Probabilistic affine forms

A first step towards the static analysis of probabilistic numerical programs.

Olivier Bouissou - Eric Goubault - Sylvie Putot

Séminaire LMeASI - 03 novembre 2010

Origin of this work.

- CPP project funded by the ANR, started in October 2009.
- Goal of the project: study the use of probabilistic information within the static analysis of numerical programs.
- Probabilistic abstract domains.
- Probabilistic programs.
- We have mainly considered probabilistic versions of intervals and affine sets.

Introductive example.

```
float inputsignal(int i) {
    return sin(F*i);
}
int main() {
    float xnm2,xnm1,xn,ynm2,ynm1,yn;
    int i;
    xnm2 = inputsignal(-2);
    xnm1 = inputsignal(-1);
    xn = inputsignal(0);
    ynm2 = 0;
    ynm1 = 0;
    for (i=1;i<=N;i++) {
        yn = (2*(c*c-1)*ynm1-
        (c*c-sqrt(2)*c+1)*ynm2+
        c*C*xn-2*C*C*xnm1+
        c*c*xnm2)/(c*c+sqrt(2)*c+1);
    ynm2 = ynm1;
    ynm1 = yn;
    xnm2 = xnm1;
    xnm1 = xn;
    xn = inputsignal(i);
    }
    return 0;
}
```


Introductive example.

```
float inputsignal(int i) {
    return sin(「*i); [-1,1];
}
int main() {
    float xnm2,xnm1,xn,ynm2,ynm1,yn;
    int i;
    xnm2 = inputsignal(-2);
    xnm1 = inputsignal(-1);
    xn = inputsignal(0);
    ynm2 = 0;
    ynm1 = 0;
    for (i=1;i<=N;i++) {
        yn = (2*(c*c-1)*ynm1-
        (c*c-sqrt(2)*c+1)*ynm2+
        c*c*xn-2*c*c*xnm1+
        c*c*xnm2)/(c*c+sqrt(2)*c+1);
    ynm2 = ynm1;
    ynm1 = yn;
    xnm2 = xnm1;
    xnm1 = xn;
    xn = inputsignal(i);
    }
    return 0;
}
```

- Need to bound the values of yn.
- Number of iterations (N) is usually not known.
- Output:yn.

Static analysis in 10 seconds.

- Goal of static analysis: compute the smallest possible $D \subseteq \mathbb{R}^{n}$ such that for all execution of the program, the values of the variables remain within D.
- Classical scheme: program \rightarrow control flow graph \rightarrow semantic equations

```
float inputsignal(int i) {
    return [-1,1];
}
int main() {
    float xnm2,xnm1,xn,ynm2,ynm1,yn;
    int i;
    xnm2 = inputsignal(-2);
    xnm1 = inputsignal(-1);
    xn = inputsignal(0);
    ynm2 = 0;
    ynm1 = 0;
    for (i=1;i<=N;i++) {
        yn = (2*(c*c-1)*ynm1-
            (c*c-sqrt(2)*c+1)*ynm2+
            c*c*xn-2*C*C*xnm1+
            c*c*xnm2)/(c*c+sqrt(2)*c+1);
        ynm2 = ynm1;
        ynm1 = yn;
        xnm2 = xnm1;
        xnm1 = xn;
        xn = inputsignal(i);
    }
    return 0;
}
```


Static analysis in 10 seconds.

- Goal of static analysis: compute the smallest possible $D \subseteq \mathbb{R}^{n}$ such that for all execution of the program, the values of the variables remain within D.
- Classical scheme: program \rightarrow control flow graph \rightarrow semantic equations

Static analysis in 10 seconds.

- Goal of static analysis: compute the smallest possible $D \subseteq \mathbb{R}^{n}$ such that for all execution of the program, the values of the variables remain within D.
- Classical scheme: program \rightarrow control flow graph \rightarrow semantic equations

Static analysis in 10 (more) seconds.

- All we need to do now is solve the semantic equations.
- Classical scheme: abstract domain \rightarrow Kleene iteration \rightarrow widening.
- The abstract domain must have:
- order theoretic operations (union, intersection) to handle the control flow.

$$
X_{2}[\mathrm{i} \mapsto 1] \bigcup X_{7}[\mathrm{i} \mapsto \mathrm{i}+1]
$$

- evaluations of numerical operations to handle numerical expressions in the program.
$\left.X_{4}[\mathrm{yn} \mapsto 2 *(c * c-1)\} \operatorname{ynm} 1(-)(c * c-\sqrt{2} * c+1) * \mathrm{ynm} 2+c * c * \mathrm{xn}-\ldots\right]$
- With soundness conditions w.r.t. the conrete semantics.

Solving the fixpoint equation: with intervals.

- We chose the interval abstract domain.

$$
X_{i}=\{x \mapsto[\underline{x}, \bar{x}], y n \mapsto[\underline{y n}, \overline{y n}], \ldots\}
$$

- We unroll the loop 30 times and replace each arithmetic operation by its sound interval version.

```
float inputsignal(int i) {
    return [-1,1];
}
int main() {
    float xnm2,xnm1,xn,ynm2,ynm1,yn;
    int i;
    xnm2 = inputsignal(-2);
    xnm1 = inputsignal(-1);
    xn = inputsignal(0);
    ynm2 = 0;
    ynm1 = 0;
    for (i=1;i<=N;i++) {
        yn = (2*(c*c-1)*ynm1-
            (c*c-sqrt(2)*c+1)*ynm2+
            c*C*xn-2*C*C*xnm1+
            c*c*xnm2)/(c*c+sqrt(2)*c+1);
        ynm2 = ynm1;
        ynm1 = yn;
        xnm2 = xnm1;
        xnm1 = xn;
        xn = inputsignal(i);
    }
    return 0;
        \(y n \in[-9.79528957,9.79528957] .10^{9}\)

\section*{Solving the fixpoint equation: with affine sets.}

The affine set abstract domain
\[
\begin{gathered}
X_{i}=\left\{\begin{array}{ccc}
x & \mapsto & \alpha_{0}^{x}+\sum_{i=1}^{m} \alpha_{i}^{x} \epsilon_{i} \\
y & \mapsto & \left.\alpha_{0}^{y}+\sum_{i=1}^{m} \alpha_{i}^{y} \epsilon_{i} \mid \alpha_{i}^{v} \in \mathbb{R}, \epsilon_{i} \in[-1,1]\right\} \\
& \ldots & \\
\gamma\left(X_{i}\right)=\left\{(x, y, \ldots) \in \mathbb{R}^{m} \mid \exists \epsilon_{1}, \ldots, \epsilon_{n} \in[-1,1]^{n},\right. & y=\alpha_{0}^{y}+\sum_{i=1}^{m} \alpha_{i}^{y} \epsilon_{i} \\
\ldots
\end{array}\right\}
\end{gathered}
\]
\[
\begin{aligned}
& x=20-4 \epsilon_{1}+2 \epsilon_{3}+3 \epsilon_{4} \\
& y=10-2 \epsilon_{1}+\epsilon_{2}-\epsilon_{4}
\end{aligned}
\]


\section*{Solving the fixpoint equation: with affine sets.}

The affine set arithmetic: linear operations
\[
a x+b y+c=\left(\alpha_{0}^{x}+\alpha_{0}^{y}+c\right)+\sum_{i=1}^{m}\left(\alpha_{i}^{x}+\alpha_{i}^{y}\right) \epsilon_{i}
\]

Linear operations are exact.
Affectation creates a new noise symbol.
\[
\mathrm{x}=[\mathrm{a}, \mathrm{~b}] ; \quad \longrightarrow \quad x=\frac{a+b}{2}+\frac{b-a}{2} \epsilon_{m+1}
\]
\[
\mathrm{t}=[1,5] ; \quad x=20-4 \epsilon_{1}+2 \epsilon_{3}+3 \epsilon_{4}
\]
\[
\begin{array}{ll}
x=20-4 \epsilon_{1}+2 \epsilon_{3}+3 \epsilon_{4} \quad \mathrm{z}=\mathrm{x}+3 \mathrm{y}+\mathrm{t} ; \\
y=10-2 \epsilon_{1}+\epsilon_{2}-\epsilon_{4}
\end{array} \quad \begin{aligned}
& y=10-2 \epsilon_{1}+\epsilon_{2}-\epsilon_{4} \\
& \\
& \\
& \\
& \\
& \\
& \\
& t=33-10 \epsilon_{1}+3 \epsilon_{2}+2 \epsilon_{3}+2 \epsilon_{5}
\end{aligned}
\]

\section*{Solving the fixpoint equation: with affine sets.}

The affine set arithmetic: non-linear operations
\[
x * y=\left(\alpha_{0}^{x} * \alpha_{0}^{y}\right)+\sum_{i=1}^{m}\left(\alpha_{0}^{x} \alpha_{i}^{y}+\alpha_{0}^{y} \alpha_{i}^{x}\right) \epsilon_{i}+\sum_{1 \leq i, j \leq m} \alpha_{i}^{x} \alpha_{j}^{y} \epsilon_{i} \epsilon_{j}
\]

Non-linear terms are approximated in a new noise symbol.
\[
\sum_{1 \leq i, j \leq m} \alpha_{i}^{x} \alpha_{j}^{y} \epsilon_{i} \epsilon_{j} \subseteq\left(\sum_{i=1}^{m}\left|\alpha_{i}^{x}\right| \cdot \sum_{i=1}^{m}\left|\alpha_{i}^{j}\right|\right) \eta_{1}
\]
\[
\begin{array}{lll}
x=20-4 \epsilon_{1}+2 \epsilon_{3}+3 \epsilon_{4} \\
y=10-2 \epsilon_{1}+\epsilon_{2}-\epsilon_{4}
\end{array} \quad \mathrm{Z=X*T} ; \quad \begin{aligned}
& y=10-2 \epsilon_{1}+\epsilon_{2}-\epsilon_{4} \\
& z=60-12 \epsilon_{1}+6 \epsilon_{3}+9 \epsilon_{4}+40 \epsilon_{5}+18 \eta_{1} \\
& \\
& \\
& t=3+2 \epsilon_{5}
\end{aligned}
\]

\section*{Solving the fixpoint equation: with affine sets.}
- We chose the affine set abstract domain.
- We unroll the loop 30 times and replace each arithmetic operation by its sound affine set version.
```

float inputsignal(int i) {
return [-1,1];
}
int main() {
float xnm2,xnm1,xn,ynm2,ynm1,yn;
int i;
xnm2 = inputsignal(-2);
xnm1 = inputsignal(-1);
xn = inputsignal(0);
ynm2 = 0;
ynm1 = 0;
for (i=1;i<=N;i++) {
yn = (2*(c*c-1)*ynm1-
(c*c-sqrt(2)*c+1)*ynm2+
c*c*xn-2*c*c*xnm1+
c*c*xnm2)/(c*c+sqrt(2)*c+1);
ynm2 = ynm1;
ynm1 = yn;
xnm2 = xnm1;
xnm1 = xn;
xn = inputsignal(i);
}
return 0;
}

```

\section*{Some remarks about the inputs.}
- What does it mean: \(x=[-1,1]\) ?
- At each loop iterate, a new value of \(x\) can be non-deterministically chosen between -1 and 1 .
- It is similar to a two-persons game with malicious opponent.
- What if we have a probabilistic opponent ?

\section*{Some remarks about the inputs.}
- What does it mean: \(x=[-1,1]\) ?
- At each loop iterate, a new value of \(x\) can be non-deterministically chosen between -1 and 1 .
- It is similar to a two-persons game with malicious opponent.
- What if we have a probabilistic opponent ?
- Simulation of the program.
- Assuming inputs are independent and uniformly distributed between -1 and 1 .


\section*{What is a realistic input?}
- Input values are often given by sensors that measure some physical value.
- This introduces two kinds of uncertainty:
- non-deterministic when the evolution of the physical value is not completely determined (e.g. \(\dot{y} \in[3,3.1]\) ).
- a probabilistic noise due to measurement errors.
- We need a model that can handle both kind in a uniform way.


\section*{What is a realistic input?}
- Input values are often given by sensors that measure some physical value.
- This introduces two kinds of uncertainty:
- non-deterministic when the evolution of the physical value is not completely determined (e.g. \(\dot{y} \in[3,3.1]\) ).
- a probabilistic noise due to measurement errors.
- We need a model that can handle both kind in a uniform way.



\section*{Semantics of a program with probabilistic inputs.}

Formally: we consider deterministic programs only.
- Semantics of the program.
\[
\llbracket P \rrbracket: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
\]
- Adding non-determinism: collecting semantics.
\[
\llbracket P \rrbracket^{c}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)
\]
- Abstraction: abstract semantics.
\[
\llbracket P \rrbracket^{\sharp}: \mathbb{I}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{I}\left(\mathbb{R}^{n}\right)
\]
- Probabilistic semantics.
\[
\llbracket P \rrbracket_{p}: V_{\mathbb{R}^{n}} \rightarrow V_{\mathbb{R}^{n}}
\]
- Adding non-determinism: probabilistic collecting semantics.
\[
\llbracket P \rrbracket_{p}^{c}: \mathcal{P}\left(V_{\mathbb{R}^{n}}\right) \rightarrow \mathcal{P}\left(V_{\mathbb{R}^{n}}\right)
\]
- Abstraction: probabilistic abstract semantics.
?

\section*{Semantics of a program with probabilistic inputs.}

Formally: we consider deterministic programs only.
- Semantics of the program.
\[
\llbracket P \rrbracket: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
\]
- Adding non-determinism: collecting semantics.
\[
\llbracket P \rrbracket^{c}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)
\]
- Abstraction: abstract semantics.
\[
\llbracket P \rrbracket^{\sharp}: \mathbb{I}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{I}\left(\mathbb{R}^{n}\right)
\]
- Probabilistic semantics.
\[
\llbracket P \rrbracket_{p}: V_{\mathbb{R}^{n}} \rightarrow V_{\mathbb{R}^{n}}
\]
- Adding non-determinism: probabilistic collecting semantics.
\[
\llbracket P \rrbracket_{p}^{c}: \mathcal{P}\left(V_{\mathbb{R}^{n}}\right) \rightarrow \mathcal{P}\left(V_{\mathbb{R}^{n}}\right)
\]
- Abstraction: probabilistic abstract semantics.
?

\section*{Semantics of a program with probabilistic inputs.}

Formally: we consider deterministic programs only.
- Semantics of the program.
\[
\llbracket P \rrbracket: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
\]
- Adding non-determinism: collecting semantics.
\[
\llbracket P \rrbracket^{c}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)
\]
- Abstraction: abstract semantics.
\[
\llbracket P \rrbracket^{\sharp}: \mathbb{I}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{I}\left(\mathbb{R}^{n}\right)
\]
- Probabilistic semantics.
\[
\llbracket P \rrbracket_{p}: V_{\mathbb{R}^{n}} \rightarrow V_{\mathbb{R}^{n}}
\]
- Adding non-determinism: probabilistic collecting semantics.
\[
\llbracket P \rrbracket_{p}^{c}: \mathcal{P}\left(V_{\mathbb{R}^{n}}\right) \rightarrow \mathcal{P}\left(V_{\mathbb{R}^{n}}\right)
\]
- Abstraction: probabilistic abstract semantics.
?

\section*{Semantics of a program with probabilistic inputs.}

Formally: we consider deterministic programs only.
- Semantics of the program.
\[
\llbracket P \rrbracket: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
\]
- Adding non-determinism: collecting semantics.
\[
\llbracket P \rrbracket^{c}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)
\]
- Abstraction: abstract semantics.
\[
\llbracket P \rrbracket^{\sharp}: \mathbb{I}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{I}\left(\mathbb{R}^{n}\right)
\]
- Probabilistic semantics.
\[
\llbracket P \rrbracket_{p}: V_{\mathbb{R}^{n}} \rightarrow V_{\mathbb{R}^{n}}
\]
- Adding non-determinism: probabilistic collecting semantics.
\[
\llbracket P \rrbracket_{p}^{c}: \mathcal{P}\left(V_{\mathbb{R}^{n}}\right) \rightarrow \mathcal{P}\left(V_{\mathbb{R}^{n}}\right)
\]
- Abstraction: probabilistic abstractosemantics.


\section*{Abstraction.}
- We need to define abstractions of set of probability distributions.
- We need to define set-theoretic and arithmetic operations on these domains.


\section*{Uncertain probabilities.}
- A large community exist in the context of uncertain probabilities.
- It designs methods to deal with non-determinism and probability in a uniform way.
- Mostly used in risk assessment.
- Various terms: clouds, fuzzy sets, P-boxes, Demster-Schafer structures, ....
- Rules for combining such sets exist, but no real arithmetic is given.
- In the rest, I will present P-Boxes and D-S structures over \(\mathbb{R}\).

\section*{P-Boxes: definition.}
- A P-Box is given by two functions \(\underline{F}\) and \(\bar{F}\) such that:
\[
\begin{aligned}
& \underline{F}, \bar{F}: \mathbb{R} \rightarrow[0,1] \\
& \forall x \in \mathbb{R}, \underline{F}(x) \leq \bar{F}(x)
\end{aligned}
\]
- \(\quad \underline{F}\) and \(\bar{F}\) represent bounds on the set of distribution functions.
- When \(\underline{F}=\bar{F}\), the P-Box represent one distribution.
- Order: \((\underline{F}, \bar{F}) \subseteq(\underline{G}, \bar{G}) \Leftrightarrow \forall x \in \mathbb{R}, \underline{G}(x) \leq \underline{F}(x) \leq \bar{F}(x) \leq \bar{G}(x)\)
- Maximal element: \(\underline{F}=\lambda x .0, \bar{F}=\lambda x .1\)
- Concretization: \(\gamma(\underline{F}, \bar{F})=\{P \mid \forall x, \underline{F}(x) \leq P(X \leq x) \leq \bar{F}(x)\}\)

\section*{P-Boxes: arithmetic.}
- Let \(\left(\underline{F}_{X}, \bar{F}_{X}\right)\) and \(\left(\underline{F}_{Y}, \bar{F}_{Y}\right)\) be the P-Boxes associated to variables \(X\) et \(Y\).
- Let \(Z=X \square Y\) with \(\square \in\{+, \times,-, /\}\). How to compute \(\left(\underline{F}_{Z}, \bar{F}_{Z}\right)\) ?
- It depends on the dependency between \(X\) and \(Y\).
- If \(X\) and \(Y\) are independent: see DS structures.
- If \(X\) and \(Y\) are not independent (unknown dependency): Frechet bounds
\[
\begin{gathered}
\forall P_{X} \in \gamma\left(\underline{F}_{X}, \bar{F}_{X}\right), P_{Y} \in \gamma\left(\underline{F}_{Y}, \bar{F}_{Y}\right), \\
P(X \square Y<u) \leq \inf _{x \square y=u} \min \left(P_{X}(X<x)+P_{Y}(Y<y), 1\right) \\
P(X \square Y<u) \geq \sup _{x \sqcap u=u} \max \left(P_{X}(X<x)+P_{Y}(Y<y)-1,0\right) \\
\left(\underline{F}_{Z}, \bar{F}_{Z}\right)=\lambda u \cdot\left(\sup _{x \square y=u}^{\left.\max \left(\underline{F}_{X}(x)+\underline{F}_{Y}(y)-1,0\right), \inf _{x \square y=u} \min \left(\bar{F}_{X}(x)+\bar{F}_{Y}(y), 1\right)\right)}\right.
\end{gathered}
\]

\section*{P-Boxes: problem of representation.}
- Need to represent two continuous functions for each P-Box.
- Computation of bounds for the result of any arithmetic operator requires an optimization problem.
- One solution to solve this problem: use step functions.

- Discretization of the continuous functions.
- Introduces an overapproximation.
- Equivalent to Demster-Schafer structures.

\section*{Demster-Schafer structures: definition.}
- A Dempster-Schafer structure is a set of focal elements associated with a probability.
\[
D=\left\{\left(f_{i}, w_{i}\right) \mid f_{i} \text { is a focal element and } w_{i} \in[0,1], \sum_{i} w_{i}=1\right\}
\]
- Probabilistic choice between focal elements and then non-deterministic choice within the focal element.
- Usually, focal elements are closed intervals.
\[
D=\left\{\left(\left[a_{i}, b_{i}\right], w_{i}\right) \mid a_{i} \leq b_{i} \text { and } w_{i} \in[0,1], \sum_{i} w_{i}=1\right\}
\]
- Example:


\section*{From P-Boxes to DS-structures}
I. From a continuous to a discrete P-Box: discretization.

2. From a discrete P-Box to a DS-structure: Moebius inversion.


\section*{From DS-Structures to P-Boxes.}
- Given a DS-Structure
\[
D=\left\{\left(\left[a_{i}, b_{i}\right], w_{i}\right), i \in[1, n]\right\}
\]
- We define the two functions \(F\) and \(F\) by:
\[
\underline{F}(x)=\sum_{i \mid b_{i} \leq x} w_{i} \quad \bar{F}(x)=\sum_{i \mid a_{i}<x} w_{i}
\]
- This forms a P-Box and
\[
\gamma(D)=\gamma(\underline{F}, \bar{F})
\]
- A DS-structure thus represents a set of probability distributions enclosed by step functions.

\section*{Demster-Schafer structures arithmetic.}
- Case of independent inputs.
\[
Z=\left\{\left(\left[a_{i j}, b_{i j}\right], w_{i j}\right) \mid \exists i, j,\left[a_{i j}, b_{i j}\right]=\left[a_{i}, b_{i}\right] \square\left[a^{\prime} j, b^{\prime} j\right], w_{i j}=w_{i} \cdot w_{j}^{\prime}\right\}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline\(X\) & {\([0,1]\)} & {\([0.5,1.5]\)} & {\([0.5,3]\)} & {\([4,5]\)} \\
0.25 & 0.25 & 0.25 & 0.25 \\
\hline\([2,4]\) & {\([2,5]\)} & {\([2.5,5.5]\)} & {\([2.5,7]\)} & {\([6,9]\)} \\
0.3 & 0.075 & 0.075 & 0.075 & 0.075 \\
\hline\([3,5]\) & {\([3,6]\)} & {\([3.5,6.5]\)} & {\([3.5,8]\)} & {\([7,10]\)} \\
0.6 & 0.150 & 0.150 & 0.150 & 0.150 \\
\hline\([4,10]\) & {\([4,11]\)} & {\([4.5,11.5]\)} & {\([4.5,13]\)} & {\([8,15]\)} \\
0.1 & 0.025 & 0.025 & 0.025 & 0.025 \\
\hline
\end{tabular}

\section*{Demster-Schafer structures arithmetic: example.}


\section*{Demster-Schafer structures arithmetic.}
- Case of dependent inputs (unknown dependency).
\begin{tabular}{|c|c|c|c|c|}
\hline  & \[
\begin{gathered}
{[2,4]} \\
0.3
\end{gathered}
\] & \[
\begin{gathered}
{[3,5]} \\
0.6
\end{gathered}
\] & \[
\begin{gathered}
{[4,10]} \\
0.1
\end{gathered}
\] & \\
\hline \[
\begin{aligned}
& {[0,1]} \\
& 0.25
\end{aligned}
\] & \[
\begin{gathered}
{[2,5]} \\
p_{11}
\end{gathered}
\] & \[
\begin{gathered}
{[3,6]} \\
\mathrm{p}_{12}
\end{gathered}
\] & \begin{tabular}{l}
\[
[4,11]
\] \\
\(\mathrm{p}_{13}\)
\end{tabular} & \[
p_{i}=\sum_{j=1}^{n} p_{i, j}
\] \\
\hline \[
\begin{gathered}
{[0.5,1.5]} \\
0.25
\end{gathered}
\] & \[
\begin{gathered}
{[2.5,5.5]} \\
p_{21}
\end{gathered}
\] & \[
\begin{gathered}
{[3.5,6.5]} \\
p_{22}
\end{gathered}
\] & \[
\begin{gathered}
{[4.5,11.5]} \\
\mathrm{p}_{23}
\end{gathered}
\] & \[
\begin{aligned}
& p_{j}^{\prime}=\sum_{i=1}^{m} p_{i, j} \\
& P(Z \leq z) \leq \sum p_{i}
\end{aligned}
\] \\
\hline \[
\begin{gathered}
{[0.5,3]} \\
0.25
\end{gathered}
\] & \[
\begin{gathered}
{[2.5,7]} \\
p_{31}
\end{gathered}
\] & \[
\begin{gathered}
{[3.5,8]} \\
p_{32}
\end{gathered}
\] & \[
\begin{gathered}
{[4.5,13]} \\
p_{33}
\end{gathered}
\] & \[
P(Z \leq z) \geq \sum_{b_{i}^{\prime} \leq z} p_{i, j}
\] \\
\hline \[
\begin{gathered}
{[4,5]} \\
0.25
\end{gathered}
\] & \[
\begin{gathered}
{[6,9]} \\
p_{41}
\end{gathered}
\] & \[
\begin{gathered}
{[7,10]} \\
\mathrm{p}_{42}
\end{gathered}
\] & \[
\begin{gathered}
{[8,15]} \\
\mathrm{p}_{43}
\end{gathered}
\] & \\
\hline
\end{tabular}

\section*{Demster-Schafer structures arithmetic.}
- Case of dependent inputs (unknown dependency).
\begin{tabular}{|c|c|c|c|c|}
\hline  & \[
\begin{gathered}
{[2,4]} \\
0.3
\end{gathered}
\] & \[
\begin{gathered}
{[3,5]} \\
0.6
\end{gathered}
\] & \[
\begin{gathered}
{[4,10]} \\
0.1
\end{gathered}
\] & \\
\hline \[
\begin{aligned}
& {[0,1]} \\
& 0.25
\end{aligned}
\] & \[
\begin{gathered}
{[2,5]} \\
p_{11}
\end{gathered}
\] & \[
\begin{gathered}
{[3,6]} \\
p_{12}
\end{gathered}
\] & \begin{tabular}{l}
\[
[4,11]
\] \\
\(\mathrm{p}_{13}\)
\end{tabular} & \[
p_{i}=\sum_{j=1}^{n} p_{i, j}
\] \\
\hline \[
\begin{gathered}
{[0.5,1.5]} \\
0.25
\end{gathered}
\] & \[
\begin{gathered}
{[2.5,5.5]} \\
p_{21}
\end{gathered}
\] & \[
\begin{gathered}
{[3.5,6.5]} \\
p_{22}
\end{gathered}
\] & \[
\begin{gathered}
{[4.5,11.5]} \\
p_{23}
\end{gathered}
\] & \[
\begin{aligned}
& p_{j}^{\prime}=\sum_{i=1}^{m} p_{i, j} \\
& P(Z \leq z) \leq \sum p_{i, j} \quad z=6.5
\end{aligned}
\] \\
\hline \[
\begin{gathered}
{[0.5,3]} \\
0.25
\end{gathered}
\] & \[
\begin{gathered}
{[2.5,7]} \\
p_{31}
\end{gathered}
\] & \[
\begin{gathered}
{[3.5,8]} \\
p_{32}
\end{gathered}
\] & \begin{tabular}{l}
\[
[4.5,13]
\] \\
\(\mathrm{p}_{33}\)
\end{tabular} & \[
P(Z \leq z) \geq \sum_{b_{i}^{\prime} \leq z} p_{i, j}
\] \\
\hline \[
\begin{gathered}
{[4,5]} \\
0.25
\end{gathered}
\] & \[
\begin{gathered}
{[6,9]} \\
p_{41}
\end{gathered}
\] & \[
\begin{gathered}
{[7,10]} \\
p_{42}
\end{gathered}
\] & \[
\begin{gathered}
{[8,15]} \\
\mathrm{p}_{43}
\end{gathered}
\] & \\
\hline
\end{tabular}

\section*{Demster-Schafer structures arithmetic.}
- Case of dependent inputs (unknown dependency).


\section*{Demster-Schafer structures arithmetic: direct method.}
- Remember (P-Box arithmetic):
\[
\left(\underline{F}_{Z}, \bar{F}_{Z}\right)=\lambda u \cdot\left(\sup _{x \square y=u} \max \left(\underline{F}_{X}(x)+\underline{F}_{Y}(y)-1,0\right), \inf _{x \square y=u} \min \left(\bar{F}_{X}(x)+\bar{F}_{Y}(y), 1\right)\right)
\]
- And (DS-structure to P-Box conversion):
\[
\underline{F}(x)=\sum_{i \mid b_{i} \leq x} w_{i} \quad \bar{F}(x)=\sum_{i \mid a_{i}<x} w_{i}
\]
- Combining both we get a direct algorithm to compute the DS-structure of \(Z=X \square Y\) with unknown dependency.

\section*{Demster-Schafer structures arithmetic: example.}

\section*{Demster-Schafer structures arithmetic: example.}


\section*{Examples of use.}
- The DS-structure arithmetic has been re-implemented in C++.
- Code inspired by the Statool software.
- Implements both independent and dependent arithmetics.
- Easy to use: operator overloading.
- Efficiency: reduction operator to control the number of focal elements in the DS-structure.


\section*{Examples of use.}
- The DS-structure arithmetic has been re-implemented in \(\mathrm{C}++\).
- Code inspired by the Statool software.
- Implements both independent and dependent arithmetics.
- Easy to use: operator overloading.
- Efficiency: reduction operator to control the number of focal elements in the DS-structure.


\section*{Examples of use.}
- Filter with DS entries between -1 and 1 .


\section*{Examples of use.}
- Filter with DS entries between -1 and 1 .


\section*{Problems with the DS-Structure approach.}
- When we use the «unknown dependency» arithmetics, we make huge over-approximations.
- There are cases where the dependency between variables is known.

- How can we encode this dependency ?
- Most general way: notion of copulas.
- Our approach: encode linear dependency only using affine sets.

\section*{Probabilistic affine sets.}
- An affine set is the image by an affine transformation of the \(n\)-dimensional cube \([-1,1]^{n}\)
- A Demster-Schafer structure is given by a sequence of focal elements with associated probabilities.
- Two ways of mixing both:
- either construct DS structures with focal elements being zonotopes.
- either define the affine transformation of a DS structure with focal elements contained in the \(n\)-dimensional cube.
- are both ways the same ?
- We chose the second approach and show that in this way, we introduce linear relationships between variables that help reduce the overapproximation.

\section*{Probabilistic affine sets: concept.}
- A probabilistic affine set is given by:
- an affine transformation of a set of noise symbols.
- a function associating each noise symbol with a P-Box.
- We distinguish two kinds of noise symbols:
- the ones representing independent inputs ( \(\varepsilon_{i}\) ). Sharing of these symbols represent linear relations between variables.
- the ones coming from non-linear operations between variables \(\left(\eta_{j}\right)\). One such symbol is created at each non-linear operation.
- Both kinds of symbols are treated differently:
- \(\quad \varepsilon_{i}\) is supposed to be independent from \(\varepsilon_{i^{\prime}}\left(i \neq i^{\prime}\right)\).
- the dependency relation between \(\eta_{j}\) and any other noise symbol is unknown.

\section*{Probabilistic affine sets: definition.}

The probabilistic affine set abstract domain
\[
\begin{gathered}
X_{i}^{p}=\left(X_{i}, \varphi^{p}\right) \\
X_{i}^{p}=\left\{\begin{array}{ccc}
x & \mapsto & \alpha_{0}^{x}+\sum_{i=1}^{m} \alpha_{i}^{x} \epsilon_{i}+\sum_{j=1}^{n} \beta_{j}^{x} \eta_{j} \\
y & \mapsto & \alpha_{0}^{y}+\sum_{i=1}^{m} \alpha_{i}^{y} \epsilon_{i}+\sum_{j=1}^{n} \beta_{j}^{y} \eta_{j} \\
\cdots & \left.\alpha_{i}^{v} \in \mathbb{R}, \beta_{j}^{v} \in \mathbb{R}\right\} \\
\varphi^{p}:\left\{\varepsilon_{i}, \eta_{j}\right\} \rightarrow\{\text { P-Boxes }\}
\end{array}\right.
\end{gathered}
\]

We call \(\mathbb{A} \mathbb{S}^{p}\) the set of all such elements.

Remark: we do not assume that the P-Boxes are bounded.

\section*{Probabilistic affine sets: concretization.}
- The concretization function associates to a probabilistic affine set a set of probability distributions.
\[
\gamma^{p}: \mathbb{A S}^{p} \rightarrow \mathcal{P}\left(\mathcal{F}_{\mathbb{R}^{n}}\right)
\]
- Same as for afine sets, except that arithmetic operations are done using the P -Box domain.
\[
\begin{aligned}
\gamma^{p}\left(X_{i}, \varphi^{p}\right) & =\left\{f \in \mathcal{F}_{\mathbb{R}^{V}} \mid \forall v \in V, f_{v} \in \gamma\left(\underline{F}_{v}, \bar{F}_{v}\right)\right\} \\
\left(\underline{F}_{v}, \bar{F}_{v}\right) & =\alpha_{0}^{v}+\sum_{i=1}^{m} \alpha_{i}^{v} \varphi^{p}\left(\varepsilon_{i}\right)+\sum_{j=1}^{n} \beta_{j}^{v} \varphi^{p}\left(\eta_{j}\right)
\end{aligned}
\]

\section*{Probabilistic affine sets: concretization.}
- The concretization function associates to a probabilistic affine set a set of probability distributions.
\[
\gamma^{p}: \mathbb{A S}^{p} \rightarrow \mathcal{P}\left(\mathcal{F}_{\mathbb{R}^{n}}\right)
\]
- Same as for afine sets, except that arithmetic operations are done using the P -Box domain.
\[
\begin{aligned}
& \gamma^{p}\left(X_{i}, \varphi^{p}\right)=\left\{f \in \mathcal{F}_{\mathbb{R}^{V}} \mid \forall v \in V, f_{v} \in \gamma\left(\underline{F}_{v}, \bar{F}_{v}\right)\right\} \\
&\left(\underline{F}_{v}, \bar{F}_{v}\right)=\alpha_{0}^{v}+\sum_{i=1}^{m} \alpha_{i}^{v} \varphi^{p}\left(\varepsilon_{i}\right)+\sum_{j=1}^{n} \beta_{j}^{v} \varphi^{p}\left(\eta_{j}\right) \\
& \begin{array}{c}
\text { Operations using } \\
\text { independency }
\end{array} \begin{array}{c}
\text { Operations using } \\
\text { unknown dependency }
\end{array}
\end{aligned}
\]

\section*{Probabilistic affine sets: affectation.}
\[
\begin{array}{ll}
x=[a, b] \quad & x=\frac{a+b}{2}+\frac{b-a}{2} \varepsilon_{1} \\
& \varphi^{p}\left(\varepsilon_{1}\right)=\left\{\left.\left\langle\left[\frac{2 k-N}{N}, \frac{2(k+1)-N}{N}\right],\right\rangle \right\rvert\, k \in[0, N-1]\right\}
\end{array}
\]

\section*{Probabilistic affine sets: affectation.}
- In case of non-deterministic inpus, we generate a new noise symbol, the associated P -Box being a uniform distribution.
\[
\begin{array}{ll}
x=[a, b] \quad & x=\frac{a+b}{2}+\frac{b-a}{2} \varepsilon_{1} \\
& \varphi^{p}\left(\varepsilon_{1}\right)=\left\{\left.\left\langle\left[\frac{2 k-N}{N}, \frac{2(k+1)-N}{N}\right],\right\rangle \right\rvert\, k \in[0, N-1]\right\}
\end{array}
\]

\section*{Probabilistic affine sets: affectation.}
- In case of non-deterministic inpus, we generate a new noise symbol, the associated P -Box being a uniform distribution.
\[
x=[a, b] \quad x=\frac{a+b}{2}+\frac{b-a}{2} \varepsilon_{1}
\]
\[
\varphi^{p}\left(\varepsilon_{1}\right)=\left\{\left.\left\langle\left[\frac{2 k-N}{N}, \frac{2(k+1)-N}{N}\right],\right\rangle \right\rvert\, k \in[0, N-1]\right\}
\]
\[
x=[-1,1], \quad N=10
\]

- Remark: even with this we may obtain «better» results than with standard affine forms, see the experimentations.

\section*{Probabilistic affine sets: affectation (bis).}
- We need a more complicated affectation that can define some characteristics of the distributions (mean, standard deviation, ...).
\[
x=\operatorname{normal}([90,100],[20,30])
\]


\section*{Probabilistic affine sets: affectation (bis).}
- We need a more complicated affectation that can define some characteristics of the distributions (mean, standard deviation, ...).
\[
x=\operatorname{normal}([90,100],[20,30])
\]


\section*{Probabilistic affine sets: arithmetic.}
- Linear transformation: same as for standard affine sets.
\[
f_{l i n}\left(X, \varphi^{p}\right)=\left(f_{l i n}(X), \varphi^{p}\right)
\]
- No new symbol is created, so no need to modify \(\varphi^{p}\).
- The dependencies between variables are propagated through \(f_{l i n}\).
- Exemple:
\[
\left.\begin{array}{cl}
x=20-4 \epsilon_{1}+2 \epsilon_{3} \quad \begin{array}{l}
\mathrm{t}=[1,5] ; \\
\mathrm{z}=\mathrm{x}-2 \mathrm{y}+\mathrm{t} ;
\end{array} & \begin{array}{l}
x=20-4 \epsilon_{1}+2 \epsilon_{3} \\
y=10-2 \epsilon_{1}+\epsilon_{2}
\end{array} \\
y=10-2 \epsilon_{1}+\epsilon_{2} \\
z=3-2 \epsilon_{2}+2 \epsilon_{3}+2 \epsilon_{4} \\
\varphi^{p} \longrightarrow \\
& t=3+2 \epsilon_{4}
\end{array}\right] \begin{aligned}
& \varphi^{p}\left[\epsilon_{4} \mapsto\left\{\left[\frac{2 k-N}{N}, \frac{2(k+1)-N}{N}\right], \frac{1}{N}\right\}\right]
\end{aligned}
\]

\section*{Probabilistic affine sets: arithmetic.}
- Multiplication: we must define the P-Box attached to the new noise symbol.
\[
\begin{aligned}
& \left(\alpha_{0}^{x}+\sum_{i=1}^{m} \alpha_{i}^{x} \epsilon_{i}+\sum_{j=1}^{n} \beta_{j}^{x} \eta_{j}\right) \times\left(\alpha_{0}^{y}+\sum_{i=1}^{m} \alpha_{i}^{y} \epsilon_{i}+\sum_{j=1}^{n} \beta_{j}^{y} \eta_{j}\right)= \\
& \quad \alpha_{0}^{x} * \alpha_{0}^{y}+\sum_{i=1}^{m}\left(\alpha_{0}^{y} \alpha_{i}^{x}+\alpha_{0}^{x} \alpha_{i}^{y}\right) \epsilon_{i}+\sum_{i=1}^{m}\left(\alpha_{0}^{y} \eta_{i}^{x}+\alpha_{0}^{x} \eta_{i}^{y}\right) \eta_{i} \\
& \quad+\sum_{1 \leq i, j \leq m} \alpha_{i}^{x} \alpha_{j}^{y} \epsilon_{i} \epsilon_{j} \\
& \quad+\sum_{1 \leq i \leq m, 1 \leq j \leq n}\left(\alpha_{i}^{x} \beta_{j}^{y}+\alpha_{i}^{y} \beta_{j}^{x}\right) \epsilon_{i} \eta_{j} \\
& \quad+\sum_{1 \leq i, j \leq n}\left(\beta_{i}^{x} \beta_{j}^{y}+\beta_{i}^{y} \beta_{j}^{x}\right) \eta_{i} \eta_{j}
\end{aligned}
\]

\section*{Probabilistic affine sets: arithmetic.}
- Multiplication: we must define the P-Box attached to the new noise symbol.
\[
\begin{aligned}
& \left(\alpha_{0}^{x}+\sum_{i=1}^{m} \alpha_{i}^{x} \epsilon_{i}+\sum_{j=1}^{n} \beta_{j}^{x} \eta_{j}\right) \times\left(\alpha_{0}^{y}+\sum_{i=1}^{m} \alpha_{i}^{y} \epsilon_{i}+\sum_{j=1}^{n} \beta_{j}^{y} \eta_{j}\right)= \\
& \quad \alpha_{0}^{x} * \alpha_{0}^{y}+\sum_{i=1}^{m}\left(\alpha_{0}^{y} \alpha_{i}^{x}+\alpha_{0}^{x} \alpha_{i}^{y}\right) \epsilon_{i}+\sum_{i=1}^{m}\left(\alpha_{0}^{y} \eta_{i}^{x}+\alpha_{0}^{x} \eta_{i}^{y}\right) \eta_{i} \\
& \quad+\sum_{1 \leq i, j \leq m} \alpha_{i}^{x} \alpha_{j}^{y} \epsilon_{i} \epsilon_{j} \\
& \quad+\sum_{1 \leq i \leq m, 1 \leq j \leq n}\left(\alpha_{i}^{x} \beta_{j}^{y}+\alpha_{i}^{y} \beta_{j}^{x}\right) \epsilon_{i} \eta_{j} \\
& \quad+\sum_{1 \leq i, j \leq n}\left(\beta_{i}^{x} \beta_{j}^{y}+\beta_{i}^{y} \beta_{j}^{x}\right) \eta_{i} \eta_{j}
\end{aligned}
\]

\section*{Probabilistic affine sets: arithmetic.}
- Multiplication: we must define the P-Box attached to the new noise symbol.
\[
\left(\alpha_{0}^{x}+\sum_{i=1}^{m} \alpha_{i}^{x} \epsilon_{i}+\sum_{j=1}^{n} \beta_{j}^{x} \eta_{j}\right) \times\left(\alpha_{0}^{y}+\sum_{i=1}^{m} \alpha_{i}^{y} \epsilon_{i}+\sum_{j=1}^{n} \beta_{j}^{y} \eta_{j}\right)=
\]
\[
\alpha_{0}^{x} * \alpha_{0}^{y}+\sum_{i=1}^{m}\left(\alpha_{0}^{y} \alpha_{i}^{x}+\alpha_{0}^{x} \alpha_{i}^{y}\right) \epsilon_{i}+\sum_{i=1}^{m}\left(\alpha_{0}^{y} \eta_{i}^{x}+\alpha_{0}^{x} \eta_{i}^{y}\right) \eta_{i}
\]
\[
\begin{aligned}
& +\sum_{1 \leq i, j \leq m} \alpha_{i}^{x} \alpha_{j}^{y} \epsilon_{i} \epsilon_{j} \\
& +\sum_{1 \leq i \leq m, 1 \leq j \leq n}\left(\alpha_{i}^{x} \beta_{j}^{y}+\alpha_{i}^{y} \beta_{j}^{x}\right) \epsilon_{i} \eta_{j} \\
& +\sum_{1 \leq i, j \leq n}\left(\beta_{i}^{x} \beta_{j}^{y}+\beta_{i}^{y} \beta_{j}^{x}\right) \eta_{i} \eta_{j}
\end{aligned}
\]

Non-linear part: must be overapproximated

\section*{Probabilistic affine sets: arithmetic.}
- Overapproximation of the non-linear term.
\[
\begin{aligned}
\beta_{n+1} \eta_{n+1}= & \sum_{1 \leq i, j \leq m} \alpha_{i}^{x} \alpha_{j}^{y} \epsilon_{i} \epsilon_{j} \\
& +\sum_{1 \leq i \leq m, 1 \leq j \leq n}\left(\alpha_{i}^{x} \beta_{j}^{y}+\alpha_{i}^{y} \beta_{j}^{x}\right) \epsilon_{i} \eta_{j} \\
& +\sum_{1 \leq i, j \leq n}\left(\beta_{i}^{x} \beta_{j}^{y}+\beta_{i}^{y} \beta_{j}^{x}\right) \eta_{i} \eta_{j}
\end{aligned}
\]
- Remark 1: we need a normalization after that to have \(\eta_{n+1} \subseteq[-1,1]\).
- Remark 2: we treat separately the terms \(\epsilon_{i} \epsilon_{i}\) as they are not independent.

\section*{Probabilistic affine sets: arithmetic.}
- Overapproximation of the non-linear term.
\[
\begin{aligned}
\beta_{n+1} \eta_{n+1}= & \sum_{1 \leq i, j \leq m} \alpha_{i}^{x} \alpha_{j}^{y} \epsilon_{i} \epsilon_{j} \\
& +\sum_{1 \leq i \leq m, 1 \leq j \leq n}\left(\alpha_{i}^{x} \beta_{j}^{y}+\alpha_{i}^{y} \beta_{j}^{x}\right) \epsilon_{i} \eta_{j} \\
& +\sum_{1 \leq i, j \leq n}\left(\beta_{i}^{x} \beta_{j}^{y}+\beta_{i}^{y} \beta_{j}^{x}\right) \eta_{i} \eta_{j}
\end{aligned}
\]
Using independency arithmetics
- Remark 1: we need a normalization after that to have \(\eta_{n+1} \subseteq[-1,1]\).
- Remark 2: we treat separately the terms \(\epsilon_{i} \epsilon_{i}\) as they are not independent.

\section*{Probabilistic affine sets: arithmetic.}
- Overapproximation of the non-linear term.
\[
\begin{aligned}
\beta_{n+1} \eta_{n+1}= & \sum_{1 \leq i, j \leq m} \alpha_{i}^{x} \alpha_{j}^{y} \epsilon_{i} \epsilon_{j} \\
& +\sum_{1 \leq i \leq m, 1 \leq j \leq n}\left(\alpha_{i}^{x} \beta_{j}^{y}+\alpha_{i}^{y} \beta_{j}^{x}\right) \epsilon_{i} \eta_{j} \\
& +\sum_{1 \leq i, j \leq n}\left(\beta_{i}^{x} \beta_{j}^{y}+\beta_{i}^{y} \beta_{j}^{x}\right) \eta_{i} \eta_{j}
\end{aligned}
\]

\section*{Using unknown dependency arithmetics}
- Remark 1: we need a normalization after that to have \(\eta_{n+1} \subseteq[-1,1]\).
- Remark 2: we treat separately the terms \(\epsilon_{i} \epsilon_{i}\) as they are not independent.

\section*{Probabilistic affine sets: example.}

\section*{- Linear filter.}


\section*{Probabilistic affine sets: example.}
- Linear filter.


\section*{Probabilistic affine sets: example.}
- Linear filter.


\section*{Probabilistic affine sets: example.}
- Linear filter.


\section*{Conclusion.}

\section*{Affine sets}
\[
\xrightarrow{\text { Affine transformation. }} \mathbb{Z}\left(\mathbb{R}^{n}\right)
\]
\(\checkmark\) Arithmetic
\(\checkmark\) Order theoretic operations


\section*{Conclusion.}

\section*{Affine sets}
\[
\xrightarrow{\text { Affine transformation. }} \mathbb{Z}\left(\mathbb{R}^{n}\right)
\]
\(\checkmark\) Arithmetic
\(\checkmark\) Order theoretic operations


\section*{Conclusion.}

\section*{Affine sets}
\[
\xrightarrow{\text { Affine transformation. }} \mathbb{Z}\left(\mathbb{R}^{n}\right)
\]
\(\checkmark\) Arithmetic
\(\checkmark\) Order theoretic operations


\section*{Conclusion: implementation.}
- This work has been implemented in C++. See demo.```

