Justification logic for constructive modal logic

Sonia Marin
With Roman Kuznets and Lutz Straßburger

Inria, LIX, École Polytechnique

IMLA’17
July 17, 2017
The big picture

Justification logic:

Gödel:
What is the classical provability semantics of intuitionistic logic?

Artemov:
Logic of Proofs gives an operational view of this S4 type of provability.

A; t: A; t is a proof of A

Semantics: Peano arithmetics or epistemic possible worlds models

Extensions: realisation of logics below and above S4

Intuitionistic variants:
Some investigations toward ▶ realisation theorems (Artemov/Steren and Bonelli), ▶ epistemic semantics (Marti and Studer), ▶ and arithmetical completeness (Artemov and Iemhoff), but where the modal language is restricted to the 2 modality.

However, intuitionistically ▶ cannot simply be viewed as the dual of ▶.
Justification logic:
Gödel:
What is the classical provability semantics of intuitionistic logic?
Artemov:
Logic of Proofs gives an operational view of this S4 type of provability.

\[
\square A \rightsquigarrow t : A \rightsquigarrow t \text{ is a proof of } A
\]
The big picture

Justification logic:
Gödel:
What is the classical provability semantics of intuitionistic logic?
Artemov:
Logic of Proofs gives an operational view of this S4 type of provability.

\[\square A \rightsquigarrow t : A \rightsquigarrow t \textit{ is a proof of } A \]

Semantics: Peano arithmetics or epistemic possible worlds models
Extensions: realisation of logics below and above S4
The big picture

Justification logic:
Gödel:
What is the classical provability semantics of intuitionistic logic?
Artemov:
Logic of Proofs gives an operational view of this S4 type of provability.

\[\square A \sim t : A \sim t \text{ is a proof of } A \]

Semantics: Peano arithmetics or epistemic possible worlds models
Extensions: realisation of logics below and above S4

Intuitionistic variants: Some investigations toward
- realisation theorems (Artemov/Steren and Bonelli),
- epistemic semantics (Marti and Studer),
- and arithmetical completeness (Artemov and Iemhoff),
but where the modal language is restricted to the \[\square \] modality.
The big picture

Justification logic:
Gödel:
What is the classical provability semantics of intuitionistic logic?
Artemov:
Logic of Proofs gives an operational view of this S4 type of provability.

\[\square A \leadsto t : A \leadsto t \text{ is a proof of } A \]

Semantics: Peano arithmetics or epistemic possible worlds models
Extensions: realisation of logics below and above S4

Intuitionistic variants: Some investigations toward
 \[\begin{align*}
 & \text{realisation theorems (Artemov/Steren and Bonelli),} \\
 & \text{epistemic semantics (Marti and Studer),} \\
 & \text{and arithmetical completeness (Artemov and Iemhoff),}
\end{align*} \]
but where the modal language is restricted to the \(\square \) modality.

However, intuitionistically cannot simply be viewed as the dual of \(\square \).
What are we doing here?

Justifying: We start with Artemov’s treatment of the □-fragment of intuitionistic modal logic.
What are we doing here?

Justifying ◊:

We start with Artemov’s treatment of the □-fragment of intuitionistic modal logic.

□ being read as provability, we propose to read ◊ as consistency.

◊A ⊨ μ : A ⊨ μ is an witness of A
What are we doing here?

\textbf{Justifying }\Diamond:\textbf{ }
We start with Artemov's treatment of the \Box-fragment of intuitionistic modal logic.

\Box being read as \textit{provability}, we propose to read \Diamond as \textit{consistency}.

$$\Diamond A \rightsquigarrow \mu : A \rightsquigarrow \mu \text{ is an witness of } A$$

\textit{Intuitionistic modal logic?}
What are we doing here?

Justifying ◊:
We start with Artemov’s treatment of the □-fragment of intuitionistic modal logic.

□ being read as *provability*, we propose to read ◊ as *consistency*.

◊ $A \rightsquigarrow \mu : A \rightsquigarrow \mu$ is an witness of A

Intuitionistic modal logic?
The program: represent the operational side of the intuitionistic ◊.
What are we doing here?

Justifying \Diamond:
We start with Artemov’s treatment of the \Box-fragment of intuitionistic modal logic.

\Box being read as provability, we propose to read \Diamond as consistency.

\[
\Diamond A \implies \mu : A \implies \mu \text{ is an witness of } A
\]

Intuitionistic modal logic?
The program: represent the operational side of the intuitionistic \Diamond.

The focus: on constructive versions of modal logic.
Constructive modal logic

Formulas: $A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A$

Logic CK: Intuitionistic Propositional Logic
Constructive modal logic

Formulas: \(A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid \Box A \mid \Diamond A \)

Logic CK: Intuitionistic Propositional Logic

\[+ \quad k_1: \Box(A \supset B) \supset (\Box A \supset \Box B) \quad k_2: \Box(A \supset B) \supset (\Diamond A \supset \Diamond B) \quad + \quad \text{necessitation: } \frac{A}{\Box A} \]

(Wijesekera/Bierman and de Paiva/Mendler and Scheele)
Justification logic

Justification logic adds proof terms directly inside its language.

\(\Box A \leadsto t : A \leadsto t \text{ is a proof of } A \)
Justification logic adds proof terms directly inside its language.

$$\Box A \rightsquigarrow t : A \rightsquigarrow t \text{ is a proof of } A$$

In the constructive version, we also add witness terms into the language.

$$\Diamond A \rightsquigarrow \mu : A \rightsquigarrow \mu \text{ is a witness of } A$$
Justification logic

Modal formulas:

\[A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid \Box A \]

Justification formulas:

\[A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid t : A \]

Grammar of terms:

\[t ::= c \mid x \mid (t \cdot t) \mid (t + t) \mid ! t \]

c : proof constants
x : proof variables
\cdot : application
+ : sum
! : proof checker
Justification logic for constructive modal logic

Modal formulas: \[A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid \Box A \mid \Diamond A \]

Justification formulas: \[A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid t : A \mid \mu : A \]

Grammar of terms:
\[t ::= c \mid x \mid (t \cdot t) \mid (t + t) \mid ! t \]

\(c\) : proof constants
\(x\) : proof variables
\(\cdot\) : application
\(+\) : sum
\(!\) : proof checker
Justification logic for constructive modal logic

Modal formulas: \(A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid \square A \mid \lozenge A \)

Justification formulas: \(A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid t : A \mid \mu : A \)

Grammar of terms:

\[
\begin{align*}
 t & ::= c \mid x \mid (t \cdot t) \mid (t + t) \mid ! t \\
 \mu & ::= \alpha \mid t * \mu \mid (\mu \sqcup \mu)
\end{align*}
\]

\(c \): proof constants
\(x \): proof variables
\(\cdot \): application
\(+ \): sum
\(! \): proof checker
Justification logic for constructive modal logic

Modal formulas: \[A ::= \bot | a | A \land A | A \lor A | A \supset A | \square A | \Diamond A \]

Justification formulas: \[A ::= \bot | a | A \land A | A \lor A | A \supset A | t : A | \mu : A \]

Grammar of terms:

\[
\begin{align*}
t & ::= c \mid x \mid (t \cdot t) \mid (t + t) \mid ! t \\
\mu & ::= \alpha \mid t * \mu \mid (\mu \sqcup \mu)
\end{align*}
\]

- \(c\): proof constants
- \(x\): proof variables
- \(\cdot\): application
- \(+\): sum
- \(!\): proof checker
- \(\alpha\): witness variables
- \(*\): execution
- \(\sqcup\): disjoint witness union
Justification logic for constructive modal logic

Axiomatisation JCK:

- **taut**: Complete finite set of axioms for intuitionistic propositional logic
- **jk**: \(t : (A \supset B) \supset (s : A \supset t \cdot s : B) \)
- **sum**: \(s : A \supset (s + t) : A \) and \(t : A \supset (s + t) : A \)

\[
\text{mp} \quad \frac{A \supset B \quad A}{B} \quad \text{ian} \quad \frac{A \text{ is an axiom instance}}{c_1 : \ldots : c_n : A}
\]
Axiomatisation JCK:

taut: Complete finite set of axioms for intuitionistic propositional logic

jk: \[t : (A ⊃ B) ⊃ (s : A ⊃ t · s : B) \]

jk: \[t : (A ⊃ B) ⊃ (µ : A ⊃ t ⋆ µ : B) \]

sum: \[s : A ⊃ (s + t) : A \text{ and } t : A ⊃ (s + t) : A \]

union: \[µ : A ⊃ (µ ⊔ ν) : A \text{ and } ν : A ⊃ (µ ⊔ ν) : A \]

\[\text{mp} \quad A \supset B \quad A \quad \text{mp} \quad B \]

\[\text{ian} \quad A \text{ is an axiom instance} \quad c_1 : \ldots c_n : A \]
Axiomatisation JCK:

- **taut**: Complete finite set of axioms for intuitionistic propositional logic
- **jk**: \(t : (A \supset B) \supset (s : A \supset t \cdot s : B) \)
- **jk**: \(t : (A \supset B) \supset (\mu : A \supset t \ast \mu : B) \)
- **sum**: \(s : A \supset (s + t) : A \) and \(t : A \supset (s + t) : A \)
- **union**: \(\mu : A \supset (\mu \sqcup \nu) : A \) and \(\nu : A \supset (\mu \sqcup \nu) : A \)

\[\text{mp} \quad \frac{A \supset B \quad A}{B} \]

A is an axiom instance

\[\text{ian} \quad \frac{c_1 : \ldots : c_n : A}{c_1 : \ldots : c_n : A} \]
The machinery

Application: \(jk_\ast : t : (A \supset B) \supset (s : A \supset t \cdot s : B) \)

If \(t \) is a proof of \(A \supset B \) and \(s \) is a proof of \(A \), then \(t \cdot s \) is a proof of \(B \).
The machinery

Application: \(jk_\star : t : (A \supset B) \supset (s : A \supset t \cdot s : B) \)

If \(t \) is a proof of \(A \supset B \) and \(s \) is a proof of \(A \), then \(t \cdot s \) is a proof of \(B \).

Witness execution: \(jk_\star : t : (A \supset B) \supset (\mu : A \supset t \ast \mu : B) \)

If \(t \) is a proof of \(A \supset B \) and \(\mu \) is a witness for \(A \), then the same model denoted \(t \ast \mu \) is also a witness for \(B \).
The machinery

Application: \(jk\star: t : (A \supset B) \supset (s : A \supset t \cdot s : B) \)
If \(t \) is a proof of \(A \supset B \) and \(s \) is a proof of \(A \), then \(t \cdot s \) is a proof of \(B \).

Witness execution: \(jk\star: t : (A \supset B) \supset (\mu : A \supset t \star \mu : B) \)
If \(t \) is a proof of \(A \supset B \) and \(\mu \) is a witness for \(A \), then the same model denoted \(t \star \mu \) is also a witness for \(B \).

Sum and union: \(s : A \supset (s + t) : A, \mu : A \supset (\mu \sqcup \nu) : B, \ldots \)
We adopt Artemov's \(+ \) to incorporate monotonicity of reasoning, and also transpose it on the witness side with \(\sqcup \).
The machinery

Application: \(jk_\star : t : (A \supset B) \supset (s : A \supset t \cdot s : B) \)
If \(t \) is a proof of \(A \supset B \) and \(s \) is a proof of \(A \), then \(t \cdot s \) is a proof of \(B \).

Witness execution: \(jk_\star : t : (A \supset B) \supset (\mu : A \supset t \star \mu : B) \)
If \(t \) is a proof of \(A \supset B \) and \(\mu \) is a witness for \(A \), then the same model denoted \(t \star \mu \) is also a witness for \(B \).

Sum and union: \(s : A \supset (s + t) : A, \ \mu : A \supset (\mu \sqcup \nu) : B, \ldots \)
We adopt Artemov’s + to incorporate monotonicity of reasoning, and also transpose it on the witness side with \(\sqcup \).

Iterated axiom necessitation and modus ponens:
The machinery

Justification logic can internalise its own reasoning.

Lifting Lemma:

1. If $A_1, \ldots, A_n \vdash_{\text{JCK}} B$, then there exists a proof term $t(x_1, \ldots, x_n)$ such that, for all terms s_1, \ldots, s_n

 $$\vdash_{\text{JCK}} s_1 : A_1 \land \ldots \land s_n : A_n \supset t(s_1, \ldots, s_n) : B$$

2. If $A_1, \ldots, A_n, C \vdash_{\text{JCK}} B$, then there exists a witness term $\mu(x_1, \ldots, x_n, \beta)$ such that, for all terms s_1, \ldots, s_n and ν

 $$\vdash_{\text{JCK}} s_1 : A_1 \land \ldots \land s_n : A_n \land \nu : C \supset \mu(s_1, \ldots, s_n, \nu) : B$$
Correspondence

Forgetful projection: If $\vdash_{\text{JCK}} F$, then $\vdash_{\text{CK}} F^\circ$, where $(\cdot)^\circ$ maps justification formulas onto modal formulas, in particular:

$$
(t : A)^\circ := \Box A^\circ \\
(\mu : A)^\circ := \Diamond A^\circ
$$

Can we get the converse? I.e. can every modal logic theorem be realised by a justification theorem.

Idea: Transform directly a Hilbert proof of a modal theorem into a Hilbert proof of its realisation in justification logic.

Problem: Modus ponens can create dependencies between modalities.

Standard solution: Consider a proof of the modal theorem in a cut-free sequent calculus.
Forgetful projection: If $\vdash_{\text{JCK}} F$, then $\vdash_{\text{CK}} F^\circ$, where $(\cdot)^\circ$ maps justification formulas onto modal formulas, in particular:

\[(t : A)^\circ := \Box A^\circ \quad \quad \quad (\mu : A)^\circ := \Diamond A^\circ\]

Can we get the converse?
I.e. can every modal logic theorem be realised by a justification theorem.
Correspondence

Forgetful projection: If \(\vdash_{\text{JCK}} F \), then \(\vdash_{\text{CK}} F^\circ \),

where \((\cdot)^\circ\) maps justification formulas onto modal formulas, in particular:

\[
(t : A)^\circ := \Box A^\circ \\
(\mu : A)^\circ := \Diamond A^\circ
\]

Can we get the converse?
I.e. can every modal logic theorem be realised by a justification theorem.

Idea:
Transform directly a Hilbert proof of a modal theorem into a Hilbert proof of its realisation in justification logic.
Correspondence

Forgetful projection: If $\vdash_{\text{JCK}} F$, then $\vdash_{\text{CK}} F^\circ$,

where $(\cdot)^\circ$ maps justification formulas onto modal formulas, in particular:

$$(t : A)^\circ := \Box A^\circ \quad \quad (\mu : A)^\circ := \Diamond A^\circ$$

Can we get the converse?
I.e. can every modal logic theorem be realised by a justification theorem.

Idea:
Transform directly a Hilbert proof of a modal theorem into a Hilbert proof of its realisation in justification logic.

Problem:
Modus ponens can create dependencies between modalities.
Forgetful projection: If \(\vdash_{\text{JCK}} F \), then \(\vdash_{\text{CK}} F^\circ \),

where \((\cdot)^\circ\) maps justification formulas onto modal formulas, in particular:

\[
(t : A)^\circ := \Box A^\circ \quad (\mu : A)^\circ := \Diamond A^\circ
\]

Can we get the converse?
I.e. can every modal logic theorem be realised by a justification theorem.

Idea:
Transform directly a Hilbert proof of a modal theorem into a Hilbert proof of its realisation in justification logic.

Problem:
Modus ponens can create dependencies between modalities.

Standard solution:
Consider a proof of the modal theorem in a cut-free sequent calculus.
Sequent calculus for modal logic
Sequent calculus for modal logic

Sequent system LCK:

id

$\Gamma, a \Rightarrow a$

\vdash_L

$\Gamma, A \Rightarrow C \quad \Gamma, B \Rightarrow C$

$\Gamma, A \lor B \Rightarrow C$

\vdash_R

$\Gamma \Rightarrow A$

$\Gamma \Rightarrow A \lor B$

\wedge_L

$\Gamma, A, B \Rightarrow C$

$\Gamma, A \land B \Rightarrow C$

\vdash_R

$\Gamma \Rightarrow A$

$\Gamma \Rightarrow A \land B$

\top_L

$\Gamma, \bot \Rightarrow C$

\vdash_R

$\Gamma \Rightarrow B$

$\Gamma \Rightarrow A \lor B$

Soundness and completeness:

$\Gamma \vdash \text{CK} \iff \Gamma \vdash \text{LCK}$
Sequent calculus for modal logic

Sequent system LCK:

\[A_1, \ldots, A_n \Rightarrow C \quad \sim \quad (A_1 \land \ldots \land A_n) \supset C \]

- **id**
 \[\Gamma, a \Rightarrow a \]

- **\(\perp_L \)**
 \[\Gamma, \perp \Rightarrow C \]

- **\(\lor_L \)**
 \[\begin{array}{c}
 \Gamma, A \Rightarrow C \\
 \Gamma, B \Rightarrow C \\
 \hline
 \Gamma, A \lor B \Rightarrow C
 \end{array} \]

- **\(\forall_L \)**
 \[\Gamma, A \Rightarrow C \quad \Gamma, B \Rightarrow C \\
 \hline
 \Gamma, A \lor B \Rightarrow C \]

- **\(\land_L \)**
 \[\Gamma, A, B \Rightarrow C \\
 \hline
 \Gamma, A \land B \Rightarrow C \]

- **\(\lor_R \)**
 \[\Gamma \Rightarrow A \quad \Gamma \Rightarrow B \\
 \hline
 \Gamma \Rightarrow A \lor B \]

- **\(\forall_R \)**
 \[\Gamma \Rightarrow A \quad \Gamma \Rightarrow B \\
 \hline
 \Gamma \Rightarrow A \land B \]

- **\(\land_R \)**
 \[\Gamma \Rightarrow A \quad \Gamma \Rightarrow B \\
 \hline
 \Gamma \Rightarrow A \lor B \]

- **\(\lor_L \)**
 \[\Gamma, A \Rightarrow C \quad \Gamma, B \Rightarrow C \\
 \hline
 \Gamma, A \lor B \Rightarrow C \]

- **\(\forall_R \)**
 \[\Gamma \Rightarrow A \quad \Gamma \Rightarrow B \\
 \hline
 \Gamma \Rightarrow A \lor B \]

- **\(\land_R \)**
 \[\Gamma \Rightarrow A \quad \Gamma \Rightarrow B \\
 \hline
 \Gamma \Rightarrow A \land B \]

- **\(\lor_L \)**
 \[\Gamma, A \Rightarrow C \quad \Gamma, B \Rightarrow C \\
 \hline
 \Gamma, A \lor B \Rightarrow C \]

- **\(\forall_R \)**
 \[\Gamma \Rightarrow A \quad \Gamma \Rightarrow B \\
 \hline
 \Gamma \Rightarrow A \lor B \]
Sequent calculus for modal logic

Sequent system LCK:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>$\Gamma, a \Rightarrow a$</td>
<td></td>
</tr>
<tr>
<td>(\perp_L)</td>
<td>$\Gamma, \perp \Rightarrow C$</td>
<td>$\Gamma, \perp \Rightarrow C$</td>
</tr>
<tr>
<td>(\forall_L)</td>
<td>$\Gamma, A \Rightarrow C$ $\Gamma, B \Rightarrow C$</td>
<td>$\Gamma, A \vee B \Rightarrow C$</td>
</tr>
<tr>
<td>(\forall_R)</td>
<td>$\Gamma \Rightarrow A$</td>
<td>$\Gamma \Rightarrow A \vee B$</td>
</tr>
<tr>
<td>(\forall_R)</td>
<td>$\Gamma \Rightarrow B$</td>
<td>$\Gamma \Rightarrow A \vee B$</td>
</tr>
<tr>
<td>(\land_L)</td>
<td>$\Gamma, A, B \Rightarrow C$</td>
<td>$\Gamma, A \land B \Rightarrow C$</td>
</tr>
<tr>
<td>(\land_R)</td>
<td>$\Gamma \Rightarrow A$</td>
<td>$\Gamma \Rightarrow A \land B$</td>
</tr>
<tr>
<td>(\lor_L)</td>
<td>$\Gamma, A \supset B \Rightarrow A$ $\Gamma, B \Rightarrow C$</td>
<td>$\Gamma, A \supset B \Rightarrow C$</td>
</tr>
<tr>
<td>(\lor_R)</td>
<td>$\Gamma \Rightarrow A$</td>
<td>$\Gamma \Rightarrow A \supset B$</td>
</tr>
<tr>
<td>(\land_R)</td>
<td>$\Gamma \Rightarrow A$</td>
<td>$\Gamma \Rightarrow A \land B$</td>
</tr>
<tr>
<td>(\exists_L)</td>
<td>$\Gamma, A \supset B \Rightarrow A$ $\Gamma, B \Rightarrow C$</td>
<td>$\Gamma, A \supset B \Rightarrow C$</td>
</tr>
<tr>
<td>(\exists_R)</td>
<td>$\Gamma, A \Rightarrow B$</td>
<td>$\Gamma, A \Rightarrow B$</td>
</tr>
<tr>
<td>(k_*)</td>
<td>$\Gamma \Rightarrow A$</td>
<td>$\Box \Gamma, \Delta \Rightarrow \Box A$</td>
</tr>
<tr>
<td>(k_*)</td>
<td>$\Gamma, B \Rightarrow A$</td>
<td>$\Box \Gamma, \Delta, \Diamond B \Rightarrow \Diamond A$</td>
</tr>
</tbody>
</table>
Sequent calculus for modal logic

Sequent system LCK:

\[
\begin{align*}
\text{id} & \quad \frac{}{\Gamma, a \Rightarrow a} \\
\text{\&}_L & \quad \frac{\Gamma, A \Rightarrow C \quad \Gamma, B \Rightarrow C}{\Gamma, A \& B \Rightarrow C} \\
\text{\lor}_L & \quad \frac{\Gamma, A, B \Rightarrow C}{\Gamma, A \lor B \Rightarrow C} \\
\text{\lor}_R & \quad \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \lor B} \\
\text{\&}_R & \quad \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \& B} \\
\text{\Impl}_L & \quad \frac{\Gamma, A \supset B \Rightarrow A \quad \Gamma, B \Rightarrow C}{\Gamma, A \supset B \Rightarrow C} \\
\text{\Impl}_R & \quad \frac{\Gamma \Rightarrow A \supset B}{\Gamma \Rightarrow A \supset B} \\
\text{k}_* & \quad \frac{\Gamma \Rightarrow A}{\Box \Gamma, \Delta \Rightarrow \Box A} \\
\text{k}_* & \quad \frac{\Gamma, B \Rightarrow A}{\Box \Gamma, \Delta, \Diamond B \Rightarrow \Diamond A}
\end{align*}
\]

Soundness and completeness: $\vdash_{CK} A$ iff $\vdash_{LCK} \Rightarrow A$.
Main theorem

Realisation: If $\vdash_{\text{LCK}} A'_1, \ldots, A'_n \Rightarrow C'$, a modal sequent, then there is a normal realisation $A_1, \ldots A_n \Rightarrow C$ of $A'_1, \ldots, A'_n \Rightarrow C'$ such that $\vdash_{\text{JCK}} (A_1 \land \ldots \land A_n) \supset C$.

1. if $t : A/\mu : A$ is a negative subformula of $A_1, \ldots A_n \Rightarrow C$, then t/μ is a proof/witness variable, and all these variables are pairwise distinct.
Main theorem

Realisation: If $\vdash_{\text{LCK}} A'_1, \ldots, A'_n \Rightarrow C'$, a modal sequent, then there is a normal realisation $A_1, \ldots A_n \Rightarrow C$ of $A'_1, \ldots, A'_n \Rightarrow C'$ such that $\vdash_{\text{JCK}} (A_1 \land \ldots \land A_n) \supset C$.

\textbf{if} $t : A / \mu : A$ is a negative subformula of $A_1, \ldots A_n \Rightarrow C$, then t / μ is a proof/witness variable, and all these variables are pairwise distinct.

The proof goes along the lines of that for the \Box-only fragment.

The operation \sqcup on witness terms plays the same role as the operation $+$ on proof terms, i.e. to handle contractions of modal formulas.
Extensions

\[
\begin{align*}
\text{d: } & \quad \Box A \supset \lozenge A \\
\text{t: } & \quad (A \supset \lozenge A) \land (\Box A \supset A) \\
\text{4: } & \quad (\lozenge \lozenge A \supset \lozenge A) \land (\Box A \supset \Box \Box A) \\
\text{5: } & \quad (\lozenge A \supset \Box \lozenge A) \land (\lozenge \Box A \supset \Box A)
\end{align*}
\]
Extensions

No other operation on witness terms outside execution and disjoint union.

d: □A ⊃ ◇A

t: (A ⊃ ◇A) ∧ (□A ⊃ A)

4: (◇◇A ⊃ ◇A) ∧ (□A ⊃ □□A)

5: (◇A ⊃ □◇A) ∧ (◇□A ⊃ □A)
No other operation on witness terms outside execution and disjoint union. In particular, the \Box-version of 4 requires the proof checker operator $!$.

$$j4_* : t : A \supset ! t : t : A$$
Extensions

No other operation on witness terms outside execution and disjoint union. In particular, the □-version of 4 requires the proof checker operator !

\[j_{4*}: t : A \supset ! t : t : A \]

but a priori no additional operation for the ◇-version of 4.

\[j_{4*}: \mu : \nu : A \supset \nu : A \]
Extensions

No other operation on witness terms outside execution and disjoint union. In particular, the \Box-version of 4 requires the proof checker operator $!$

\[j_{4_\star} : t : A \supset ! t : t : A \]

but *a priori* no additional operation for the \Diamond-version of 4.

\[j_{4_\star} : \mu : \nu : A \supset \nu : A \]

We think that the method here could be further extended, but we would need to prove **cut-elimination** for the other systems.
Conclusions

In a nutshell:
We introduced witness terms and defined an operator combining proof terms and witness terms to realise the constructive modal axiom k_2.

Future:
1. Intuitionistic modal logic $IK = \text{constructive } CK + k_3$:
 \[(A \lor B) \supset (3A \lor 3B) \]
 \[(3A \supset 2B) \supset 2(A \supset B) \]
 \[3\bot \supset \bot \]

No ordinary sequent calculi for such logics, but there are nested sequent calculi for logics without axiom d. (Straßburger)

▶ adapt the realisation proof for classical nested sequent calculi. (Goetschi and Kuznets)

2. Investigate the semantics of the logics we proposed.

▶ adapt modular models. (Fitting)

Thank you. Let's discuss!
Conclusions

In a nutshell:
We introduced **witness terms** and defined an operator **combining** proof terms and witness terms to realise the **constructive** modal axiom k_2.

Future:
1. **Intuitionistic** modal logic $IK = $ constructive $CK +$

 $$k_3 : \Diamond(A \lor B) \supset (\Diamond A \lor \Diamond B) \quad k_4 : (\Diamond A \supset \Box B) \supset \Box(A \supset B) \quad k_5 : \Diamond \bot \supset \bot$$

 No ordinary sequent calculi for such logics, but there are **nested sequent calculi** for logics without axiom d. (Straßburger)

 - adapt the realisation proof for classical nested sequents calculi. (Goetschi and Kuznets)

2. Investigate the **semantics** of the logics we proposed.

 - adapt modular models. (Fitting)
Conclusions

In a nutshell:
We introduced witness terms and defined an operator combining proof terms and witness terms to realise the constructive modal axiom k_2.

Future:
1. Intuitionistic modal logic $IK = $ constructive $CK +$

 $k_3 : \Diamond (A \lor B) \supset (\Diamond A \lor \Diamond B) \quad k_4 : (\Diamond A \supset B) \supset \Box (A \supset B) \quad k_5 : \Diamond \bot \supset \bot$

 No ordinary sequent calculi for such logics, but there are nested sequent calculi for logics without axiom d. (Straßburger)

 ▶ adapt the realisation proof for classical nested sequents calculi. (Goetschi and Kuznets)

2. Investigate the semantics of the logics we proposed.

 ▶ adapt modular models. (Fitting)

Thank you. Let’s discuss!