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@ The problem: verifying the order of accuracy of numeric codes

© Current approaches

© Proposed approach

@ Example

© Challenges
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Automatic verification of order of accuracy

Using symbolic execution and theorem proving techniques, it is possible to
provide automatic formal verification of the accuracy of a numerical
program.

e Extend the Toolkit for Accurate Scientific Software (TASS)

» Symbolic execution tool
» http://vsl.cis.udel.edu/tass
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Error in numerical programs

e From numerical method (discretization error)
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e From floating-point computations (round-off error)
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Error in numerical programs

e From numerical method (discretization error)
e From floating-point computations (round-off error)
@ From defects
“To put it baldly, most scientific results are corrupted and

perhaps fatally so by undiscovered mistakes in the software used
to calculate and present those results.” (Les Hatton)
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Error in numerical programs

@ From numerical method (discretization error)
e From floating-point computations (round-off error)
@ From defects
“To put it baldly, most scientific results are corrupted and

perhaps fatally so by undiscovered mistakes in the software used
to calculate and present those results.” (Les Hatton)

This project is focused on the discretization error.
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Big-O
Definition

Let I = (0,a),a > 0. Suppose we have two functions ¢ : I — R and
¥ I — R. We write

6(h) = O(e(h)) as h = 0

if there exist positive real numbers C' and € such that |¢(h)| < Cly(h)]
whenever 0 < h < e.
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Order of accuracy
Let DCR,I=(0,a),a > 0.
Definition

Let n be a positive integer. Given a function f : D — R, consider a
function g : D x I — R. Fix x € D. We say g is an n'" order accurate
approximation to f at x if

f(z) —g(x,h) =O(h"™) as h — 0.
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Order of accuracy

Note that a higher n is better.
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Uniformly n'* order accurate
Definition

Let n be a positive integer. Given a function f : D — R, consider a
function g : D x I — R. Define ¢ : I — R by

¢(h) = sup [f(x) — g(x, h)|.

xzeD
We say that g is a uniformly n'* order accurate approximation of f on D if

¢(h) = O(h™) as h — 0.
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Grid approximations
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Grid approximations

Definition

Let n be a positive integer, D C R, and f a function from D — R. Let
I = (0,a), where a is a positive real number and suppose A: I — p(D).
Let S = Uper (A(R) x {h}) € D x I. Suppose g: S — R. Define
¢: I — R by

¢(h) = sup |f(x)— g(z,h)|.

z€A(h)

We say g is a A-uniformly n'* order accurate approximation of f if

¢(h) =O(h"™) as h — 0.
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Example: derivative using central difference

Approximate a derivative by taking the slope through neighboring points.

ple +h) — p(z — )

/ ~
p(z) ~ 57,
t Definition | Example

D R
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Code

In this example, A(h) = {ihli € Z,0 <i < n}
void differentiate(double h, int n, double[] y, double[] result) {
int i;
for(i = 1; i < n-1; i++) {
result[i] = (y[i+1]-y[i-11)/(2%h);
}
result[0] = (y[1]1-y[0])/h;
result[m-1] = (y[n-1]-y[n-2]1)/h;
}

We want to show this is a A-uniformly 2"¢ order accurate approximation
of p.
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Current approaches

@ Prove manually

» Prove bounds on truncation error in the numerical method
» Limitations

* Manual proof could have an error
* Program might not match the proved method

» Assume correct translation to code
@ Do convergence studies

» Run for various values of i and x
» Limitations
* Looking at a finite set of values for h does not prove anything about
the limit
* Might not be valid for all x in the input space
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How the manual proof works

Show that
p(x +h) — p(z —h)

2h
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How the manual proof works
Show that ( h) ( n)
r+n)—plx—
& 7 — p(z) = O(h?).

Use Taylor's theorem with Lagrangian remainders:

ol 4+ h) = pla) + o (@)h + 3" ()2 + 2" ()R
1
>

6

1

o (@) — 2" ().

p(z —h) = p(z) — p'(x)h + 5
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How the manual proof works
Suppose Vz.|p" (x)| < M. Then

ple+h) —p(z = h)
2h

@) = 25 #"(E) + 7 (E)| 12

Therefore
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Automatic verification of order of accuracy

Using symbolic execution and theorem proving techniques, it is possible to
provide automatic formal verification of the accuracy of a numerical
program.
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Automatic verification of order of accuracy

Using symbolic execution and theorem proving techniques, it is possible to
provide automatic formal verification of the accuracy of a numerical
program.

@ Develop a tool

» Extend TASS, a powerful symbolic execution tool
» Operate on the semantics of real numbers

@ Prove relation between code and function

» Bound the truncation error
» Check for bugs
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Automatic verification of order of accuracy

Using symbolic execution and theorem proving techniques, it is possible to
provide automatic formal verification of the accuracy of a numerical
program.

@ Develop a tool

» Extend TASS, a powerful symbolic execution tool
» Operate on the semantics of real numbers

@ Prove relation between code and function

» Bound the truncation error
» Check for bugs

e Automatic (almost)

» Let the computer do similar work to manual proof
> Need annotations
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Annotations

@ Abstract functions

#pragma TASS abstract continuous(3) bound(3) double rho(double x);
@ Derivatives

\D[rho,{x,1}]
@ Quantifiers

forall {int j} aljl == j*j;

forall {int j | 0 <= j && j < n} aljl == j*j;

forall {j=0..n-1} aljl == j*j;

@ Assumptions

#pragma TASS assume x==0.0;
@ Assertions

#pragma TASS assert x==0.0;
e Big-O

\0(h)
@ Uniform

#pragma TASS assert uniform {j=1..n-2} \
result[j]-\D[rho,{x,1}] (j*h) == \0(h"2);
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Annotated code

void differentiate(double h, int m, double[] y, double[] result) {
#pragma TASS abstract continuous(3) bound(3) double rho(double z);
#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-11)/(2%h);

}

result[0] = (y[1]1-y[0])/h;

result[m-1] = (y[m-1]-y[n-21)/h;
#pragma TASS assert uniform {j=1..m=-2} \

result[j]-\D[rho,{z, 1}] (5%n) == \O(h"2);

}
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Symbolic execution

void differentiate(double h, int m, double[] y, double[] result) {
#pragma TASS abstract continuous(3) bound(3) double rho(double z);
#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-11)/(2%h);

}

result[0] = (y[1]1-y[0])/h;

result[m-1] = (y[m-1]-y[m-21)/h;
#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{z,1}] (j*h) == \O(h"2);

}

Variable | Symbolic Value

h X

m Xm

y Xy<(07Xy[0])7""(m_17Xy[Xm_1]))

result | Xyesut()

Path condition: true
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Symbolic execution

void differentiate(double h, int m, double[] y, double[] result) {
#pragma TASS abstract continuous(3) bound(3) double rho(double z);
#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-11)/(2%h);

}

result[0] = (y[1]1-y[0])/h;

result[m-1] = (y[m-1]-y[m-21)/h;
#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{z,1}] (j*h) == \O(h"2);

}

Variable | Symbolic Value

h Xp

m 3

y X,0(0,,[0]), (1, X, [1]), (2. X, [2]))

result | Xyesut()

Path condition: true
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Symbolic execution

void differentiate(double h, int m, double[] y, double[] result) {
#pragma TASS abstract continuous(3) bound(3) double rho(double z);
#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-11)/(2%h);

}

result[0] = (y[1]1-y[0])/h;

result[m-1] = (y[m-1]-y[m-21)/h;
#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{z,1}] (j*h) == \O(h"2);

}

Variable ‘ Symbolic Value

h Xp

m 3

y X,0(0,,[0]), (1, X, [1]), (2. X, [2]))

result | Xyesut()
Path condition: y[0] = p(0) A y[1] = p(h) A y[2] = p(2h)
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Symbolic execution

void differentiate(double h, int m, double[] y, double[] result) {
#pragma TASS abstract continuous(3) bound(3) double rho(double z);
#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-11)/(2%h);

}

result[0] = (y[1]1-y[0])/h;

result[m-1] = (y[m-1]-y[m-21)/h;
#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{z,1}] (j*h) == \O(h"2);

}

Variable ‘ Symbolic Value

h X

m 3

y Xy((0, X, [0]), (1, X, [1]), (2, Xy[2]))

(1,
result Xresult<( (2 % 2(0 ))>
) Ay[l] = p(h) Ay(2] = p(2h)
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Symbolic execution

void differentiate(double h, int m, double[] y, double[] result) {
#pragma TASS abstract continuous(3) bound(3) double rho(double z);
#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-11)/(2%h);

}

result[0] = (y[1]1-y[0])/h;

result[m-1] = (y[m-1]-y[m-21)/h;
#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{z,1}] (j*h) == \O(h"2);

}

Variable ‘ Symbolic Value

h X

m 3

y Xy ((0, Xy [0]), (1, Xy [1]), (2, Xy[2]))
result | Xyequ((0, AL520), (1, 2EH 20N

Path condition: y[0] = p(0) A y[1] = p(h) Ay[2] = p(2h)
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Symbolic execution

void differentiate(double h, int m, double[] y, double[] result) {
#pragma TASS abstract continuous(3) bound(3) double rho(double z);
#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-11)/(2%h);

}

result[0] = (y[1]1-y[0])/h;

result[m-1] = (y[m-1]-y[m-21)/h;
#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{z,1}] (j*h) == \O(h"2);

}

Variable ‘ Symbolic Value

h X

m 3

y Xy((0, Xy[o])7 (1, Xy[l])a (2, Xym))

result | X, esus((0, P(h);P(O) ), (1, P(Qh;;/?(o) ), (2, P(Qh)h—ﬂ(h) )

Path condition: y[0] = p(0) A y[1] = p(h) Ay[2] = p(2h)
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Simplification

result[1]-\D[rho, {x,1}]1(h) == \0(h"2)

p2h) —pl0) - p(h)+ (B + (WA + (€
2h P = 2h
O EVIUVES ViU VT
= (P + 35 (") + (@) 1) - 1)
<Ch?

Zirkel, Rossi, Siegel (University of Delaware)|  Formally Verifying Numerical Accuracy July 14, 2011 25 /27



CV(C3 Interaction

o Input
h, M, xil, xi2, v : REAL;
r, rxl, rx2, rx3: (REAL) -> REAL;
y : ARRAY INT OF REAL;

ASSERT h > O AND M > O;

ASSERT r(2%h) = r(h)+rxl(h)*h+(1/2)*rx2(h)*h*h+(1/6)*rx3(xil)*h*h*h;
ASSERT r(0) = r(h)-rx1(h)*h+(1/2)*rx2(h)*h*h-(1/6)*rx3(xi2) *h*h*h;
ASSERT FORALL (x : REAL): rx3(x)<= M;

ASSERT v = (r(2*h)-r(0))-rx1(h)*2%h;

QUERY v <= (M/3)*h*h*h;

@ Output
Valid.
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Challenges

Specification Verification
@ Mathematical functions @ Value representation
@ Derivatives @ Taylor expansion point
o Differentiability @ Taylor expansion degree
@ Bounded Derivatives @ Theorem proving problems
@ Big-O notation
@ Relationship to program

variables

@ Minimize annotation effort
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