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Continuity:

Small changes have small effects!

Software Continuity:
What is it?  Why is it Important?
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Software Continuity:
What is it?  Why is it Important?

Continuity:

Small changes have small effects!

“... unlike physical systems,
 software is not continuous;
 small changes can cause
 large failures ...”

Peter Wegner, 1979
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|oldLongitude - newLongitude|
 > 1.0 degree

?

Update position
Crash

all
computers

F22 Raptor
Crossing International Date Line

February 11, 2007

YesNo

Continuity:

Small changes have small effects!

“... unlike physical systems,
 software is not continuous;
 small changes can cause
 large failures ...”

Peter Wegner, 1979

Software Continuity:
What is it?  Why is it Important?
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Problem Statement

double f(double x) {

  if (x < 0.0)

    return 0.0;

  else

    return cos(x);

}
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Problem Statement

double f(double x) {

  if (x < 0.0)

    return 0.0;

  else

    return cos(x);

}

Where does the software's 
control structure cause f(x) 
to be discontinuous?

How to generate test cases near 
the discontinuities?
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Approach

Symbolic Execution

 

+

 

Boundary Analysis

PC: true
x := $X
y := $Y 

PC: true
$X < $Y   ? 

PC: ($X ≥ $Y)
z := $X - $Y

PC: ($X < $Y)
return $Y - $X 

PC: ($X < $Y)
z := $Y - $X 

PC: ($X ≥ $Y)
return $X - $Y

true
false

∂(PC1,PC3): (x == y) & (y ≤ 10)

∂(PC1,PC2): (x ≤ y) & (y == 10)

∂(PC2,PC3): (x == y) & (y ≥ 10)
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Concrete Execution for Testing

double g(double x, y) {

  double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

x := -5.3
y := 3.2
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Concrete Execution for Testing

double g(double x, y) {

  double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

x := -5.3
y := 3.2

x < y   ? 
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Concrete Execution for Testing

double g(double x, y) {

  double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

x := -5.3
y := 3.2

x < y   ? 

z := 3.2 - (-5.3) 

true
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Concrete Execution for Testing

double g(double x, y) {

  double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

x := -5.3
y := 3.2

x < y   ? 

return 8.5 

z := 3.2 - (-5.3) 

true
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Concrete Execution for Testing

double g(double x, y) {

  double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

x := -5.3
y := 3.2

-5.3 < 3.2   ? 

NOT EXECUTED

return 8.5 

z := 3.2 - (-5.3) 

true

false
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Symbolic Execution

double g(double x, y) {

double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

PC: true
x := $X
y := $Y 

PC (Path Condition):  true
x := $X
y := $Y 
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Symbolic Execution

double g(double x, y) {

double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

PC: true
x := $X
y := $Y 

PC: true
$X < $Y   ? 

PC (Path Condition):  true
x := $X
y := $Y 
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Symbolic Execution

double g(double x, y) {

double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

PC: true
x := $X
y := $Y 

PC: true
$X < $Y   ? 

PC2: ($X ≥ $Y)

PC1: ($X < $Y) 

true false

PC (Path Condition):  true
x := $X
y := $Y 
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Symbolic Execution

double g(double x, y) {

double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

PC: true
x := $X
y := $Y 

PC: true
$X < $Y   ? 

PC2: ($X ≥ $Y)

PC1: ($X < $Y)

PC1: ($X < $Y) 

PC2: ($X ≥ $Y)

true false

PC (Path Condition):  true
x := $X
y := $Y 
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Symbolic Execution

double g(double x, y) {

double z;

  if (x < y)

    z = y-x;

  else

    z = x-y;

  return z;

}

PC: true
x := $X
y := $Y 

PC: true
$X < $Y   ? 

PC2: ($X ≥ $Y)

PC1: ($X < $Y)

PC1: ($X < $Y) 

PC2: ($X ≥ $Y)

true false

PC (Path Condition):  true
x := $X
y := $Y 

Solve PC1
$X=5.0    $Y=10.0

Solve PC2
$X=1.5    $Y=0.0
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Java Pathfinder: JPF

  General purpose Java verification tool
 Software model checking (concurrency bugs: deadlock, race 

conditions)

 UML statechart verification

 Floating point overflow/underflow/catastrophic cancelation

 Symbolic execution (test case generation)

 Many more ...

  Developed at NASA/Ames
 Started in 1999, work continues to this day

 Recognized by numerous awards from both NASA and the verification 
community

 Open source since 2005
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Symbolic Pathfinder: SPF

Symbolic Pathfinder:
Extends JPF for symbolic execution

Supports booleans, integers, floating point, complex data 
structures, strings

Supports many constraint solvers:
- Coral
   High performance non-linear floating point
   constraint solver

        - Choco
   Solver for linear/non-linear, integer/floating point 
   constraints, mixed constraints

        - CVC3
   Solver for integer/real linear constraints
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Discontinuities

Discontinuities come in many forms, 
including:

 Non-convergence: y = 

 Blackbox:  y = step(x)

 Physical discontinuities in the model
e.g. shockwaves:

−∑
1

∞ (1−x)n

n
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Discontinuities

We analyze discontinuities of another type:
Those that arise from the structure of the software

if (x < 0)
  return 0.0
else
  return cos(x);
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Terminology

Path Condition: Boolean expression in symbolic inputs 
specifying a single execution path through the software.

Written as   PC, PC1, PC2, ...

All inputs satisfying a given path condition force the same 
execution path.

Example:    PC1: (x>0.0)ᴧ(x+y<z) 
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Terminology

Boundary between path conditions PC1 and PC2: 
The set of input values at which the software changes from 
the execution path for PC1 to the path for PC2.

Written as  ∂(PC1,PC2)

Example:
    if   PC1:(x > y)   and   PC2:(x ≤ y)
    then   ∂(PC1,PC2): (x = y)
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Terminology

Path Function: The function computed by all inputs satisfying 
a single path condition.

Example:   if (x < 0)
 return 0.0
else
 return cos(x);

       For  PC1: (x < 0)
  PF1: 0.0

For  PC2: (x ≥ 0)
  PF2: cos(x)
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Terminology

Discontinuity Condition: Boolean expression in symbolic 
inputs specifying a region where the function computed by 
the software is discontinuous.

Written as DC, DC1, ...

We are interested in discontinuity conditions associated with 
the software's control structures.
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Calculating Boundaries of Path Conditions   

First: 
Calculate the closure of a relation.

For the floating point relations
 {<, ≤, =, ≠, ≥, >}

define the closure of the relation as in the table:

Example:
The region defined by (x < y) is:
Its closure is (x ≤ y):

Relation Closure

F < G F ≤ G

F ≤ G F ≤ G

F = G F = G

F ≠ G true

F ≥ G F ≥ G

F > G F ≥ G

Border included

Border missing
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Calculating Boundaries of Path Conditions   

Second: 
Define the closure of a path condition:

Given a path condition PC

where R1, R2, ... are primitive relations.

Its closure is written PC or cl(PC)
and is given by

PC=R1∧R2∧…

PC=R1∧R2∧…
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Calculating Boundaries of Path Conditions   

Finally: 
Define the boundary between two path 
conditions PC1 and PC2 as:
           

∂(PC1 , PC2)=PC1∧PC2
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Example: Boundaries

double step2(double x, double y)
if (x < y)
 return 0.0;
else
 return 1.0;

Path Conditions: PC1:(x < y) PC2:(x ≥ y)

Boundary:

PC1:                       PC2:                      ≡ (x=y)

∂(PC1 , PC2)≡PC1∧PC2
.≡(x⩽ y)∧(x⩾y)

≡(x= y)

∧
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Discontinuity Conditions
From Control Structures

How can the output be discontinuous when control switches 
from one execution path to another?

Answer: when the values computed along Path 1(PC1) do 
not match the values computed along Path 2(PC2) at the 
crossover
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Discontinuity Conditions
From Control Structures

Crossover happens at the boundary between Path 1 and Path 2

The values computed are the path functions PF1 and PF2

So when control switches from Path 1 to Path 2, the software will 
be discontinuous at all points satisfying:

∂(PC1 , PC2)∧(PF1≠PF2 )

PC1/PF1

PC2/PF2

∂(PC1,PC2)

PF1 ≠ PF2
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Example: Discontinuity Conditions

double sa(double x, double y)
if (x < y)
if (y < 10)
 return x+y;
else
 return x+10;
else
 return x-y;

PC1: (x < y) Λ (y < 10) 
PF1: (x+y)

PC2:  (x < y) Λ (y ≥ 10)
PF2:  (x+10)

PC3:  (x ≥ y)
PF3:  (x-y)

Path Condition Path Function
PC1: (x<y) Λ (y<10) x + y

PC2: (x<y) Λ (y≥10) x + 10

PC3: (x≥y) x - y
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Example: Discontinuity Conditions

double sa(double x, double y)
if (x < y)
if (y < 10)
 return x+y;
else
 return x+10;
else
 return x-y;

∂(PC1,PC3): (x = y) Λ (y ≤ 10)

∂(PC1,PC2): (x ≤ y) Λ (y = 10)

∂(PC2,PC3): (x = y) Λ (y ≥ 10)

PCa
PCb

∂(PCa,PCb) =
cl(PCa)  Λ cl(PCb)

PC1: (x<y) Λ (y<10)
PC2: (x<y) Λ (y≥10)

(x≤y) Λ (y=10)

PC1: (z<y) Λ (y<10)
PC3: (x≥y)

(x=y) Λ (y≤10)

PC2: (x<y) Λ (y≥10)
PC3: (x≥y)

(x=y) Λ (y≥10)
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Example: Discontinuity Conditions

double sa(double x, double y)
if (x < y)
if (y < 10)
 return x+y;
else
 return x+10;
else
 return x-y;

PF1:  x+y

(x=y) Λ (y≤10)
Except (0,0)

PF2:  x+10

No discontinuities

(x=y) Λ (y≥10)

PF3:  x-y

PCa
PCb ∂(PCa,PCb) Λ (PFa ≠ PFb)

PC1:  (x < y) Λ (y < 10)
PC2:  (x < y) Λ (y ≥ 10)

(x ≤ y) Λ (y = 10) Λ (x + y ≠ x + 10)
    ≡ (x ≤ y) Λ (y = 10) Λ (y ≠ 10)
    ≡ false

PC1:  (x < y) Λ (y < 10)
PC3:  (x ≥ y)

(x = y) Λ (y ≤ 10) Λ (x + y ≠ x - y)
    ≡ (x = y) Λ (y ≤ 10) Λ (y ≠ 0)

PC2:  (x < y) Λ (y ≥ 10)
PC3:  (x ≥ y)

(x = y) Λ (y ≥ 10) Λ (x + 10 ≠ x - y)
    ≡ (x = y) Λ (y ≥ 10)
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Status

Implemented on top of Symbolic Path Finder:
 Open source JPF extension: jpf-continuity
 Computes boundaries between path conditions
 Computes constraints along borders:

 Discontinuity 
 Continuity

 Integrated with Coral constraint solver
 Can solve highly non-linear floating point 

constraints

 Computes symbolic derivatives of path 
functions
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Status

Demonstrated automatic generation of 
test cases at border discontinuities

 Applied to selected code from 
TSAFE 
(Tactical Separation Assisted Flight 
Environment)

 Automatically generates test cases 
demonstrating discontinuities along 
path condition borders

Diagram from: H. Erzberger, 2009
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Beyond Discontinuity Analysis

Robustness:
 Where along the border are the path 

functions “extremely discontinuous”?
Discontinuous:   PF1≠PF2
Non-Robust:      |PF1-PF2|>ε

Global border behavior:
 How bad do the discontinuities get?
 How badly to the continuous points 

behave?
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Beyond Discontinuity Analysis

 Compositional Analysis
 If f(x1,...,xn) = h(g(x1,...,xn)) and we know the 

discontinuities of h() and g(), what are the 
discontinuities of f()?

 Guided Test Generation
 How to verify regions for safe execution of code?  

 Polynomial Approximation
 Useful when finding min, max, zeros:

 Approximate with low-degree polynomials
 Need to know discontinuities
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Availability

JPF (Java Path Finder), SPF (Symbolic Path Finder), and jpf-
continuity are all open source software

They are available for download at
 JPF: http://babelfish.arc.nasa.gov/trac/jpf/
 SPF: http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
 jpf-continuity: https://jpfcontinuity@bitbucket.org/jpfcontinuity/jpf-

continuity
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 Questions?


