
7/14/11

Continuity Analysis
of Floating Point Software

David Bushnell
TracLabs

david.h.bushnell@nasa.gov

Robust Software Engineering
NASA Ames Research Center

VVFCS element
SSAT Project

NASA Aviation Safety Program

7/14/11

Continuity:

Small changes have small effects!

Software Continuity:
What is it? Why is it Important?

7/14/11

Software Continuity:
What is it? Why is it Important?

Continuity:

Small changes have small effects!

“... unlike physical systems,
 software is not continuous;
 small changes can cause
 large failures ...”

Peter Wegner, 1979

7/14/11

|oldLongitude - newLongitude|
 > 1.0 degree

?

Update position
Crash

all
computers

F22 Raptor
Crossing International Date Line

February 11, 2007

YesNo

Continuity:

Small changes have small effects!

“... unlike physical systems,
 software is not continuous;
 small changes can cause
 large failures ...”

Peter Wegner, 1979

Software Continuity:
What is it? Why is it Important?

7/14/11

Problem Statement

double f(double x) {

 if (x < 0.0)

 return 0.0;

 else

 return cos(x);

}

7/14/11

Problem Statement

double f(double x) {

 if (x < 0.0)

 return 0.0;

 else

 return cos(x);

}

Where does the software's
control structure cause f(x)
to be discontinuous?

How to generate test cases near
the discontinuities?

7/14/11

Approach

Symbolic Execution

+

Boundary Analysis

PC: true
x := $X
y := $Y

PC: true
$X < $Y ?

PC: ($X ≥ $Y)
z := $X - $Y

PC: ($X < $Y)
return $Y - $X

PC: ($X < $Y)
z := $Y - $X

PC: ($X ≥ $Y)
return $X - $Y

true
false

∂(PC1,PC3): (x == y) & (y ≤ 10)

∂(PC1,PC2): (x ≤ y) & (y == 10)

∂(PC2,PC3): (x == y) & (y ≥ 10)

7/14/11

Concrete Execution for Testing

double g(double x, y) {

 double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

x := -5.3
y := 3.2

7/14/11

Concrete Execution for Testing

double g(double x, y) {

 double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

x := -5.3
y := 3.2

x < y ?

7/14/11

Concrete Execution for Testing

double g(double x, y) {

 double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

x := -5.3
y := 3.2

x < y ?

z := 3.2 - (-5.3)

true

7/14/11

Concrete Execution for Testing

double g(double x, y) {

 double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

x := -5.3
y := 3.2

x < y ?

return 8.5

z := 3.2 - (-5.3)

true

7/14/11

Concrete Execution for Testing

double g(double x, y) {

 double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

x := -5.3
y := 3.2

-5.3 < 3.2 ?

NOT EXECUTED

return 8.5

z := 3.2 - (-5.3)

true

false

7/14/11

Symbolic Execution

double g(double x, y) {

double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

PC: true
x := $X
y := $Y

PC (Path Condition): true
x := $X
y := $Y

7/14/11

Symbolic Execution

double g(double x, y) {

double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

PC: true
x := $X
y := $Y

PC: true
$X < $Y ?

PC (Path Condition): true
x := $X
y := $Y

7/14/11

Symbolic Execution

double g(double x, y) {

double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

PC: true
x := $X
y := $Y

PC: true
$X < $Y ?

PC2: ($X ≥ $Y)

PC1: ($X < $Y)

true false

PC (Path Condition): true
x := $X
y := $Y

7/14/11

Symbolic Execution

double g(double x, y) {

double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

PC: true
x := $X
y := $Y

PC: true
$X < $Y ?

PC2: ($X ≥ $Y)

PC1: ($X < $Y)

PC1: ($X < $Y)

PC2: ($X ≥ $Y)

true false

PC (Path Condition): true
x := $X
y := $Y

7/14/11

Symbolic Execution

double g(double x, y) {

double z;

 if (x < y)

 z = y-x;

 else

 z = x-y;

 return z;

}

PC: true
x := $X
y := $Y

PC: true
$X < $Y ?

PC2: ($X ≥ $Y)

PC1: ($X < $Y)

PC1: ($X < $Y)

PC2: ($X ≥ $Y)

true false

PC (Path Condition): true
x := $X
y := $Y

Solve PC1
$X=5.0 $Y=10.0

Solve PC2
$X=1.5 $Y=0.0

7/14/11

Java Pathfinder: JPF

 General purpose Java verification tool
 Software model checking (concurrency bugs: deadlock, race

conditions)

 UML statechart verification

 Floating point overflow/underflow/catastrophic cancelation

 Symbolic execution (test case generation)

 Many more ...

 Developed at NASA/Ames
 Started in 1999, work continues to this day

 Recognized by numerous awards from both NASA and the verification
community

 Open source since 2005

7/14/11

Symbolic Pathfinder: SPF

Symbolic Pathfinder:
Extends JPF for symbolic execution

Supports booleans, integers, floating point, complex data
structures, strings

Supports many constraint solvers:
- Coral
 High performance non-linear floating point
 constraint solver

 - Choco
 Solver for linear/non-linear, integer/floating point
 constraints, mixed constraints

 - CVC3
 Solver for integer/real linear constraints

7/14/11

Discontinuities

Discontinuities come in many forms,
including:

 Non-convergence: y =

 Blackbox: y = step(x)

 Physical discontinuities in the model
e.g. shockwaves:

−∑
1

∞ (1−x)n

n

7/14/11

Discontinuities

We analyze discontinuities of another type:
Those that arise from the structure of the software

if (x < 0)
 return 0.0
else
 return cos(x);

7/14/11

Terminology

Path Condition: Boolean expression in symbolic inputs
specifying a single execution path through the software.

Written as PC, PC1, PC2, ...

All inputs satisfying a given path condition force the same
execution path.

Example: PC1: (x>0.0)ᴧ(x+y<z)

7/14/11

Terminology

Boundary between path conditions PC1 and PC2:
The set of input values at which the software changes from
the execution path for PC1 to the path for PC2.

Written as ∂(PC1,PC2)

Example:
 if PC1:(x > y) and PC2:(x ≤ y)
 then ∂(PC1,PC2): (x = y)

7/14/11

Terminology

Path Function: The function computed by all inputs satisfying
a single path condition.

Example: if (x < 0)
 return 0.0
else
 return cos(x);

 For PC1: (x < 0)
 PF1: 0.0

For PC2: (x ≥ 0)
 PF2: cos(x)

7/14/11

Terminology

Discontinuity Condition: Boolean expression in symbolic
inputs specifying a region where the function computed by
the software is discontinuous.

Written as DC, DC1, ...

We are interested in discontinuity conditions associated with
the software's control structures.

7/14/11

Calculating Boundaries of Path Conditions

First:
Calculate the closure of a relation.

For the floating point relations
 {<, ≤, =, ≠, ≥, >}

define the closure of the relation as in the table:

Example:
The region defined by (x < y) is:
Its closure is (x ≤ y):

Relation Closure

F < G F ≤ G

F ≤ G F ≤ G

F = G F = G

F ≠ G true

F ≥ G F ≥ G

F > G F ≥ G

Border included

Border missing

7/14/11

Calculating Boundaries of Path Conditions

Second:
Define the closure of a path condition:

Given a path condition PC

where R1, R2, ... are primitive relations.

Its closure is written PC or cl(PC)
and is given by

PC=R1∧R2∧…

PC=R1∧R2∧…

7/14/11

Calculating Boundaries of Path Conditions

Finally:
Define the boundary between two path
conditions PC1 and PC2 as:

∂(PC1 , PC2)=PC1∧PC2

7/14/11

Example: Boundaries

double step2(double x, double y)
if (x < y)
 return 0.0;
else
 return 1.0;

Path Conditions: PC1:(x < y) PC2:(x ≥ y)

Boundary:

PC1: PC2: ≡ (x=y)

∂(PC1 , PC2)≡PC1∧PC2
.≡(x⩽ y)∧(x⩾y)

≡(x= y)

∧

7/14/11

Discontinuity Conditions
From Control Structures

How can the output be discontinuous when control switches
from one execution path to another?

Answer: when the values computed along Path 1(PC1) do
not match the values computed along Path 2(PC2) at the
crossover

7/14/11

Discontinuity Conditions
From Control Structures

Crossover happens at the boundary between Path 1 and Path 2

The values computed are the path functions PF1 and PF2

So when control switches from Path 1 to Path 2, the software will
be discontinuous at all points satisfying:

∂(PC1 , PC2)∧(PF1≠PF2)

PC1/PF1

PC2/PF2

∂(PC1,PC2)

PF1 ≠ PF2

7/14/11

Example: Discontinuity Conditions

double sa(double x, double y)
if (x < y)
if (y < 10)
 return x+y;
else
 return x+10;
else
 return x-y;

PC1: (x < y) Λ (y < 10)
PF1: (x+y)

PC2: (x < y) Λ (y ≥ 10)
PF2: (x+10)

PC3: (x ≥ y)
PF3: (x-y)

Path Condition Path Function
PC1: (x<y) Λ (y<10) x + y

PC2: (x<y) Λ (y≥10) x + 10

PC3: (x≥y) x - y

7/14/11

Example: Discontinuity Conditions

double sa(double x, double y)
if (x < y)
if (y < 10)
 return x+y;
else
 return x+10;
else
 return x-y;

∂(PC1,PC3): (x = y) Λ (y ≤ 10)

∂(PC1,PC2): (x ≤ y) Λ (y = 10)

∂(PC2,PC3): (x = y) Λ (y ≥ 10)

PCa
PCb

∂(PCa,PCb) =
cl(PCa) Λ cl(PCb)

PC1: (x<y) Λ (y<10)
PC2: (x<y) Λ (y≥10)

(x≤y) Λ (y=10)

PC1: (z<y) Λ (y<10)
PC3: (x≥y)

(x=y) Λ (y≤10)

PC2: (x<y) Λ (y≥10)
PC3: (x≥y)

(x=y) Λ (y≥10)

7/14/11

Example: Discontinuity Conditions

double sa(double x, double y)
if (x < y)
if (y < 10)
 return x+y;
else
 return x+10;
else
 return x-y;

PF1: x+y

(x=y) Λ (y≤10)
Except (0,0)

PF2: x+10

No discontinuities

(x=y) Λ (y≥10)

PF3: x-y

PCa
PCb ∂(PCa,PCb) Λ (PFa ≠ PFb)

PC1: (x < y) Λ (y < 10)
PC2: (x < y) Λ (y ≥ 10)

(x ≤ y) Λ (y = 10) Λ (x + y ≠ x + 10)
 ≡ (x ≤ y) Λ (y = 10) Λ (y ≠ 10)
 ≡ false

PC1: (x < y) Λ (y < 10)
PC3: (x ≥ y)

(x = y) Λ (y ≤ 10) Λ (x + y ≠ x - y)
 ≡ (x = y) Λ (y ≤ 10) Λ (y ≠ 0)

PC2: (x < y) Λ (y ≥ 10)
PC3: (x ≥ y)

(x = y) Λ (y ≥ 10) Λ (x + 10 ≠ x - y)
 ≡ (x = y) Λ (y ≥ 10)

7/14/11

Status

Implemented on top of Symbolic Path Finder:
 Open source JPF extension: jpf-continuity
 Computes boundaries between path conditions
 Computes constraints along borders:

 Discontinuity
 Continuity

 Integrated with Coral constraint solver
 Can solve highly non-linear floating point

constraints

 Computes symbolic derivatives of path
functions

7/14/11

Status

Demonstrated automatic generation of
test cases at border discontinuities

 Applied to selected code from
TSAFE
(Tactical Separation Assisted Flight
Environment)

 Automatically generates test cases
demonstrating discontinuities along
path condition borders

Diagram from: H. Erzberger, 2009

7/14/11

Beyond Discontinuity Analysis

Robustness:
 Where along the border are the path

functions “extremely discontinuous”?
Discontinuous: PF1≠PF2
Non-Robust: |PF1-PF2|>ε

Global border behavior:
 How bad do the discontinuities get?
 How badly to the continuous points

behave?

7/14/11

Beyond Discontinuity Analysis

 Compositional Analysis
 If f(x1,...,xn) = h(g(x1,...,xn)) and we know the

discontinuities of h() and g(), what are the
discontinuities of f()?

 Guided Test Generation
 How to verify regions for safe execution of code?

 Polynomial Approximation
 Useful when finding min, max, zeros:

 Approximate with low-degree polynomials
 Need to know discontinuities

7/14/11

Availability

JPF (Java Path Finder), SPF (Symbolic Path Finder), and jpf-
continuity are all open source software

They are available for download at
 JPF: http://babelfish.arc.nasa.gov/trac/jpf/
 SPF: http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
 jpf-continuity: https://jpfcontinuity@bitbucket.org/jpfcontinuity/jpf-

continuity

7/14/11

Acknowledgments

Thanks to Saswat Anand (Georgia Tech) for discussions and
clarifications

Thanks to Misty Davies, Dimitra Giannakopoulou, Michael
Lowry, Corina Pasareanu, and Neha Rungta (NASA Ames
Robust Software Engineering group) for critiques and
suggestions.

7/14/11

References

“Continuity analysis of programs”, Chaudhuri, S., Gulwani, S., Lublinerman, R., POPL,
2010

“Symbolic robustness analysis”, R. Majumdar and I. Saha. Real-Time Systems
Symposium, IEEE International, 0:355–363, 2009

“Continuity in Software Systems”, Hamlet, D., ISSTA, 2002

“Generalized Symbolic Execution for Model Checking and Testing”, Khushid, S.,
Pasareanu, C., Visser, W., Proceedings of the 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2003.

“Symbolic Execution and Program Testing”, King, J.C., Commu- nications of the ACM,
vol. 19(7), pp. 385–394, 1976.

“Separation Assurance in the Future Air Traffic System”, Erzberger, H., ENRI
International Workshop on ATM/CNS, 2009

7/14/11

 Questions?

