Quillen Model Categories Model Martin-Löf Type Theory with Identity Types

Samuel Mimram

CEA

Séminaire MeASI au CIRM

Disclaimer

Ideas are not from me (Awodey & Warren, Voevodsky, ...), errors are mine.

λ -calculus

• Introduction rule:

$$\frac{\Gamma, x : A \vdash f : B}{\Gamma \vdash \lambda x. f : A \to B}$$

λ -calculus

Introduction rule:

$$\frac{\Gamma, x : A \vdash f : B}{\Gamma \vdash \lambda x. f : A \rightarrow B}$$

• Elimination rule:

$$\frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash g : A}{\Gamma \vdash fg : B}$$

λ -calculus

Introduction rule:

$$\frac{\Gamma, x : A \vdash f : B}{\Gamma \vdash \lambda x.f : A \to B}$$

Elimination rule:

$$\frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash g : A}{\Gamma \vdash fg : B}$$

Conversion rule:

$$\frac{\Gamma, x : A \vdash f : B \qquad \Gamma \vdash g : A}{\Gamma \vdash (\lambda x. f)g = f[g/x] : B}$$

Now with dependent types.

Array.make : int -> array

Array.make : $n:int \rightarrow n$ array

Array.make : $\Pi_{n:int}.array(n)$

Array.make : $\Pi_{n:int}.array(n)$

• Type formation rule:

$$\frac{\vdash n: int}{\vdash array(n): type}$$

Array.make :
$$\Pi_{n:int}$$
.array (n)

• Type formation rule:

$$\frac{\vdash n: int}{\vdash array(n): type}$$

Introduction rules:

$$\frac{\Gamma \vdash k : \mathtt{int} \qquad \Gamma, n : \mathtt{int} \vdash a : \mathtt{array}(n)}{\Gamma, n : \mathtt{int} \vdash (k :: a) : \mathtt{array}(n+1)}$$

• Type formation rule:

$$\frac{x:A \vdash B(x):\mathsf{type}}{\vdash \Pi_{x:A}.B(x):\mathsf{type}}$$

• Type formation rule:

$$\frac{x:A \vdash B(x): \text{type}}{\vdash \Pi_{x:A}.B(x): \text{type}}$$

Introduction rule:

$$\frac{x:A\vdash f(x):B(x)}{\vdash \lambda_{x:A}.f(x):\Pi_{x:A}.B(x)}$$

• Type formation rule:

$$\frac{x:A \vdash B(x): \text{type}}{\vdash \Pi_{x:A}.B(x): \text{type}}$$

Introduction rule:

$$\frac{x:A\vdash f(x):B(x)}{\vdash \lambda_{x:A}.f(x):\Pi_{x:A}.B(x)}$$

Elimination rule:

$$\frac{\vdash g: \Pi_{x:A}.B(x) \qquad \vdash x: A}{\vdash ga: B(a)}$$

Type formation rule:

$$\frac{x:A \vdash B(x): \mathsf{type}}{\vdash \Pi_{x:A}.B(x): \mathsf{type}}$$

Introduction rule:

$$\frac{x:A\vdash f(x):B(x)}{\vdash \lambda_{x:A}.f(x):\Pi_{x:A}.B(x)}$$

Elimination rule:

$$\frac{\vdash g: \Pi_{x:A}.B(x) \qquad \vdash x: A}{\vdash ga: B(a)}$$

Conversion rule:

$$\frac{x:A\vdash f(x):B(x)\qquad \vdash a:A}{\vdash (\lambda_{x:A}.f(x))a=f(a):B(a)}$$

Remark

The usual arrow type $A \rightarrow B$ is recovered as

 $\Pi_{x:A}.B$

where x does not occur in B.

• Type formation rule:

$$\frac{\vdash a:A \qquad \vdash b:A}{\vdash \mathsf{Id}_{A}(a,b):\mathsf{type}}$$

• Type formation rule:

$$\frac{\vdash a:A \qquad \vdash b:A}{\vdash \mathsf{Id}_A(a,b):\mathsf{type}}$$

Introduction rule:

$$\frac{\vdash a : A}{\vdash r_A(a) : \mathsf{Id}_A(a, a)}$$

• Type formation rule:

$$\frac{\vdash a:A \qquad \vdash b:A}{\vdash \mathsf{Id}_A(a,b):\mathsf{type}}$$

Introduction rule:

$$\frac{\vdash a:A}{\vdash r_A(a):\mathsf{Id}_A(a,a)}$$

Elimination rule:

$$\frac{x : A, y : A, z : Id_{A}(x, y) \vdash D(x, y, z) : type}{\vdash p : Id_{A}(a, b) \qquad x : A \vdash d(x) : D(x, x, r_{A}(x))}{\vdash J_{A,D}(d, a, b, p) : D(a, b, p)}$$

Type formation rule:

$$\frac{\vdash a:A \qquad \vdash b:A}{\vdash \mathsf{Id}_A(a,b):\mathsf{type}}$$

Introduction rule:

$$\frac{\vdash a:A}{\vdash r_A(a):\mathsf{Id}_A(a,a)}$$

Elimination rule:

$$\frac{x : A, y : A, z : Id_{A}(x, y) \vdash D(x, y, z) : type}{\vdash p : Id_{A}(a, b) \qquad x : A \vdash d(x) : D(x, x, r_{A}(x))}{\vdash J_{A,D}(d, a, b, p) : D(a, b, p)}$$

Conversion rule:

$$x : A, y : A, z : Id_A(x, y) \vdash D(x, y, z) : type$$

 $\vdash a : A \qquad x : A \vdash d(x) : D(x, x, r_A(x))$
 $\vdash J_{A,D}(d, a, a, r_A(a)) = d(a) : D(a, a, r_A(a))$

Categories

A category $\mathcal C$ consists of

- objects: Ob(C)
- morphisms: $\forall A, B \in \mathsf{Ob}(\mathcal{C})$, $\mathsf{Hom}(A, B)$
- compositions:

$$\frac{f:A\to B \qquad g:B\to C}{g\circ f:A\to C}$$

identities:

$$\forall A \in \mathsf{Ob}(\mathcal{C}), \quad \mathsf{id}_A : A \to A$$

such that

• composition is associative:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

admits identities as neutral elements

$$id \circ f = f = f \circ id$$

The category **Set**

The category Set has

- objects: sets
- morphisms: functions $f:A \to B$
- with usual composition and identities

Modeling programming languages

From a programming language, we can build a category Π whose

- objects: types
- morphisms: programs $\pi:A\to B$ modulo cut-elimination
- composition: usual composition of programs

Modeling programming languages

From a programming language, we can build a category Π whose

- objects: types
- morphisms: programs $\pi:A\to B$ modulo cut-elimination
- composition: usual composition of programs

Definition

A model of the programming language is a functor

$$F:\Pi \to \mathcal{C}$$

Take the category with

• objects: types

$$A ::= X \mid A \Rightarrow B \mid A \times B$$

• morphisms $A \to B$: λ -terms $f : A \Rightarrow B$

Take the category with

• objects: types

$$A ::= X \mid A \Rightarrow B \mid A \times B$$

• morphisms $A \to B$: λ -terms $f: A \Rightarrow B$

Example:

$$\lambda x.\lambda y.x:A\to (B\Rightarrow A)$$

Take the category with

• objects: types

$$A ::= X \mid A \Rightarrow B \mid A \times B$$

• morphisms $A \to B$: λ -terms $f: A \Rightarrow B$

Exercise: give a model of this language into Set.

Take the category with

• objects: types

$$A ::= X \mid A \Rightarrow B \mid A \times B$$

• morphisms $A \to B$: λ -terms $f: A \Rightarrow B$

More generally, it can be modeled in any cartesian closed category.

Cartesian closed categories

Definition

A cartesian closed category is a category which has

• products:

$$\forall f: A \rightarrow B, g: A \rightarrow C,$$

Cartesian closed categories

Definition

A cartesian closed category is a category which has

• products:

$$\forall f: A \to B, g: A \to C,$$

• a terminal object 1:

$$\forall A, \qquad A \longrightarrow 1$$

Cartesian closed categories

Definition

A cartesian closed category is a category which has

• products:

$$\forall f: A \to B, g: A \to C,$$

a terminal object 1:

$$\forall A, \qquad A \longrightarrow 1$$

which is closed:

$$\frac{A \times B \to C}{A \to (B \Rightarrow C)}$$

A model of Martin-Löf type theory

The traditional models of Martin-Löf type theory are given by

Definition

A locally cartesian closed category is a category $\mathcal C$ in which for every object A the slice category $\mathcal C/A$ is cartesian closed.

A model of Martin-Löf type theory

The traditional models of Martin-Löf type theory are given by

Definition

A locally cartesian closed category is a category $\mathcal C$ in which for every object A the slice category $\mathcal C/A$ is cartesian closed.

Theorem

An LCCC is a category with pullbacks in which for every $f:A\to B$, the base change functor $f^*:\mathcal{C}/B\to\mathcal{C}/A$ has a right adjoint $\Pi_f:\mathcal{C}/A\to\mathcal{C}/B$.

A model of Martin-Löf type theory

The traditional models of Martin-Löf type theory are given by

Definition

A locally cartesian closed category is a category $\mathcal C$ in which for every object A the slice category $\mathcal C/A$ is cartesian closed.

Theorem

An LCCC is a category with pullbacks in which for every $f:A\to B$, the base change functor $f^*:\mathcal{C}/B\to\mathcal{C}/A$ has a right adjoint $\Pi_f:\mathcal{C}/A\to\mathcal{C}/B$.

Example

$$\frac{\Gamma, x : A \vdash B(x) : \mathsf{type}}{\Gamma \vdash \Pi_{x:A}.B(x) : \mathsf{type}}$$

Problem

Every LCCC is also a model of MLTT with the rule of extensionality:

$$\frac{\vdash p : \mathsf{Id}_{A}(a, b)}{\vdash a = b : A}$$

...and type checking is indecidable in extensional MLTT!

Half of the title

We explain here that Quillen model categories model identity types in Martin-Löf type theory:

$$F: \mathcal{M} \to \mathcal{Q}$$

Which provides non-extensional models.

Half of the title

We explain here that Quillen model categories model identity types in Martin-Löf type theory:

$$F: \mathcal{M} \to \mathcal{Q}$$

Which provides non-extensional models.

The idea here is that identity types behave like homotopies between topological spaces.

Homotopy

A homotopy between two continuous functions $f,g:A\to B$ between topological spaces A and B is a continuous function

$$h: I \times A \rightarrow B$$

where
$$I = [0, 1]$$
 such that $h(0, x) = f(x)$ and $h(1, x) = g(x)$.

Homotopy

A homotopy between two continuous functions $f,g:A\to B$ between topological spaces A and B is a continuous function

$$h: I \times A \rightarrow B$$

where I = [0, 1] such that h(0, x) = f(x) and h(1, x) = g(x).

Two spaces A and B are homotopy equivalent when there exists maps $f:A\to B$ and $g:B\to A$ such that

$$g \circ f \sim \mathrm{id}_A \qquad f \circ g \sim \mathrm{id}_B$$

Ex: square \approx circle, coffee mug \approx donut, etc.

Suppose given a topological space T.

• A path in T is a continuous function $\pi:I\to T$, where I=[0,1].

Suppose given a topological space T.

- A path in T is a continuous function $\pi:I\to T$, where I=[0,1].
- An **homotopy** between two paths π and ρ is a continuous function

$$h:I \to (I \Rightarrow T)$$
 such that $h(0)=\pi$ and $h(1)=\rho$

Suppose given a topological space T.

- A path in T is a continuous function $\pi:I\to T$, where I=[0,1].
- An **homotopy** between two paths π and ρ is a continuous function

$$h:I \to (I \Rightarrow T)$$
 such that $h(0)=\pi$ and $h(1)=\rho$

 An homotopy between homotopies h and k is a continuous function

$$h: I \rightarrow (I \Rightarrow (I \Rightarrow T))$$
 such that $h(0) = h$ and $h(1) = k$

Suppose given a topological space T.

- A path in T is a continuous function $\pi:I\to T$, where I=[0,1].
- An **homotopy** between two paths π and ρ is a continuous function

$$h:I \to (I \Rightarrow T)$$
 such that $h(0) = \pi$ and $h(1) = \rho$

 An homotopy between homotopies h and k is a continuous function

$$h: I \rightarrow (I \Rightarrow (I \Rightarrow T))$$
 such that $h(0) = h$ and $h(1) = k$

• etc.

Modeling MLTT

We interpret

- a type $\vdash A$: type as a topological space
- a term $\vdash x : A$ as a point in A
- a term $p : \operatorname{Id}_A(a,b)$ as a path $a \to b$
- a term $s: \mathrm{Id}_{\mathrm{Id}(a,b)}(p,q)$ as an homotopy $a \underbrace{\overset{p}{\underset{q}{\smile}} b}$
- etc.

Dependent types

As in the case of LCCC we interpret a dependent type

$$x : A \vdash B(x) : \mathsf{type}$$

as a continuous map

Dependent types

As in the case of LCCC we interpret a dependent type

$$x : A \vdash B(x) : \mathsf{type}$$

as a continuous map

$$B$$
 $A \mid A$
 $A \mid A$

and a term $x : A \vdash f : B(x)$ as a section of this map.

Dependent types and equality

The maps interpreting types should have the *homotopy lifting* property:

Dependent types and equality

The maps interpreting types should have the homotopy lifting property:

Maps like this are often called *fibrations*.

Dependent types and equality

The maps interpreting types should have the *homotopy lifting* property:

$$X \times \{0\} \xrightarrow{\beta} B$$

$$\downarrow p^* \qquad \downarrow$$

$$X \times [0,1] \xrightarrow{p} A$$

Maps like this are often called fibrations.

Ex: the interpretation of $x, y : A \vdash Id_A(x, y)$ is a map

Homotopy is more generally carried on in Quillen model categories.

Homotopy is more generally carried on in Quillen model categories.

Definition

Given maps $f:A\to B$ and $g:C\to D$, f has the *left lifting* property wrt g when every commutative square

Homotopy is more generally carried on in Quillen model categories.

Definition

Given maps $f:A\to B$ and $g:C\to D$, f has the *left lifting* property wrt g when every commutative square

admits a lifting.

Homotopy is more generally carried on in Quillen model categories.

Definition

Given maps $f: A \to B$ and $g: C \to D$, f has the *left lifting* property wrt g when every commutative square

admits a lifting.

Given a class $\mathfrak L$ of maps, we write ${}^{\perp}\mathfrak L$ for the class of maps which have LLP wrt every map in $\mathfrak L$ (and similarly $\mathfrak L^{\perp}$ for RLP).

Weak factorization systems

Definition

A weak factorization system $(\mathfrak{L},\mathfrak{R})$ consists of two classes of maps such that

1 every map $f: A \rightarrow B$ factors as

with $i \in \mathfrak{L}$ and $p \in \mathfrak{R}$

2
$$\mathfrak{L}^{\perp}=\mathfrak{R}$$
 and $\mathfrak{L}={}^{\perp}\mathfrak{R}$

Model categories

Definition

A model category consists of $\mathcal C$ together with subcategories

- F: fibrations
- C: cofibrations
- W: weak equivalences

such that

- 1 three for two
- 2 both $(\mathfrak{C},\mathfrak{W}\cap\mathfrak{F})$ and $(\mathfrak{C}\cap\mathfrak{W},\mathfrak{F})$ are weak factorization systems.

Model categories

Definition

A model category consists of $\mathcal C$ together with subcategories

- 8: fibrations
- C: cofibrations
- W: weak equivalences

such that

- 1 three for two
- 2 both $(\mathfrak{C},\mathfrak{W}\cap\mathfrak{F})$ and $(\mathfrak{C}\cap\mathfrak{W},\mathfrak{F})$ are weak factorization systems.

Example

On Top:

- generating cofibrations are inclusions $i: \Delta^n \to \Delta^n \times I$,
- fibrations are RLP of generating cofibrations (Serre fibrations),
- weak equivalences are weak homotopy equivalences.

Path objects

Definition

A (very good) path object A^I for an object A consists of a factorization

with r acyclic cofibration and p fibration.

• Type formation rule:

$$\frac{\vdash a : A \qquad \vdash b : A}{\vdash \mathsf{Id}_A(a, b) : \mathsf{type}}$$

 Id_A is interpreted as p

- Type formation rule:
- Introduction rule:

$$\frac{\vdash a : A}{\vdash r_A(a) : \mathsf{Id}_A(a, a)}$$

 r_A is interpreted as r

- Type formation rule:
- Introduction rule:
- Elimination rule:

$$\frac{x : A, y : A, z : \mathsf{Id}_{A}(x, y) \vdash D(x, y, z) : \mathsf{type}}{x : A \vdash d(x) : D(x, x, r_{A}(x))}$$

$$\frac{x : A, y : A, z : \mathsf{Id}_{A}(x, y) \vdash J_{A,D}(d, x, y, z) : D(x, y, z)}{x : A, y : A, z : \mathsf{Id}_{A}(x, y) \vdash J_{A,D}(d, x, y, z) : D(x, y, z)}$$

- Type formation rule:
- Introduction rule:
- Elimination rule:

$$\frac{x:A,y:A,z:\operatorname{Id}_{A}(x,y)\vdash D(x,y,z):\operatorname{type}}{x:A\vdash d(x):D(x,x,r_{A}(x))}$$

$$\frac{x:A,y:A,z:\operatorname{Id}_{A}(x,y)\vdash J_{A,D}(d,x,y,z):D(x,y,z)}{x:A,y:A,z:\operatorname{Id}_{A}(x,y)\vdash J_{A,D}(d,x,y,z):D(x,y,z)}$$

Conversion rule:

$$\frac{x : A, y : A, z : Id_{A}(x, y) \vdash D(x, y, z) : type}{x : A \vdash d(x) : D(x, x, r_{A}(x))}$$
$$\frac{x : A \vdash J_{A,D}(d, x, x, r_{A}(x)) = d(x) : D(x, x, r_{A}(x))}{x : A \vdash J_{A,D}(d, x, x, r_{A}(x)) = d(x) : D(x, x, r_{A}(x))}$$

The current state of things

Theorem (Awodey & Warren)

MLTT can be interpreted in any model category.

Theorem (Gambino & Garner)
The interpretation is complete.

The Homotopy Hypothesis

Towards directed algebraic topology?

We could think of a directed variant:

• replace equality by a reduction relation:

 $f \rightsquigarrow g \Rightarrow \text{there is a directed path from } f \text{ to } g$

Towards directed algebraic topology?

We could think of a directed variant:

replace equality by a reduction relation:

$$f \rightsquigarrow g \Rightarrow \text{there is a directed path from } f \text{ to } g$$

the reduction should be compatible with identity:

$$r: \operatorname{Id}(f, f')$$
 \Rightarrow $\exists g', \exists s: \operatorname{Id}(g, g')$ and $g \rightsquigarrow g'$

$$f = f'$$

$$\begin{cases} & & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\$$

We can "translate continuously" the directed path $f \rightsquigarrow g$ into the directed path $f' \rightsquigarrow g$