Iterated Regret Minimization in Game Graphs

Emmanuel Filiot, Tristan Le Gall, Jean-François Raskin

Université Libre de Bruxelles (ULB)

CIRM/ LMeASI, 10 décembre 2010

Input data

 s- you spent too much time working on your MFCS paper
- your partner is angry and you want to be forgiven
- your partner likes travelling
- you don't know if she/he likes chocolates (even Belgian ones)
- Cost(chocolates) $\ll \operatorname{Cost}($ travelling)

Game Tree

Game Tree

Minmax Backward Induction

Offer a travel and pay $1000 \$$

Game Tree

Regret Minimization

$$
\begin{aligned}
& \operatorname{regret}_{1}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{cost}\left(\lambda_{1}, \lambda_{2}\right)-\text { best-response }\left(\lambda_{2}\right) \\
& \begin{array}{|c|l|l|}
\hline \text { you }\left(\lambda_{1}\right) & \text { travel } & \text { chocolates } \\
\hline \text { likes chocolates } & & \\
\hline \text { doesn't } & & \\
\hline
\end{array}
\end{aligned}
$$

Game Tree

Regret Minimization

$\operatorname{regret}_{1}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{cost}\left(\lambda_{1}, \lambda_{2}\right)-\operatorname{best}$-response $\left(\lambda_{2}\right)$

you $\left(\lambda_{1}\right)$	travel	chocolates
partner $\left(\lambda_{2}\right)$		
likes chocolates	$1000-20=980$	
doesn't		

Game Tree

Regret Minimization

$\operatorname{regret}_{1}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{cost}\left(\lambda_{1}, \lambda_{2}\right)-\operatorname{best-response}\left(\lambda_{2}\right)$

you $\left(\lambda_{1}\right)$	travel	chocolates
partner $\left(\lambda_{2}\right)$		
likes chocolates	$100-20=980$	
doesn't	$1000-1000=0$	

Game Tree

Regret Minimization

$\operatorname{regret}_{1}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{cost}\left(\lambda_{1}, \lambda_{2}\right)-$ best-response $\left(\lambda_{2}\right)$

you $\left(\lambda_{1}\right)$	travel	chocolates
partner $\left(\lambda_{2}\right)$		
likes chocolates	$1000-20=980$	$20-20=0$
doesn't	$1000-1000=0$	

Game Tree

Regret Minimization

$\operatorname{regret}_{1}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{cost}\left(\lambda_{1}, \lambda_{2}\right)-$ best-response $\left(\lambda_{2}\right)$

you $\left(\lambda_{1}\right)$	travel	chocolates
partner $\left(\lambda_{2}\right)$		
likes chocolates	$1000-20=980$	$20-20=0$
doesn't	$1000-1000=0$	$1020-1000=20$

Game Tree

Regret Minimization

$$
\begin{aligned}
& \operatorname{regret}_{1}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{cost}\left(\lambda_{1}, \lambda_{2}\right)-\text { best-response }\left(\lambda_{2}\right) \\
& \begin{array}{|c|c|c|}
\hline \text { partner }\left(\lambda_{2}\right) & \text { you }\left(\lambda_{1}\right) & \text { travel } \\
\text { chocolates } \\
\hline \text { likes chocolates } & 980 & 0 \\
\hline \text { doesn't } & 0 & 20 \\
\hline
\end{array}
\end{aligned}
$$

Game Tree

Regret Minimization

$$
\operatorname{regret}_{1}\left(\lambda_{1}\right)=\max _{\lambda_{2}}\left(\operatorname{cost}\left(\lambda_{1}, \lambda_{2}\right)-\operatorname{best-response}\left(\lambda_{2}\right)\right)
$$

partner $\left(\lambda_{2}\right)$	you $\left(\lambda_{1}\right)$	travel
chocolates		
likes chocolates	980	0
doesn't	0	20

Game Tree

Regret Minimization

$$
\operatorname{regret}_{1}=\min _{\lambda_{1}} \max _{\lambda_{2}}\left(\operatorname{cost}\left(\lambda_{1}, \lambda_{2}\right)-\text { best-response }\left(\lambda_{2}\right)\right)
$$

partner $\left(\lambda_{2}\right)$	you $\left(\lambda_{1}\right)$	travel
chocolates		
likes chocolates	980	0
doesn't	0	20

Regret Minimization

- first introduced in the 50's [Savage,51] [Niehans,48]
- in general, a cost function c_{i} models what Player i pays
- decision under uncertainty
- choose a good strategy no matter the adversary does

Regret Minimization

- first introduced in the 50's [Savage,51] [Niehans,48]
- in general, a cost function c_{i} models what Player i pays
- decision under uncertainty
- choose a good strategy no matter the adversary does

Iterated Regret Minimization

- regret minimization selects a set of strategies for each player
- can be iterated
- new solution concept proposed by [Halpern and Pass, IJCAI'09] in strategic games where the costs are given by a matrix
- iterated regret more reasonable than Nash equilibria for various classes of games (Centipede Game, Travellers dilemma,...)

Definition

A couple of strategies $\left\langle\lambda_{1}, \lambda_{2}\right\rangle$ forms a Nash equilibrium if:

- $c_{1}\left(\lambda_{1}, \lambda_{2}\right)=\min _{\lambda_{1}^{*}} c_{1}\left(\lambda_{1}^{*}, \lambda_{2}\right)$
- $c_{2}\left(\lambda_{1}, \lambda_{2}\right)=\min _{\lambda_{2}^{*}} c_{1}\left(\lambda_{1}, \lambda_{2}^{*}\right)$

Remember: $\mathrm{c}_{1}\left(\lambda_{1}, \lambda_{2}\right)$ represents what Player 1 pays

Principle

- At each turn, the active player can choose to stop the game, or to continue
- If she stops the game, a player pays less than if the other player stops the game immediatly after
- But if both players continue, they both pay less (cooperation is rewarded)

Regret Minimization vs Nash Equilibrium

- Nash equilibrium suggests to stop the game immediately

Regret Minimization vs Nash Equilibrium

- Nash equilibrium suggests to stop the game immediately
- $\operatorname{reg}_{1}(A \rightarrow S)=5$

Regret Minimization vs Nash Equilibrium

- Nash equilibrium suggests to stop the game immediately
- $\operatorname{reg}_{1}(A \rightarrow S)=5-1=4$

Regret Minimization vs Nash Equilibrium

- Nash equilibrium suggests to stop the game immediately
- $\operatorname{reg}_{1}(A \rightarrow S)=5-1=4$
- $\operatorname{reg}_{1}(A \rightarrow B ; C \rightarrow D ; E \rightarrow S)=$

Regret Minimization vs Nash Equilibrium

- Nash equilibrium suggests to stop the game immediately
- $\operatorname{reg}_{1}(A \rightarrow S)=5-1=4$
- $\operatorname{reg}_{1}(A \rightarrow B ; C \rightarrow D ; E \rightarrow S)=6-5$ or

Regret Minimization vs Nash Equilibrium

- Nash equilibrium suggests to stop the game immediately
- $\operatorname{reg}_{1}(A \rightarrow S)=5-1=4$
- $\operatorname{reg}_{1}(A \rightarrow B ; C \rightarrow D ; E \rightarrow S)=6-5$ or $4-3=1$

Regret Minimization vs Nash Equilibrium

- Nash equilibrium suggests to stop the game immediately
- $\operatorname{reg}_{1}(A \rightarrow S)=5-1=4$
- $\operatorname{reg}_{1}(A \rightarrow B ; C \rightarrow D ; E \rightarrow S)=6-5$ or $4-3=1$
- $\operatorname{reg}_{2}(B \rightarrow S)=4-2=2$

Regret Minimization vs Nash Equilibrium

- Nash equilibrium suggests to stop the game immediately
- $\operatorname{reg}_{1}(A \rightarrow S)=5-1=4$
- $\operatorname{reg}_{1}(A \rightarrow B ; C \rightarrow D ; E \rightarrow S)=6-5$ or $4-3=1$
- $\operatorname{reg}_{2}(B \rightarrow S)=4-2=2$
- $\operatorname{reg}_{2}(B \rightarrow C ; D \rightarrow S)=5-4=1$

Regret Minimization vs Nash Equilibrium

- Nash equilibrium suggests to stop the game immediately
- $\operatorname{reg}_{1}(A \rightarrow S)=5-1=4$
- $\operatorname{reg}_{1}(A \rightarrow B ; C \rightarrow D ; E \rightarrow S)=6-5$ or $4-3=1$
- $\operatorname{reg}_{2}(B \rightarrow S)=4-2=2$
- $\operatorname{reg}_{2}(B \rightarrow C ; D \rightarrow S)=5-4=1$
- $\operatorname{reg}_{1}^{\infty}(A \rightarrow B ; C \rightarrow D ; E \rightarrow S)=0$ and $\operatorname{reg}_{2}^{\infty}(B \rightarrow C ; D \rightarrow S)=0$.
- Nash equilibria: the players implicitly need to know the other player strategy
- Regret minimization: each player wants to use a good strategy no matter the other player does
- Regret minimization is a robust solution concept. In average (\#nodes ≤ 10000, max weight ≤ 30):
- Regret: payoffs are 40% worst when the other player changes her strategy while you stick to your strategy
- Subgame Perfect Nash Equilibria: 200\% to 500\% worst
- 2-players non-zero sum game given implicitely by a finite graph
- Partition of the vertices of the graph
- reachability objectives
- edges (or target nodes) are weighted: cost to the first visit to a target node
- tree arenas and finite graph arenas
- algorithms to compute the (iterated) regret and to select strategies
- extends to n players

Our aim is to compute:

$$
\begin{aligned}
\text { regret }_{1} & =\min _{\lambda_{1}} \max _{\lambda_{2}}\left[\operatorname{cost}_{1}\left(\lambda_{1}, \lambda_{2}\right)-\operatorname{best-response}\left(\lambda_{2}\right)\right] \\
& =\min _{\lambda_{1}} \max _{\lambda_{2}}\left[\operatorname{cost}_{1}\left(\lambda_{1}, \lambda_{2}\right)-\min _{\lambda_{1}^{*}} \operatorname{cost}_{1}\left(\lambda_{1}^{*}, \lambda_{2}\right)\right]
\end{aligned}
$$

and the iteration of the operator that deletes strictly dominated strategies.

	trees	target-weighted graphs	edge-weighted graphs
\#strategies	\exp	∞	∞
regret	$O(n)$	PTimE	ExPTIME
iterated regret	$O\left(n^{2}\right)$	$?$	PSEUDO-EXPTimE (with weigths $>0)$

Regret Minimization in Trees

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable subtrees

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable subtrees

Regrets for Player 1

- $\operatorname{reg}_{1}(A \rightarrow C)=$

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable subtrees

Regrets for Player 1

- $\operatorname{reg}_{1}(A \rightarrow C)=5-1=4$

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable subtrees

Regrets for Player 1

- $\operatorname{reg}_{1}(A \rightarrow C)=5-1=4$
- $\operatorname{reg}_{1}(A \rightarrow B ; B \rightarrow D)=$

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable subtrees

Regrets for Player 1

- $\operatorname{reg}_{1}(A \rightarrow C)=5-1=4$
- $\operatorname{reg}_{1}(A \rightarrow B ; B \rightarrow D)=3-0=3$

Remarks

- regret is not preserved by subtrees, no bottom-up algorithm
- we must know the best alternative seen so far
- we transform the game to obtain a min-max game

Steps of Computation

(3) For each root-to-leaf path, compute the regret of this path:
(cost of the path) - (best alternative along this path)

Steps of Computation

(3) For each root-to-leaf path, compute the regret of this path:
(cost of the path) - (best alternative along this path)

Steps of Computation

(3) For each root-to-leaf path, compute the regret of this path:
(cost of the path) - (best alternative along this path)
(2) Solve a min-max game in the tree T

$$
\begin{array}{lll}
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\min \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P1's position } \\
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\max \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P2's position } \\
\operatorname{reg}_{T}(s) & =\operatorname{reg}_{T}\left(\operatorname{path}\left(s_{0}, s\right)\right) & \text { if } s \text { is leaf }
\end{array}
$$

Steps of Computation

(3) For each root-to-leaf path, compute the regret of this path:
(cost of the path) - (best alternative along this path)
(2) Solve a min-max game in the tree T

$$
\begin{array}{lll}
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\min \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P1's position } \\
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\max \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P2's position } \\
\operatorname{reg}_{T}(s) & =\operatorname{reg}_{T}\left(\operatorname{path}\left(s_{0}, s\right)\right) & \text { if } s \text { is leaf }
\end{array}
$$

Steps of Computation

(3) For each root-to-leaf path, compute the regret of this path:
(cost of the path) - (best alternative along this path)
(2) Solve a min-max game in the tree T

$$
\begin{array}{lll}
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\min \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P1's position } \\
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\max \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P2's position } \\
\operatorname{reg}_{T}(s) & =\operatorname{reg}_{T}\left(\operatorname{path}\left(s_{0}, s\right)\right) & \text { if } s \text { is leaf }
\end{array}
$$

Steps of Computation

(3) For each root-to-leaf path, compute the regret of this path:
(cost of the path) - (best alternative along this path)
(2) Solve a min-max game in the tree T

$$
\begin{array}{lll}
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\min \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P1's position } \\
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\max \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P2's position } \\
\operatorname{reg}_{T}(s) & =\operatorname{reg}_{T}\left(\operatorname{path}\left(s_{0}, s\right)\right) & \text { if } s \text { is leaf }
\end{array}
$$

Steps of Computation

(3) For each root-to-leaf path, compute the regret of this path:
(cost of the path) - (best alternative along this path)
(2) Solve a min-max game in the tree T

$$
\begin{array}{lll}
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\min \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P1's position } \\
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\max \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P2's position } \\
\operatorname{reg}_{T}(s) & =\operatorname{reg}_{T}\left(\operatorname{path}\left(s_{0}, s\right)\right) & \text { if } s \text { is leaf }
\end{array}
$$

Steps of Computation

(3) For each root-to-leaf path, compute the regret of this path:
(cost of the path) - (best alternative along this path)
(2) Solve a min-max game in the tree T

$$
\begin{array}{lll}
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\min \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P1's position } \\
\operatorname{reg}_{T}\left(s\left(T_{1}, T_{2}\right)\right) & =\max \left(\operatorname{reg}_{T}\left(T_{1}\right), \operatorname{reg}_{T}\left(T_{2}\right)\right) & \text { if } s \text { is a P2's position } \\
\operatorname{reg}_{T}(s) & =\operatorname{reg}_{T}\left(\operatorname{path}\left(s_{0}, s\right)\right) & \text { if } s \text { is leaf }
\end{array}
$$

Algorithm

(3) compact representation of strategies that minimize the regret: delete non-optimal edges
(2) keep only the reachable states
(3) do the same for Player 2

- compute the regret in the new tree
(0) goto 1 until convergence

Algorithm

(3) compact representation of strategies that minimize the regret: delete non-optimal edges
(2) keep only the reachable states
(3) do the same for Player 2

- compute the regret in the new tree
(0) goto 1 until convergence

Overall complexity: quadratic time

What about graphs?

Description of the arena

- Finite graph arena
- Costs are located on the target nodes (alternative definition: on the edges leading to a target node)

Reduction to a min-max game

- Cut the losing part of the graph
- Enrich the graph with best alternative information
- Remark: there are as many possible best alternatives as the number of target nodes
- \rightarrow PTime Complexity

Remember

- Infinite number of strategies
- Each player has a set of target states, payoffs are on the edges
- Utility of an outcome: sum of edge payoffs until it first reaches a target state
- If all payoffs are strictly positive integers, pseudo-polynomial time algorithm (unfolding \rightarrow tree arena)

Challenges

Remember

- Infinite number of strategies
- Each player has a set of target states, payoffs are on the edges
- Utility of an outcome: sum of edge payoffs until it first reaches a target state
- If all payoffs are strictly positive integers, pseudo-polynomial time algorithm (unfolding \rightarrow tree arena)

Challenges

- Loops !

Remember

- Infinite number of strategies
- Each player has a set of target states, payoffs are on the edges
- Utility of an outcome: sum of edge payoffs until it first reaches a target state
- If all payoffs are strictly positive integers, pseudo-polynomial time algorithm (unfolding \rightarrow tree arena)

Challenges

- Loops !
- Player i's choices are no longer important (for her) when her target is reached

Remember

- Infinite number of strategies
- Each player has a set of target states, payoffs are on the edges
- Utility of an outcome: sum of edge payoffs until it first reaches a target state
- If all payoffs are strictly positive integers, pseudo-polynomial time algorithm (unfolding \rightarrow tree arena)

Challenges

- Loops !
- Player i's choices are no longer important (for her) when her target is reached
- Avoid subset construction

Loops no more

- Loop-free strategies are sufficient to minimize regrets ...
- ... but we must consider all strategies when computing iterated regret
- Assuming payoffs $>0 \longrightarrow$ eliminate loop issues

Transformation

- Unfold the graph and detect loops
- Nodes of the unfolding $\left\langle n, u_{1}, u_{2}, b_{1}, b_{2}\right\rangle$ where
- n is a node of the original graph
- u_{i} represents the utility for Player i (sum of payoffs) up to this node
- b_{i} is a boolean remembering whether Player i's target has been reached

Transformation

- Unfold the graph and detect loops
- Nodes of the unfolding $\left\langle n, u_{1}, u_{2}, b_{1}, b_{2}\right\rangle$ where
- n is a node of the original graph
- u_{i} represents the utility for Player i (sum of payoffs) up to this node
- b_{i} is a boolean remembering whether Player i 's target has been reached
- Transition function: $\left\langle n, u_{1}, u_{2}, b_{1}, b_{2}\right\rangle \longrightarrow\left\langle n^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}\right\rangle$ if:
- there is an edge $n \rightarrow n^{\prime}$
- $u_{i}^{\prime}=$ if b_{i} then u_{i} else $u_{i}+c_{i}\left(n \rightarrow n^{\prime}\right)$
- $b_{i}^{\prime}=b_{i}$ or n^{\prime} is one of Player i 's target states

Transformation

- Unfold the graph and detect loops
- Nodes of the unfolding $\left\langle n, u_{1}, u_{2}, b_{1}, b_{2}\right\rangle$ where
- n is a node of the original graph
- u_{i} represents the utility for Player i (sum of payoffs) up to this node
- b_{i} is a boolean remembering whether Player i 's target has been reached
- Transition function: $\left\langle n, u_{1}, u_{2}, b_{1}, b_{2}\right\rangle \longrightarrow\left\langle n^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}\right\rangle$ if:
- there is an edge $n \rightarrow n^{\prime}$
- $u_{i}^{\prime}=$ if b_{i} then u_{i} else $u_{i}+c_{i}\left(n \rightarrow n^{\prime}\right)$
- $b_{i}^{\prime}=b_{i}$ or n^{\prime} is one of Player i^{\prime} 's target states
- Loop detection: if $u_{i}>M$ where M is the maximal utility on a loop-free paths of the graph
- Stop unfolding when $b_{1} \& \& b_{2}$ or when a loop is detected
- Utility of a leaf: $c_{i}\left(\left\langle n, u_{1}, u_{2}, b_{1}, b_{2}\right\rangle\right)=$ if b_{i} then u_{i} else $+\infty$

Transformation

- Unfold the graph and detect loops
- Nodes of the unfolding $\left\langle n, u_{1}, u_{2}, b_{1}, b_{2}\right\rangle$ where
- n is a node of the original graph
- u_{i} represents the utility for Player i (sum of payoffs) up to this node
- b_{i} is a boolean remembering whether Player i 's target has been reached
- Transition function: $\left\langle n, u_{1}, u_{2}, b_{1}, b_{2}\right\rangle \longrightarrow\left\langle n^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}\right\rangle$ if:
- there is an edge $n \rightarrow n^{\prime}$
- $u_{i}^{\prime}=$ if b_{i} then u_{i} else $u_{i}+c_{i}\left(n \rightarrow n^{\prime}\right)$
- $b_{i}^{\prime}=b_{i}$ or n^{\prime} is one of Player i^{\prime} 's target states
- Loop detection: if $u_{i}>M$ where M is the maximal utility on a loop-free paths of the graph
- Stop unfolding when $b_{1} \& \& b_{2}$ or when a loop is detected
- Utility of a leaf: $c_{i}\left(\left\langle n, u_{1}, u_{2}, b_{1}, b_{2}\right\rangle\right)=$ if b_{i} then u_{i} else $+\infty$
- Overall complexity: pseudo-polynomial time and space

Future work

- Extend the class of graphs: iterated regret minimization in general game graphs
- problem: 0-cost loops
- challenge: add fairness condition to the graph

- Extend the quantitative measure: quantitative languages (Chatterjee, Doyen, Henzinger, 2008), ...

Thank you

