz – program

/*@ requires \(y/2. \leq x \leq 2 \cdot y \);
@ ensures \(\text{\textbackslash result} = x - y \);
@*/

```c
float Sterbenz(float x, float y) {
    return x - y;
}
```

1 PO: exact subtraction

1 PO: no overflow
Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm computing the exact error of the multiplication using only FP operations.
Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm computing the exact error of the multiplication using only FP operations.

Idea:

split your floats in 2, multiply all the parts, add them in the correct order.
Let $C = 2^{27} + 1$ for double precision numbers.
Dekker: how to get the error of the multiplication

\[r_1 = \circ(x \times y) \]

\[x_1 \times y_1 \]

\[t_1 = x_1 \times y_1 - r \]

\[x_1 \times y_2 \]

\[t_2 = t_1 + x_1 \times y_2 \]

\[x_2 \times y_1 \]

\[t_3 = t_2 + x_2 \times y_1 \]

\[x_2 \times y_2 \]

\[r_2 = t_3 + x_2 \times y_2 \]
Veltkamp/Dekker – program

```c
/*@ requires xy == round_double(\NearestEven, x*y) &&
   @ abs(x) <= 0x1.p995 &&
   @ abs(y) <= 0x1.p995 &&
   @ abs(x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= abs(x*y))
   @ ==> x*y == xy+\result);
@*/

double Dekker(double x, double y, double xy) {

    double C, px, qx, hx, py, qy, hy, tx, ty, r2;
    int i;
    [...]
   /*@ assert C == pow(2.,27) + 1. */

    px=x*C; qx=x−px; hx=px+qx; tx=x−hx;
    py=y*C; qy=y−py; hy=py+qy; ty=y−hy;

    r2=−xy+hx*hy;
    r2+=hx*ty;
    r2+=hy*tx;
    r2+=tx*ty;
    return r2;
}
```
/*@ requires xy == \round_double(\NearestEven,x*y) &&
 \abs(x) <= 0x1.p995 &&
 \abs(y) <= 0x1.p995 &&
 \abs(x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
 ==> x*y == xy+\result);
@*/

double Dekker(double x, double y, double xy) {

double C, px, qx, hx, py, qy, hy, tx, ty, r2;
int i;
[...]
/*@ assert C == \pow(2.,27) + 1. */

px=x*C; qx=x−px; hx=px+qx; tx=x−hx;
py=y*C; qy=y−py; hy=py+qy; ty=y−hy;

r2=−xy+hx*hy;
r2+=hx*ty;
r2+=hy*tx;
r2+=tx*ty;
return r2;
}
/*@ requires xy == \round_double(\NearestEven,x*y) &&
 \abs(x) <= 0x1.p995 &&
 \abs(y) <= 0x1.p995 &&
 \abs(x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
 ==> x*y == xy+\result);
@*/

double Dekker(double x, double y, double xy) {

double C, px, qx, hx, py, qy, hy, tx, ty, r2;
int i;
[...]
/*@ assert C == \pow(2.,27) + 1. */

px=x*C; qx=x-px; hx=px+qx; tx=x-hx;
py=y*C; qy=y-py; hy=py+qy; ty=y-hy;

r2=-xy+hx*hy;
r2+=hx*ty;
r2+=hy*tx;
r2+=tx*ty;
return r2;
}
double Dekker(double x, double y, double xy) {
 double C, px, qx, hx, py, qy, hy, tx, ty, r2;
 int i;
 [...] /*@ assert C == \pow(2.,27) + 1. */
 px = x * C; qx = x - px; hx = px + qx; tx = x - hx;
 py = y * C; qy = y - py; hy = py + qy; ty = y - hy;
 r2 = -xy + hx * hy;
 r2 += hx * ty;
 r2 += hy * tx;
 r2 += tx * ty;
 return r2;
}
/@ requires xy == \round_double(\Nearest\Even, x*y) &&
@ \abs(x) <= 0x1. p995 &&
@ \abs(y) <= 0x1. p995 &&
@ \abs(x*y) <= 0x1. p1021;
@ ensures ((x*y == 0 || 0x1. p-969 <= \abs(x*y))
@ ==> x*y == xy + result);
@*/

double Dekker(double x, double y, double xy) {

double C, px, qx, hx, py, qy, hy, tx, ty, r2;
int i;
[...]
/*@ assert C == \pow(2., 27) + 1. */

px=x*C; qx=x−px; hx=px+qx; tx=x−hx;

py=y*C; qy=y−py; hy=py+qy; ty=y−hy;

r2=−xy+hx*hy;
r2+=hx*ty;
r2+=hy*tx;
r2+=tx*ty;
return r2;
}
double Dekker(double x, double y, double xy) {

 double C, px, qx, hx, py, qy, hy, tx, ty, r2;
 int i;
 [...]
 /*@ assert C == \pow(2.,27) + 1. */

 px=x*C; qx=x−px; hx=px+qx; tx=x−hx;
 py=y*C; qy=y−py; hy=py+qy; ty=y−hy;

 r2=−xy+hx*hy;
 r2+=hx*ty;
 r2+=hy*tx;
 r2+=tx*ty;
 return r2;
}
/*@ requires xy == \round_double(\NearestEven,x*y) &&
@ \quad \abs(x) <= 0x1.p995 &&
@ \quad \abs(y) <= 0x1.p995 &&
@ \quad \abs(x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
@ ==> x*y == xy+\result);
@*/

double Dekker(double x, double y, double xy) {

double C, px, qx, hx, py, qy, hy, tx, ty, r2;
int i;
[...]
/*@ assert C == \pow(2.,27) + 1. */

px=x*C; qx=x–px; hx=px+qx; tx=x–hx;

py=y*C; qy=y–py; hy=py+qy; ty=y–hy;

r2=–xy+hx*hy;
r2+=hx*ty;
r2+=hy*tx;
r2+=tx*ty;
return r2;
}
Accurate discriminant

It is pretty hard to compute $b^2 - ac$ accurately.
Accurate discriminant

It is pretty hard to compute $b^2 - ac$ accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm computing the $b^2 - a \times c$ within 2 ulps.
Accurate discriminant – program

/*@ requires
 @ (b == 0. || 0x1. p−916 <= \abs(b*b)) &&
 @ (a*c == 0. || 0x1. p−916 <= \abs(a*c)) &&
 @ \abs(b) <= 0x1. p510 &&
 @ \abs(a) <= 0x1. p995 && \abs(c) <= 0x1. p995 &&
 @ \abs(a*c) <= 0x1. p1021;
@ ensures \result == 0.
@ || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
 double p, q, d, dp, dq;
 p = b*b;
 q = a*c;

 if (p+q <= 3*fabs(p−q))
 d = p−q;
 else {
 dp = Dekker(b, b, p);
 dq = Dekker(a, c, q);
 d = (p−q) + (dp−dq);
 }
 return d;
}
Accurate discriminant – program

/*@ requires
@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@ \abs(b) <= 0x1.p510 &&
@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@ || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
 double p=b*b,
 q=a*c;

 if (p+q <= 3*fabs(p-q))
 d=p-q;
 else {
 dp=Dekker(b,b,p);
 dq=Dekker(a,c,q);
 d=(p-q)+(dp-dq);
 }
 return d;
}
Accurate discriminant – program

```c
/*@ requires
@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@ \abs(b) <= 0x1.p510 &&
@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@ || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p = b*b;
    q = a*c;

    if (p+q <= 3*fabs(p-q))
        d = p-q;
    else {
        dp = Dekker(b, b, p);
        dq = Dekker(a, c, q);
        d = (p-q) + (dp-dq);
    }
    return d;
}
```
Accurate discriminant – program

/** @ requires
 @ (b==0. || 0x1.p-916 <= \abs(b*b)) &&
 @ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
 @ \abs(b) <= 0x1.p510 &&
 @ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
 @ \abs(a*c) <= 0x1.p1021;
 @ ensures \result==0.
 @ || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
 @ */

double discriminant(double a, double b, double c) {
 double p=b*b,
 q=a*c;
 if (p+q <= 3*fabs(p-q))
 d=p-q;
 else {
 dp=Dekker(b,b,p);
 dq=Dekker(a,c,q);
 d=(p-q)+(dp-dq);
 }
 return d;
}
Accurate discriminant – program

```c
/*@ requires
@  (b==0.  ||  0x1.p-916 <= \abs(b*b)) &&
@  (a*c==0.  ||  0x1.p-916 <= \abs(a*c)) &&
@  \abs(b) <= 0x1.p510 &&
@  \abs(a) <= 0x1.p995  &&  \abs(c) <= 0x1.p995  &&
@  \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@  || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
  double p,q,d,dp,dq;
  p=b*b;
  q=a*c;

  if ( p+q <= 3*fabs(p-q) )
    d=p-q;
  else {
    dp=Dekker(b,b,p);
    dq=Dekker(a,c,q);
    d=(p-q)+(dp-dq);
  }
  return d;
}
```
Accurate discriminant – program

/*@ requires
@ (b==0. || 0x1.p-916 <= abs(b*b)) &&
@ (a*c==0. || 0x1.p-916 <= abs(a*c)) &&
@ abs(b) <= 0x1.p510 &&
@ abs(a) <= 0x1.p995 && abs(c) <= 0x1.p995 &&
@ abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@ || abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
 double p,q,d,dp,dq;
 p=b*b;
 q=a*c;

 if (p+q <= 3*fabs(p-q))
 d=p-q;
 else {
 dp=Dekker(b,b,p);
 dq=Dekker(a,c,q);
 d=(p-q)+(dp-dq);
 }
 return d;
}
Accurate discriminant – program

```c
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p,q,d,dp,dq;
    p=b*b;
    q=a*c;

    if (p+q <= 3*fabs(p-q))
        d=p-q;
    else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```
Accurate discriminant – program

```c
/*@ requires
  @ (b==0. || 0x1.p-916 <= \abs(b*b)) &&
  @ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
  @ \abs(b) <= 0x1.p510 &&
  @ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
  @ \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@  || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
  double p, q, d, dp, dq;
  p=b*b;
  q=a*c;

  if (p+q < 3*fabs(p-q))
    d=p-q;
  else {
    dp=Dekker(b, b, p);
    dq=Dekker(a, c, q);
    d=(p-q)+(dp-dq);
  }
  return d;
}
```

Test whether $ac \approx b^2$

Function calls

- Function calls
 - pre-conditions to prove
 - post-conditions guaranteed
Accurate discriminant – program

```c
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p = b*b;
    double q = a*c;

    if (p+q <= 3*fabs(p-q))
        d = p-q;
    else {
        double dp = Dekker(b, b, p);
        double dq = Dekker(a, c, q);
        d = (p-q)+(dp-dq);
    }
    return d;
}
```

In initial proof, test assumed correct

⇒ Additional proof when test is incorrect
Wave equation resolution scheme

\[\frac{\partial^2 u(x, t)}{\partial t^2} - c^2 \frac{\partial^2 u(x, t)}{\partial x^2} = s(x, t) \]
Wave equation resolution scheme

\[
\frac{\partial^2 u(x, t)}{\partial t^2} - c^2 \frac{\partial^2 u(x, t)}{\partial x^2} = s(x, t)
\]
Wave equation resolution scheme

\[\frac{\partial^2 u(x, t)}{\partial t^2} - c^2 \frac{\partial^2 u(x, t)}{\partial x^2} = s(x, t) \]

\[\frac{u_j^k - 2u_j^{k-1} + u_j^{k-2}}{\Delta t^2} - c^2 \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{\Delta x^2} = s_j^{k-1} \]
Wave equation resolution scheme – program

```c
double **forward_prop(int ni, int nk, double dx, double dt,
                       double v, double xs, double l) {
  double **p; int i, k; double a1, a, dp;

  a1 = dt/dx*v; a = a1*a1;

  // initializations of p[...][0] and p[...][1]

  /* propagation = time loop */
  @loop invariant 1 <= k <= nk && analytic_error(p,ni,ni,k,a);
  @loop variant nk-k; */
  for (k=1; k<nk; k++) {
    p[0][k+1] = 0.;

    /* time iteration = space loop */
    @loop invariant 1 <= i <= ni && analytic_error(p,ni,i-1,k+1,a);
    @loop variant ni-i; */
    for (i=1; i<ni; i++) {
      dp = p[i+1][k] - 2.*p[i][k] + p[i-1][k];
      p[i][k+1] = 2.*p[i][k] - p[i][k-1] + a*dp;
    }
    p[ni][k+1] = 0.;
  }
  return p;
}
```

Accumulation of rounding errors

Sylvie Boldo (INRIA)

Formal verification of numerical programs

July 15th, 2010 33 / 41
Wave equation resolution scheme – program

double **forward_prop(int ni, int nk, double dx, double dt, double v, double xs, double l) {
 double **p; int i, k; double a1, a, dp;

 a1 = dt/dx*v; a = a1*a1;

 [...] // initializations of p[...][0] and p[...][1]

 /* propagation = time loop */
 /*@ loop invariant 1 <= k <= nk && analytic_error(p,ni,ni,k,a); @ loop variant nk-k; */
 for (k=1; k<nk; k++) {
 p[0][k+1] = 0.;

 /* time iteration = space loop */
 /*@ loop invariant 1 <= i <= ni && analytic_error(p,ni,i-1,k+1,a); @ loop variant ni-i; */
 for (i=1; i<ni; i++) {
 dp = p[i+1][k] - 2.*p[i][k] + p[i-1][k];
 p[i][k+1] = 2.*p[i][k] - p[i][k-1] + a*dp;
 }
 p[ni][k+1] = 0.;
 }
 return p;
}
Wave equation resolution scheme – program

double **forward_prop(int ni, int nk, double dx, double dt, double v, double xs, double l) {
 double **p; int i, k; double a1, a, dp;

 a1 = dt/dx*v; a = a1*a1;

 [...] // initializations of p[...][0] and p[...][1]

 /* propagation = time loop */
 //@ loop invariant 1 <= k <= nk && analytic_error(p,ni,ni,k,a);
 //@ loop variant nk-k; */
 for (k=1; k<nk; k++) {
 p[0][k+1] = 0.;
 }

 /* time iteration = space loop */
 //@ loop invariant 1 <= i <= ni && analytic_error(p,ni,i-1,k+1,a)
 //@ loop variant ni-i; */
 for (i=1; i<ni; i++) {
 dp = p[i+1][k] - 2.*p[i][k] + p[i-1][k];
 p[i][k+1] = 2.*p[i][k] - p[i][k-1] + a*dp;
 }
 p[ni][k+1] = 0.;
}

return p;
Wave equation resolution scheme – program

double **forward Prop(int ni, int nk, double dx, double dt, double v, double xs, double l) {
 double **p; int i, k; double a1, a, dp;

 a1 = dt/dx*v; a = a1*a1;

 [...] // initializations of p[...][0] and p[...][1]

 /* propagation = time loop */
 /*@ loop invariant 1 <= k <= nk && analytic_error(p,ni,ni,k,a);
 @ loop variant nk-k; */
 for (k=1; k<nk; k++) {
 p[0][k+1] = 0.;

 /* time iteration = space loop */
 /*@ loop invariant 1 <= i <= ni && analytic_error(p,ni,i-1,k+1,a);
 @ loop variant ni-i; */
 for (i=1; i<ni; i++) {
 dp = p[i+1][k] − 2.*p[i][k] + p[i−1][k];
 p[i][k+1] = 2.*p[i][k] − p[i][k−1] + a*dp;
 }
 p[ni][k+1] = 0.;
 }
 return p;
}
Wave equation resolution scheme – program

```c
double **forward_prop(int ni, int nk, double dx, double dt, double v, double xs, double l) {
    double **p; int i, k; double a1, a, dp;

    a1 = dt/dx*v; a = a1*a1;

    [...] // initializations of p[...][0] and p[...][1]

    /* propagation = time loop */
   /*@ loop invariant 1 <= k <= nk && analytic_error(p,ni,ni,k,a);
    @ loop variant nk-k; */
    for (k=1; k<nk; k++) {
        p[0][k+1] = 0.;

        /* time iteration = space */
       /*@ loop invariant 1 <= i <= ni && analytic_error(p,ni,i-1,k+1,a);
        @ loop variant ni-i; */
        for (i=1; i<ni; i++) {
            dp = p[i+1][k] - 2.*p[i][k] + p[i-1][k];
            p[i][k+1] = 2.*p[i][k] - p[i][k-1] + a*dp;
        }
        p[ni][k+1] = 0.;
    }
    return p;
}
```

Accumulation of rounding errors

Main computations
Wave equation resolution scheme – rounding error

Interval arithmetic $\Rightarrow p_i^k$ has error $2^k 2^{-53}$.
Wave equation resolution scheme – rounding error

Interval arithmetic ⇒ p_i^k has error $2^k 2^{-53}$.

We define ε_i^k as the signed rounding error made at step (i, k).
Wave equation resolution scheme – rounding error

Interval arithmetic ⇒ p_i^k has error 2^k2^{-53}.

We define ε_i^k as the signed rounding error made at step (i, k).

The predicate $\text{analytic_error}(x, t)$ is defined in Coq as:
For all steps (i, k) that are under (x, t),

- $|\varepsilon_i^k| \leq 78 \times 2^{-52}$
- $p_i^k - \text{exact}(p_i^k) = \sum_{l=0}^{k} \sum_{j=-l}^{l} \alpha_j^l \varepsilon_{i+j}^{k-l}$, with known α_j^l
Wave equation resolution scheme – rounding error

Interval arithmetic ⇒ \(p_i^k \) has error \(2^k 2^{-53} \).

We define \(\varepsilon_i^k \) as the signed rounding error made at step \((i, k)\).

The predicate \texttt{analytic error}(x,t)\footnote{Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 34 / 41} is defined in Coq as:

For all steps \((i, k)\) that are under \((x, t)\),

- \(|\varepsilon_i^k| \leq 78 \times 2^{-52}
- \(p_i^k - exact(p_i^k) = \sum_{l=0}^{k} \sum_{j=-l}^{l} \alpha_j^l \varepsilon_{i+j}^{k-l} \) with known \(\alpha_j^l \)

\[|p_i^k - exact(p_i^k)| \leq 85 \times 2^{-53} \times (k + 1) \times (k + 2) \]
Wave equation resolution scheme – proof

- 33 proof obligations for the behavior
 (assertions, loop invariants, post-conditions...)
Wave equation resolution scheme – proof

- 33 proof obligations for the behavior (assertions, loop invariants, post-conditions...)
- 84 proof obligations for the safety (loop variants, Overflow, pointer dereferencing...)

26000 lines of Coq (including less than 3700 lines of proof)
(Note that the method error proof was presented at ITP on July 11th)
Wave equation resolution scheme – proof

- 33 proof obligations for the behavior
 (assertions, loop invariants, post-conditions. . .)
- 84 proof obligations for the safety
 (loop variants, Overflow, pointer dereferencing. . .)
- 2 admits corresponding to the boundedness of the $\text{exact}(p_i^k)$
 (by scheme properties)
Wave equation resolution scheme – proof

- 33 proof obligations for the behavior
 (assertions, loop invariants, post-conditions...)
- 84 proof obligations for the safety
 (loop variants, Overflow, pointer dereferencing...)
- 2 admits corresponding to the boundedness of the $\text{exact}(p_i^{k})$
 (by scheme properties)
- 26000 lines of Coq (including less than 3700 lines of proof)

(Note that the method error proof was presented at ITP on July 11th)
Plan

1 Motivations

2 Tools
 - Formal proof
 - Frama-C/Jessie/Why

3 Examples

4 Conclusions
Conclusion: advantages

- Very high guarantee
Conclusion: advantages

- Very high guarantee
- not only rounding errors: all other errors such as pointer dereferencing or division by zero
- link with mathematical properties
- any property can be checked
- expressive annotation language (as expressive as Coq)
- ⇒ exactly the specification you want
Conclusion: advantages

- Very high guarantee

- not only rounding errors:
 - all other errors such as pointer dereferencing or division by zero
Conclusion : advantages

- Very high guarantee

- not only rounding errors :
 - all other errors such as pointer dereferencing or division by zero
 - link with mathematical properties
Conclusion: advantages

- Very high guarantee

- not only rounding errors:
 - all other errors such as pointer dereferencing or division by zero
 - link with mathematical properties
 - any property can be checked
Conclusion: advantages

- Very high guarantee
- not only rounding errors:
 - all other errors such as pointer dereferencing or division by zero
 - link with mathematical properties
 - any property can be checked
- expressive annotation language (as expressive as Coq)
 ⇒ exactly the specification you want
Conclusion: limits (1/2)

- long and tedious
Conclusion: limits (1/2)

- long and tedious \Rightarrow automations!
Conclusion : limits (1/2)

- long and tedious \Rightarrow automations!
- for example Gappa (G. Melquiond)
Conclusion : limits (1/2)

- long and tedious \Rightarrow automations!
- for example Gappa (G. Melquiond)

\Rightarrow Use automatic provers to prove part of the verification conditions
Conclusion: limits (1/2)

- long and tedious \Rightarrow automations!
- for example Gappa (G. Melquiond)

⇒ Use automatic provers to prove part of the verification conditions
⇒ Use Gappa inside Coq to ease proofs
Conclusion : limits (2/2)

- We assume all double operations are direct 64-bit roundings.
Conclusion : limits (2/2)

- We assume all double operations are direct 64-bit roundings.
- On recent processors, we have x86 extended registers (80-bit long) and FMA ($\circ(ax + b)$ with one single rounding).

How does we know how the program was compiled and what will be the result?

Solution 1 : cover all cases.
The result of an operation is a real near the correct result (it covers, 64-bit, 80-bit, double roundings and all uses of FMA)

pragma multi-rounding
Less precise, but always correct !

Solution 2 : look into the assembly.

Sylvie Boldo (INRIA)
We assume all double operations are direct 64-bit roundings.

On recent processors, we have x86 extended registers (80-bit long) and FMA ($a \times x + b$) with one single rounding).

How does we know how the program was compiled and what will be the result?

Solution 1: cover all cases. The result of an operation is a real near the correct result (it covers, 64-bit, 80-bit, double roundings and all uses of FMA).

Pragma multi-rounding

Less precise, but always correct!

Solution 2: look into the assembly.

Sylvie Boldo (INRIA)

Formal verification of numerical programs

July 15th, 2010
Conclusion: limits (2/2)

- We assume all double operations are direct 64-bit roundings.
- On recent processors, we have x86 extended registers (80-bit long) and FMA \((\circ(ax + b))\) with one single rounding.
- How does we know how the program was compiled and what will be the result?

Solution 1: cover all cases.
- The result of an operation is a real near the correct result (it covers, 64-bit, 80-bit, double roundings and all uses of FMA)
 - pragma multi-rounding
- Less precise, but always correct!
Conclusion: limits (2/2)

- We assume all double operations are direct 64-bit roundings.
- On recent processors, we have x86 extended registers (80-bit long) and FMA ($\circ(ax + b)$ with one single rounding).
- How does we know how the program was compiled and what will be the result?

Solution 1: cover all cases.
The result of an operation is a real near the correct result (it covers, 64-bit, 80-bit, double roundings and all uses of FMA)
pragma multi-rounding
Less precise, but always correct!

Solution 2: look into the assembly...
Perspectives

- How to find correct specifications?
How to find correct specifications?
⇒ use other tools...
Perspectives

- How to find correct specifications? ⇒ use other tools...
- What about the Coq library?
Perspectives

- How to find correct specifications?
 ⇒ use other tools...

- What about the Coq library?

 PFF
 (Boldo, Théry, Rideau...)

 Gappa
 (Melquiond)
How to find correct specifications?
⇒ use other tools...

What about the Coq library?
How to find correct specifications?
⇒ use other tools...

What about the Coq library?
How to find correct specifications?
⇒ use other tools...

What about the Coq library?
Thank you for your attention

- **Tools:**
 - http://frama-c.com/
 - http://why.lri.fr/
 - http://coq.inria.fr/

- **Code & proofs:**

- **Formal proofs about scientific computations:**
 - http://fost.saclay.inria.fr/