Quillen Model Categories Model

Martin-Löf Type Theory with Identity Types

Samuel Mimram

CEA
Séminaire MeASI au CIRM

Disclaimer

Ideas are not from me (Awodey \& Warren, Voevodsky, ...), errors are mine.

λ-calculus

- Introduction rule:

$$
\frac{\Gamma, x: A \vdash f: B}{\Gamma \vdash \lambda x \cdot f: A \rightarrow B}
$$

λ-calculus

- Introduction rule:

$$
\frac{\Gamma, x: A \vdash f: B}{\Gamma \vdash \lambda x \cdot f: A \rightarrow B}
$$

- Elimination rule:

$$
\frac{\Gamma \vdash f: A \rightarrow B \quad \Gamma \vdash g: A}{\Gamma \vdash f g: B}
$$

λ-calculus

- Introduction rule:

$$
\frac{\Gamma, x: A \vdash f: B}{\Gamma \vdash \lambda x \cdot f: A \rightarrow B}
$$

- Elimination rule:

$$
\frac{\Gamma \vdash f: A \rightarrow B \quad \Gamma \vdash g: A}{\Gamma \vdash f g: B}
$$

- Conversion rule:

$$
\frac{\Gamma, x: A \vdash f: B \quad \Gamma \vdash g: A}{\Gamma \vdash(\lambda x . f) g=f[g / x]: B}
$$

Now with dependent types.

Dependent types

Array.make : int -> array

Dependent types

$$
\text { Array.make : } n \text { :int }->n \text { array }
$$

Dependent types

$$
\text { Array.make : } \quad \Pi_{n: \text { int }} \cdot \operatorname{array}(n)
$$

Dependent types

$$
\text { Array.make : } \quad \Pi_{n: \text { int }} \cdot \operatorname{array}(n)
$$

- Type formation rule:

$$
\frac{\vdash n: \text { int }}{\vdash \operatorname{array}(n): \text { type }}
$$

Dependent types

$$
\text { Array.make : } \quad \Pi_{n: \text { int }} \cdot \operatorname{array}(n)
$$

- Type formation rule:

$$
\frac{\vdash n: \text { int }}{\vdash \operatorname{array}(n): \text { type }}
$$

- Introduction rules:

Products (and sums)

- Type formation rule:

$$
\frac{x: A \vdash B(x): \text { type }}{\vdash \Pi_{x: A} \cdot B(x): \text { type }}
$$

Products (and sums)

- Type formation rule:

$$
\frac{x: A \vdash B(x): \text { type }}{\vdash \Pi_{x: A} \cdot B(x): \text { type }}
$$

- Introduction rule:

$$
\frac{x: A \vdash f(x): B(x)}{\vdash \lambda_{x: A} \cdot f(x): \Pi_{x: A} \cdot B(x)}
$$

Products (and sums)

- Type formation rule:

$$
\frac{x: A \vdash B(x): \text { type }}{\vdash \Pi_{x: A} \cdot B(x): \text { type }}
$$

- Introduction rule:

$$
\frac{x: A \vdash f(x): B(x)}{\vdash \lambda_{x: A} \cdot f(x): \Pi_{x: A} \cdot B(x)}
$$

- Elimination rule:

$$
\frac{\vdash g: \Pi_{x: A} \cdot B(x) \quad \vdash x: A}{\vdash g a: B(a)}
$$

Products (and sums)

- Type formation rule:

$$
\frac{x: A \vdash B(x): \text { type }}{\vdash \Pi_{x: A} \cdot B(x): \text { type }}
$$

- Introduction rule:

$$
\frac{x: A \vdash f(x): B(x)}{\vdash \lambda_{x: A} \cdot f(x): \Pi_{x: A} \cdot B(x)}
$$

- Elimination rule:

$$
\frac{\vdash g: \Pi_{x: A} \cdot B(x) \quad \vdash x: A}{\vdash g a: B(a)}
$$

- Conversion rule:

$$
\frac{x: A \vdash f(x): B(x) \quad \vdash a: A}{\vdash\left(\lambda_{x: A} \cdot f(x)\right) a=f(a): B(a)}
$$

Remark

The usual arrow type $A \rightarrow B$ is recovered as

$$
\Pi_{x: A} \cdot B
$$

where x does not occur in B.

Identity types

- Type formation rule:

$$
\frac{\vdash a: A \quad \vdash b: A}{\vdash \operatorname{Id}_{A}(a, b): \text { type }}
$$

Identity types

- Type formation rule:

$$
\frac{\vdash a: A \quad \vdash b: A}{\vdash \operatorname{ld}_{A}(a, b): \text { type }}
$$

- Introduction rule:

$$
\frac{\vdash a: A}{\vdash r_{A}(a): \operatorname{ld}_{A}(a, a)}
$$

Identity types

- Type formation rule:

$$
\frac{\vdash a: A \quad \vdash b: A}{\vdash \operatorname{Id}_{A}(a, b): \text { type }}
$$

- Introduction rule:

$$
\frac{\vdash a: A}{\vdash r_{A}(a): \operatorname{ld}_{A}(a, a)}
$$

- Elimination rule:

$$
\begin{aligned}
& x: A, y: A, z: \operatorname{ld}_{A}(x, y) \vdash D(x, y, z): \text { type } \\
& \vdash p: \operatorname{Id}_{A}(a, b) \quad x: A \vdash d(x): D\left(x, x, r_{A}(x)\right) \\
& \vdash \vdash J_{A, D}(d, a, b, p): D(a, b, p)
\end{aligned}
$$

Identity types

- Type formation rule:

$$
\frac{\vdash a: A \quad \vdash b: A}{\vdash \operatorname{Id}_{A}(a, b): \text { type }}
$$

- Introduction rule:

$$
\frac{\vdash a: A}{\vdash r_{A}(a): \operatorname{ld}_{A}(a, a)}
$$

- Elimination rule:

$$
\begin{aligned}
& x: A, y: A, z: \operatorname{Id}_{A}(x, y) \vdash D(x, y, z): \text { type } \\
& \vdash p: \operatorname{Id}_{A}(a, b) \quad x: A \vdash d(x): D\left(x, x, r_{A}(x)\right) \\
& \vdash \vdash J_{A, D}(d, a, b, p): D(a, b, p)
\end{aligned}
$$

- Conversion rule:

$$
\begin{aligned}
& x: A, y: A, z: \operatorname{ld}_{A}(x, y) \vdash D(x, y, z): \text { type } \\
& \frac{\vdash a: A \quad x: A \vdash d(x): D\left(x, x, r_{A}(x)\right)}{\vdash J_{A, D}\left(d, a, a, r_{A}(a)\right)=d(a): D\left(a, a, r_{A}(a)\right)}
\end{aligned}
$$

Categories

A category \mathcal{C} consists of

- objects: $\mathrm{Ob}(\mathcal{C})$
- morphisms: $\forall A, B \in \operatorname{Ob}(\mathcal{C}), \quad \operatorname{Hom}(A, B)$
- compositions:

$$
\frac{f: A \rightarrow B \quad g: B \rightarrow C}{g \circ f: A \rightarrow C}
$$

- identities:

$$
\forall A \in \mathrm{Ob}(\mathcal{C}), \quad \mathrm{id}_{A}: A \rightarrow A
$$

such that

- composition is associative:

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

- admits identities as neutral elements

$$
\text { id } \circ f=f=f \circ \text { id }
$$

The category Set

The category Set has

- objects: sets
- morphisms: functions $f: A \rightarrow B$
- with usual composition and identities

Modeling programming languages

From a programming language, we can build a category Π whose

- objects: types
- morphisms: programs $\pi: A \rightarrow B$ modulo cut-elimination
- composition: usual composition of programs

Modeling programming languages

From a programming language, we can build a category Π whose

- objects: types
- morphisms: programs $\pi: A \rightarrow B$ modulo cut-elimination
- composition: usual composition of programs

Definition

A model of the programming language is a functor

$$
F: \Pi \rightarrow \mathcal{C}
$$

Models of simply typed λ-calculus

Take the category with

- objects: types

$$
A \quad::=\quad X|A \Rightarrow B| A \times B
$$

- morphisms $A \rightarrow B: \lambda$-terms $f: A \Rightarrow B$

Models of simply typed λ-calculus

Take the category with

- objects: types

$$
A \quad::=\quad X|A \Rightarrow B| A \times B
$$

- morphisms $A \rightarrow B: \lambda$-terms $f: A \Rightarrow B$

Example:

$$
\lambda x \cdot \lambda y \cdot x: A \rightarrow(B \Rightarrow A)
$$

Models of simply typed λ-calculus

Take the category with

- objects: types

$$
A \quad::=\quad X|A \Rightarrow B| A \times B
$$

- morphisms $A \rightarrow B: \lambda$-terms $f: A \Rightarrow B$

Exercise: give a model of this language into Set.

Models of simply typed λ-calculus

Take the category with

- objects: types

$$
A \quad::=\quad X|A \Rightarrow B| A \times B
$$

- morphisms $A \rightarrow B: \lambda$-terms $f: A \Rightarrow B$

More generally, it can be modeled in any cartesian closed category.

Cartesian closed categories

Definition
A cartesian closed category is a category which has

- products:

$$
\forall f: A \rightarrow B, g: A \rightarrow C
$$

Cartesian closed categories

Definition
A cartesian closed category is a category which has

- products:

$$
\forall f: A \rightarrow B, g: A \rightarrow C
$$

- a terminal object 1 :
$\forall A, \quad A \cdots>1$

Cartesian closed categories

Definition
A cartesian closed category is a category which has

- products:

$$
\forall f: A \rightarrow B, g: A \rightarrow C
$$

- a terminal object 1 :

$$
\forall A, \quad A \cdots \cdots>1
$$

- which is closed:

$$
\frac{A \times B \rightarrow C}{A \rightarrow(B \Rightarrow C)}
$$

A model of Martin-Löf type theory

The traditional models of Martin-Löf type theory are given by
Definition
A locally cartesian closed category is a category \mathcal{C} in which for every object A the slice category \mathcal{C} / A is cartesian closed.

A model of Martin-Löf type theory

The traditional models of Martin-Löf type theory are given by
Definition
A locally cartesian closed category is a category \mathcal{C} in which for every object A the slice category \mathcal{C} / A is cartesian closed.

Theorem
An LCCC is a category with pullbacks in which for every $f: A \rightarrow B$, the base change functor $f^{*}: \mathcal{C} / B \rightarrow \mathcal{C} / A$ has a right adjoint $\Pi_{f}: \mathcal{C} / A \rightarrow \mathcal{C} / B$.

A model of Martin-Löf type theory

The traditional models of Martin-Löf type theory are given by
Definition
A locally cartesian closed category is a category \mathcal{C} in which for every object A the slice category \mathcal{C} / A is cartesian closed.

Theorem
An LCCC is a category with pullbacks in which for every $f: A \rightarrow B$, the base change functor $f^{*}: \mathcal{C} / B \rightarrow \mathcal{C} / A$ has a right adjoint $\Pi_{f}: \mathcal{C} / A \rightarrow \mathcal{C} / B$.

Example

$$
\frac{\Gamma, x: A \vdash B(x): \text { type }}{\Gamma \vdash \Pi_{x: A} \cdot B(x): \text { type }}
$$

Problem

Every LCCC is also a model of MLTT with the rule of extensionality:

$$
\frac{\vdash p: \operatorname{Id}_{A}(a, b)}{\vdash a=b: A}
$$

...and type checking is indecidable in extensional MLTT!

Half of the title

We explain here that Quillen model categories model identity types in Martin-Löf type theory:

$$
F: \mathcal{M} \rightarrow \mathcal{Q}
$$

Which provides non-extensional models.

Half of the title

We explain here that Quillen model categories model identity types in Martin-Löf type theory:

$$
F: \mathcal{M} \rightarrow \mathcal{Q}
$$

Which provides non-extensional models.

The idea here is that identity types behave like homotopies between topological spaces.

Homotopy

A homotopy between two continuous functions $f, g: A \rightarrow B$ between topological spaces A and B is a continuous function

$$
h: I \times A \rightarrow B
$$

where $I=[0,1]$ such that $h(0, x)=f(x)$ and $h(1, x)=g(x)$.

Homotopy

A homotopy between two continuous functions $f, g: A \rightarrow B$ between topological spaces A and B is a continuous function

$$
h: I \times A \rightarrow B
$$

where $I=[0,1]$ such that $h(0, x)=f(x)$ and $h(1, x)=g(x)$.

Two spaces A and B are homotopy equivalent when there exists maps $f: A \rightarrow B$ and $g: B \rightarrow A$ such that

$$
g \circ f \sim \operatorname{id}_{A} \quad f \circ g \sim \operatorname{id}_{B}
$$

Ex: square \approx circle, coffee mug \approx donut, etc.

Homotopies

Suppose given a topological space T.

- A path in T is a continuous function $\pi: I \rightarrow T$, where $I=[0,1]$.

Homotopies

Suppose given a topological space T.

- A path in T is a continuous function $\pi: I \rightarrow T$, where $I=[0,1]$.
- An homotopy between two paths π and ρ is a continuous function
$h: I \rightarrow(I \Rightarrow T) \quad$ such that $\quad h(0)=\pi \quad$ and $\quad h(1)=\rho$

Homotopies

Suppose given a topological space T.

- A path in T is a continuous function $\pi: I \rightarrow T$, where $I=[0,1]$.
- An homotopy between two paths π and ρ is a continuous function
$h: I \rightarrow(I \Rightarrow T) \quad$ such that $\quad h(0)=\pi \quad$ and $\quad h(1)=\rho$
- An homotopy between homotopies h and k is a continuous function
$h: I \rightarrow(I \Rightarrow(I \Rightarrow T)) \quad$ such that $\quad h(0)=h \quad$ and $\quad h(1)=k$

Homotopies

Suppose given a topological space T.

- A path in T is a continuous function $\pi: I \rightarrow T$, where $I=[0,1]$.
- An homotopy between two paths π and ρ is a continuous function
$h: I \rightarrow(I \Rightarrow T) \quad$ such that $\quad h(0)=\pi \quad$ and $\quad h(1)=\rho$
- An homotopy between homotopies h and k is a continuous function
$h: I \rightarrow(I \Rightarrow(I \Rightarrow T)) \quad$ such that $\quad h(0)=h \quad$ and $\quad h(1)=k$
- etc.

Modeling MLTT

We interpret

- a type $\vdash A$: type as a topological space
- a term $\vdash x: A$ as a point in A
- a term $p: \operatorname{ld}_{A}(a, b)$ as a path $a \rightarrow b$
- a term $s: \operatorname{ld}_{\operatorname{ld}(a, b)}(p, q)$ as an homotopy $a \underset{q}{\stackrel{p}{s \Downarrow}} b$
- etc.

Dependent types

As in the case of LCCC we interpret a dependent type

$$
x: A \vdash B(x): \text { type }
$$

as a continuous map

Dependent types

As in the case of LCCC we interpret a dependent type

$$
x: A \vdash B(x): \text { type }
$$

as a continuous map

and a term $x: A \vdash f: B(x)$ as a section of this map.

Dependent types and equality

The maps interpreting types should have the homotopy lifting property:

Dependent types and equality

The maps interpreting types should have the homotopy lifting property:

Maps like this are often called fibrations.

Dependent types and equality

The maps interpreting types should have the homotopy lifting property:

$$
\begin{aligned}
& X \times\{0\} \xrightarrow{\beta} B \\
& \downarrow p^{*} \\
& X \times[0,1] \underset{p}{\longrightarrow} A
\end{aligned}
$$

Maps like this are often called fibrations.
Ex: the interpretation of $x, y: A \vdash \operatorname{Id}_{A}(x, y)$ is a map

Lifting properties

Homotopy is more generally carried on in Quillen model categories.

Lifting properties

Homotopy is more generally carried on in Quillen model categories.
Definition
Given maps $f: A \rightarrow B$ and $g: C \rightarrow D, f$ has the left lifting property wrt g when every commutative square

Lifting properties

Homotopy is more generally carried on in Quillen model categories.
Definition
Given maps $f: A \rightarrow B$ and $g: C \rightarrow D, f$ has the left lifting property wrt g when every commutative square

admits a lifting.

Lifting properties

Homotopy is more generally carried on in Quillen model categories.
Definition
Given maps $f: A \rightarrow B$ and $g: C \rightarrow D, f$ has the left lifting property wrt g when every commutative square

admits a lifting.

Given a class \mathfrak{L} of maps, we write ${ }^{\perp} \mathfrak{L}$ for the class of maps which have LLP wrt every map in \mathfrak{L} (and similarly \mathfrak{L}^{\perp} for RLP).

Weak factorization systems

Definition

A weak factorization system ($\mathfrak{L}, \mathfrak{R}$) consists of two classes of maps such that
(1) every map $f: A \rightarrow B$ factors as

with $i \in \mathfrak{L}$ and $p \in \mathfrak{R}$
(2) $\mathfrak{L}^{\perp}=\mathfrak{R}$ and $\mathfrak{L}={ }^{\perp} \mathfrak{R}$

Model categories

Definition

A model category consists of \mathcal{C} together with subcategories

- \mathfrak{F} : fibrations
- \mathfrak{C} : cofibrations
- W: weak equivalences
such that
(1) three for two
(2) both $(\mathfrak{C}, \mathfrak{W} \cap \mathfrak{F})$ and $(\mathfrak{C} \cap \mathfrak{W}, \mathfrak{F})$ are weak factorization systems.

Model categories

Definition

A model category consists of \mathcal{C} together with subcategories

- \mathfrak{F} : fibrations
- \mathfrak{C} : cofibrations
- W: weak equivalences
such that
(1) three for two
(2) both $(\mathfrak{C}, \mathfrak{W} \cap \mathfrak{F})$ and $(\mathfrak{C} \cap \mathfrak{W}, \mathfrak{F})$ are weak factorization systems.

Example
On Top:

- generating cofibrations are inclusions $i: \Delta^{n} \rightarrow \Delta^{n} \times I$,
- fibrations are RLP of generating cofibrations (Serre fibrations),
- weak equivalences are weak homotopy equivalences.

Path objects

Definition

A (very good) path object A^{\prime} for an object A consists of a factorization

with r acyclic cofibration and p fibration.

Interpretation of MLTT

- Type formation rule:

$$
\frac{\vdash a: A \quad \vdash b: A}{\vdash \operatorname{ld}_{A}(a, b): \text { type }}
$$

Id_{A} is interpreted as p

Interpretation of MLTT

- Type formation rule:
- Introduction rule:

$$
\frac{\vdash a: A}{\vdash r_{A}(a): \operatorname{ld}_{A}(a, a)}
$$

r_{A} is interpreted as r

Interpretation of MLTT

- Type formation rule:
- Introduction rule:
- Elimination rule:

$$
\begin{gathered}
x: A, y: A, z: \operatorname{Id}_{A}(x, y) \vdash D(x, y, z): \text { type } \\
x: A \vdash d(x): D\left(x, x, r_{A}(x)\right) \\
x: A, y: A, z: \operatorname{ld}_{A}(x, y) \vdash J_{A, D}(d, x, y, z): D(x, y, z)
\end{gathered}
$$

Interpretation of MLTT

- Type formation rule:
- Introduction rule:
- Elimination rule:

$$
\begin{gathered}
x: A, y: A, z: \operatorname{ld}_{A}(x, y) \vdash D(x, y, z): \text { type } \\
x: A \vdash d(x): D\left(x, x, r_{A}(x)\right) \\
x: A, y: A, z: \operatorname{ld}_{A}(x, y) \vdash J_{A, D}(d, x, y, z): D(x, y, z)
\end{gathered}
$$

- Conversion rule:

$$
\begin{gathered}
x: A, y: A, z: \operatorname{ld}_{A}(x, y) \vdash D(x, y, z): \text { type } \\
x: A \vdash d(x): D\left(x, x, r_{A}(x)\right) \\
x: A \vdash J_{A, D}\left(d, x, x, r_{A}(x)\right)=d(x): D\left(x, x, r_{A}(x)\right)
\end{gathered}
$$

The current state of things

Theorem (Awodey \& Warren)
MLTT can be interpreted in any model category.

Theorem (Gambino \& Garner)
The interpretation is complete.

The Homotopy Hypothesis

Homotopy Types $\xlongequal{ }$ Weak ω-groupoids

MLTT

Towards directed algebraic topology?

We could think of a directed variant:

- replace equality by a reduction relation:
$f \rightsquigarrow g \quad \Rightarrow \quad$ there is a directed path from f to g

Towards directed algebraic topology?

We could think of a directed variant:

- replace equality by a reduction relation:

$$
f \rightsquigarrow g \quad \Rightarrow \quad \text { there is a directed path from } f \text { to } g
$$

- the reduction should be compatible with identity:

$$
\begin{gathered}
r: \operatorname{ld}\left(f, f^{\prime}\right) \quad \Rightarrow \quad \exists g^{\prime}, \quad \exists s: \operatorname{ld}\left(g, g^{\prime}\right) \text { and } g \rightsquigarrow g^{\prime} \\
f=f^{\prime} \\
\} \quad \xi \\
\vdots \\
g===g^{\prime}
\end{gathered}
$$

We can "translate continuously" the directed path $f \rightsquigarrow g$ into the directed path $f^{\prime} \rightsquigarrow g$

